دورية أكاديمية

Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain.

التفاصيل البيبلوغرافية
العنوان: Microglia undergo disease-associated transcriptional activation and CX3C motif chemokine receptor 1 expression regulates neurogenesis in the aged brain.
المؤلفون: Fritze J; Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden.; Lund Stem Cell Center, Lund, Sweden., Muralidharan C; Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden.; Lund Stem Cell Center, Lund, Sweden.; Department of Experimental Medical Science, Faculty of Medicine, Molecular Neurogenetics Group, Lund University, Lund, Sweden., Stamp E; Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden.; Lund Stem Cell Center, Lund, Sweden., Ahlenius H; Department of Experimental Medical Sciences, Faculty of Medicine, Stem Cells, Aging and Neurodegeneration Group, Lund University, Lund, Sweden.; Lund Stem Cell Center, Lund, Sweden.
المصدر: Developmental neurobiology [Dev Neurobiol] 2024 Jul; Vol. 84 (3), pp. 128-141. Date of Electronic Publication: 2024 Apr 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Subscription Services, Inc Country of Publication: United States NLM ID: 101300215 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1932-846X (Electronic) Linking ISSN: 19328451 NLM ISO Abbreviation: Dev Neurobiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Hoboken, NJ : Wiley Subscription Services, Inc.
مواضيع طبية MeSH: Aging*/metabolism , Aging*/physiology , CX3C Chemokine Receptor 1*/metabolism , CX3C Chemokine Receptor 1*/genetics , Microglia*/metabolism , Neurogenesis*/physiology, Animals ; Mice ; Brain/metabolism ; Mice, Inbred C57BL ; Mice, Transgenic ; Receptors, Chemokine/metabolism ; Receptors, Chemokine/genetics ; Transcriptional Activation/physiology ; Humans
مستخلص: Adult neurogenesis continues throughout life but declines dramatically with age and in neurodegenerative disorders such as Alzheimer's disease. In parallel, microglia become activated resulting in chronic inflammation in the aged brain. A unique type of microglia, suggested to support neurogenesis, exists in the subventricular zone (SVZ), but little is known how they are affected by aging. We analyzed the transcriptome of aging microglia and identified a unique neuroprotective activation profile in aged SVZ microglia, which is partly shared with disease-associated microglia (DAM). CX3C motif chemokine receptor 1 (CX3CR1) is characteristically expressed by brain microglia where it directs migration to targets for phagocytosis. We show that Cx3cr1 expression, as in DAM, is downregulated in old SVZ microglia and that heterozygous Cx3cr1 mice have increased proliferation and neuroblast number in the aged SVZ but not in the dentate gyrus, identifying CX3CR1 signaling as a novel age and brain region-specific regulator of neurogenesis.
(© 2024 The Authors. Developmental Neurobiology published by Wiley Periodicals LLC.)
References: Ahlenius, H., Visan, V., Kokaia, M., Lindvall, O., & Kokaia, Z. (2009). Neural stem and progenitor cells retain their potential for proliferation and differentiation into functional neurons despite lower number in aged brain. Journal of Neuroscience, 29(14), 4408–4419. http://doi.org/10.1523/JNEUROSCI.6003‐08.2009.
Bachstetter, A. D., Morganti, J. M., Jernberg, J., Schlunk, A., Mitchell, S. H., Brewster, K. W., Hudson, C. E., Cole, M. J., Harrison, J. K., Bickford, P. C., & Gemma, C. (2011). Fractalkine and CX 3 CR1 regulate hippocampal neurogenesis in adult and aged rats. Neurobiology of Aging, 32(11), 2030–2044. http://doi.org/10.1016/j.neurobiolaging.2009.11.022.
Benayoun, B. A., Pollina, E. A., Singh, P. P., Mahmoudi, S., Harel, I., Casey, K. M., Dulken, B. W., Kundaje, A., & Brunet, A. (2019). Remodeling of epigenome and transcriptome landscapes with aging in mice reveals widespread induction of inflammatory responses. Genome Research, 29(4), 697–709. http://doi.org/10.1101/gr.240093.118.
Blume, Z. I., Lambert, J. M., Lovel, A. G., & Mitchell, D. M. (2020). Microglia in the developing retina couple phagocytosis with the progression of apoptosis via P2RY12 signaling. Developmental Dynamics, 249(6), 723–740. http://doi.org/10.1002/dvdy.163.
Deczkowska, A., Keren‐Shaul, H., Weiner, A., Colonna, M., Schwartz, M., & Amit, I. (2018). Disease‐associated microglia: A universal immune sensor of neurodegeneration. Cell, 173(5), 1073–1081. http://doi.org/10.1016/j.cell.2018.05.003.
Deczkowska, A., Matcovitch‐Natan, O., Tsitsou‐Kampeli, A., Ben‐Hamo, S., Dvir‐Szternfeld, R., Spinrad, A., Singer, O., David, E., Winter, D. R., Smith, L. K., Kertser, A., Baruch, K., Rosenzweig, N., Terem, A., Prinz, M., Villeda, S., Citri, A., Amit, I., & Schwartz, M. (2017). Mef2C restrains microglial inflammatory response and is lost in brain ageing in an IFN‐I‐dependent manner. Nature Communications, 8, 717. http://doi.org/10.1038/s41467‐017‐00769‐0.
Diaz‐Aparicio, I., Paris, I., Sierra‐Torre, V., Plaza‐Zabala, A., Rodríguez‐Iglesias, N., Márquez‐Ropero, M., Beccari, S., Huguet, P., Abiega, O., Alberdi, E., Matute, C., Bernales, I., Schulz, A., Otrokocsi, L., Sperlagh, B., Happonen, K. E., Lemke, G., Maletic‐Savatic, M., Valero, J., & Sierra, A. (2020). Microglia actively remodel adult hippocampal neurogenesis through the phagocytosis secretome. Journal of Neuroscience, 40(7), 1453–1482. http://doi.org/10.1523/JNEUROSCI.0993‐19.2019.
Dulken, B. W., Buckley, M. T., Navarro Negredo, P., Saligrama, N., Cayrol, R., Leeman, D. S., George, B. M., Boutet, S. C., Hebestreit, K., Pluvinage, J. V., Wyss‐Coray, T., Weissman, I. L., Vogel, H., Davis, M. M., & Brunet, A. (2019). Single‐cell analysis reveals T cell infiltration in old neurogenic niches. Nature, 571(7764), 205–210. http://doi.org/10.1038/s41586‐019‐1362‐5.
Enwere, E., Shingo, T., Gregg, C., Fujikawa, H., Ohta, S., & Weiss, S. (2004). Aging results in reduced epidermal growth factor receptor signaling, diminished olfactory neurogenesis, and deficits in fine olfactory discrimination. Journal of Neuroscience, 24(38), 8354–8365. http://doi.org/10.1523/JNEUROSCI.2751‐04.2004.
Favaloro, F., Deleo, A. M., Delgado, A. C., & Doetsch, F. (2022). miR‐17 approximately 92 exerts stage‐specific effects in adult V‐SVZ neural stem cell lineages. Cell Reports, 41(10), 111773. http://doi.org/10.1016/j.celrep.2022.111773.
Finger, C. E., Moreno‐Gonzalez, I., Gutierrez, A., Moruno‐Manchon, J. F., & McCullough, L. D. (2021). Age‐related immune alterations and cerebrovascular inflammation. Molecular Psychiatry, 27, 803–818.
Franklin, K. B. J., & Paxinos, G. (2013). Paxinos and Franklin's the mouse brain in stereotaxic coordinates (4th ed.). Academic Press.
Guadagno, J., Xu, X., Karajgikar, M., Brown, A., & Cregan, S. P. (2013). Microglia‐derived TNFalpha induces apoptosis in neural precursor cells via transcriptional activation of the Bcl‐2 family member Puma. Cell Death & Disease, 4, e538. http://doi.org/10.1038/cddis.2013.59.
Gupta, B., Errington, A. C., Jimenez‐Pascual, A., Eftychidis, V., Brabletz, S., Stemmler, M. P., Brabletz, T., Petrik, D., & Siebzehnrubl, F. A. (2021). The transcription factor ZEB1 regulates stem cell self‐renewal and cell fate in the adult hippocampus. Cell Reports, 36(8), 109588. http://doi.org/10.1016/j.celrep.2021.109588.
Gutierrez, E. G., Banks, W. A., & Kastin, A. J. (1993). Murine tumor‐necrosis‐factor‐alpha is transported from blood to brain in the mouse. Journal of Neuroimmunology, 47(2), 169–176. http://doi.org/10.1016/0165‐5728(93)90027‐V.
Haynes, S. E., Hollopeter, G., Yang, G., Kurpius, D., Dailey, M. E., Gan, W.‐B., & Julius, D. (2006). The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nature Neuroscience, 9(12), 1512–1519. http://doi.org/10.1038/nn1805.
Hickman, S. E., Allison, E. K., Coleman, U., Kingery‐Gallagher, N. D., & El Khoury, J. (2019). Heterozygous CX3CR1 deficiency in microglia restores neuronal beta‐amyloid clearance pathways and slows progression of Alzheimer's like‐disease in PS1‐APP mice. Frontiers in Immunology, 10, 2780. http://doi.org/10.3389/fimmu.2019.02780.
Jung, S., Aliberti, J., Graemmel, P., Sunshine, M. J., Kreutzberg, G. W., Sher, A., & Littman, D. R. (2000). Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Molecular and Cellular Biology, 20(11), 4106–4114. http://doi.org/10.1128/MCB.20.11.4106‐4114.2000.
Jurga, A. M., Paleczna, M., & Kuter, K. Z. (2020). Overview of general and discriminating markers of differential microglia phenotypes. Frontiers in Cellular Neuroscience, 14, 198. http://doi.org/10.3389/fncel.2020.00198.
Keren‐Shaul, H., Spinrad, A., Weiner, A., Matcovitch‐Natan, O., Dvir‐Szternfeld, R., Ulland, T. K., David, E., Baruch, K., Lara‐Astaiso, D., Toth, B., Itzkovitz, S., Colonna, M., Schwartz, M., & Amit, I. (2017). A unique microglia type associated with restricting development of Alzheimer's disease. Cell, 169(7), 1276–1290.e17. https://doi.org/10.1016/j.cell.2017.05.018.
Kettenmann, H., Hanisch, U.‐K., Noda, M., & Verkhratsky, A. (2011). Physiology of microglia. Physiological Reviews, 91(2), 461–553. http://doi.org/10.1152/physrev.00011.2010.
Kreisel, T., Wolf, B., Keshet, E., & Licht, T. (2019). Unique role for dentate gyrus microglia in neuroblast survival and in VEGF‐induced activation. Glia, 67(4), 594–618. http://doi.org/10.1002/glia.23505.
Lee, M., Lee, Y., Song, J., Lee, J., & Chang, S.‐Y. (2018). Tissue‐specific role of CX(3)CR1 expressing immune cells and their relationships with human disease. Immune Network, 18(1), e5. https://doi.org/10.4110/in.2018.18.e5.
Leeman, D. S., Hebestreit, K., Ruetz, T., Webb, A. E., Mckay, A., Pollina, E. A., Dulken, B. W., Zhao, X., Yeo, R. W., Ho, T. T., Mahmoudi, S., Devarajan, K., Passegué, E., Rando, T. A., Frydman, J., & Brunet, A. (2018). Lysosome activation clears aggregates and enhances quiescent neural stem cell activation during aging. Science, 359(6381), 1277–1283. http://doi.org/10.1126/science.aag3048.
Moreno‐Jiménez, E. P., Flor‐García, M., Terreros‐Roncal, J., Rábano, A., Cafini, F., Pallas‐Bazarra, N., Ávila, J., & Llorens‐Martín, M. (2019). Adult hippocampal neurogenesis is abundant in neurologically healthy subjects and drops sharply in patients with Alzheimer's disease. Nature Medicine, 25(4), 554–560. https://doi.org/10.1038/s41591‐019‐0375‐9.
Mori, I., Imai, Y., Kohsaka, S., & Kimura, Y. (2000). Upregulated expression of Iba1 molecules in the central nervous system of mice in response to neurovirulent influenza A virus infection. Microbiology and Immunology, 44(8), 729–735. http://doi.org/10.1111/j.1348‐0421.2000.tb02556.x.
Niraula, A., Sheridan, J. F., & Godbout, J. P. (2017). Microglia priming with aging and stress. Neuropsychopharmacology, 42(1), 318–333. http://doi.org/10.1038/npp.2016.185.
Ohsawa, K., Imai, Y., Kanazawa, H., Sasaki, Y. O., & Kohsaka, S. (2000). Involvement of Iba1 in membrane ruffling and phagocytosis of macrophages/microglia. Journal of Cell Science, 113(Pt 17), 3073–3084. http://doi.org/10.1242/jcs.113.17.3073.
Ohsawa, K., Imai, Y., Sasaki, Y. O., & Kohsaka, S. (2004). Microglia/macrophage‐specific protein Iba1 binds to fimbrin and enhances its actin‐bundling activity. Journal of Neurochemistry, 88(4), 844–856. http://doi.org/10.1046/j.1471‐4159.2003.02213.x.
Plaza‐Zabala, A., Sierra‐Torre, V., & Sierra, A. (2017). Autophagy and microglia: Novel partners in neurodegeneration and aging. International Journal of Molecular Sciences, 18(3), 598. https://doi.org/10.3390/ijms18030598.
Ransohoff, R. M. (2007). Microgliosis: The questions shape the answers. Nature Neuroscience, 10(12), 1507–1509. http://doi.org/10.1038/nn1207‐1507.
Ribeiro Xavier, A. L., Kress, B. T., Goldman, S. A., Lacerda De Menezes, J. R., & Nedergaard, M. (2015). A distinct population of microglia supports adult neurogenesis in the subventricular zone. Journal of Neuroscience, 35(34), 11848–11861. http://doi.org/10.1523/JNEUROSCI.1217‐15.2015.
Rogers, J. T., Morganti, J. M., Bachstetter, A. D., Hudson, C. E., Peters, M. M., Grimmig, B. A., Weeber, E. J., Bickford, P. C., & Gemma, C. (2011). CX3CR1 deficiency leads to impairment of hippocampal cognitive function and synaptic plasticity. Journal of Neuroscience, 31(45), 16241–16250. https://doi.org/10.1523/JNEUROSCI.3667‐11.2011.
Safaiyan, S., Kannaiyan, N., Snaidero, N., Brioschi, S., Biber, K., Yona, S., Edinger, A. L., Jung, S., Rossner, M. J., & Simons, M. (2016). Age‐related myelin degradation burdens the clearance function of microglia during aging. Nature Neuroscience, 19(8), 995–998. http://doi.org/10.1038/nn.4325.
Sellner, S., Paricio‐Montesinos, R., Spieß, A., Masuch, A., Erny, D., Harsan, L. A., Elverfeldt, D. V., Schwabenland, M., Biber, K., Staszewski, O., Lira, S., Jung, S., Prinz, M., & Blank, T. (2016). Microglial CX3CR1 promotes adult neurogenesis by inhibiting Sirt 1/p65 signaling independent of CX3CL1. Acta Neuropathologica Communications, 4(1), 102. http://doi.org/10.1186/s40478‐016‐0374‐8.
Sierra, A., Abiega, O., Shahraz, A., & Neumann, H. (2013). Janus‐faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Frontiers in Cellular Neuroscience, 7, 6. http://doi.org/10.3389/fncel.2013.00006.
Sierra, A., Encinas, J. M., Deudero, J. J. P., Chancey, J. H., Enikolopov, G., Overstreet‐Wadiche, L. S., Tsirka, S. E., & Maletic‐Savatic, M. (2010). Microglia shape adult hippocampal neurogenesis through apoptosis‐coupled phagocytosis. Cell Stem Cell, 7(4), 483–495. http://doi.org/10.1016/j.stem.2010.08.014.
Solano Fonseca, R., Mahesula, S., Apple, D. M., Raghunathan, R., Dugan, A., Cardona, A., O'connor, J., & Kokovay, E. (2016). Neurogenic niche microglia undergo positional remodeling and progressive activation contributing to age‐associated reductions in neurogenesis. Stem Cells and Development, 25(7), 542–555. http://doi.org/10.1089/scd.2015.0319.
Solé‐Domènech, S., Cruz, D. L., Capetillo‐Zarate, E., & Maxfield, F. R. (2016). The endocytic pathway in microglia during health, aging and Alzheimer's disease. Ageing Research Reviews, 32, 89–103. http://doi.org/10.1016/j.arr.2016.07.002.
Toni, N., Laplagne, D. A., Zhao, C., Lombardi, G., Ribak, C. E., Gage, F. H., & Schinder, A. F. (2008). Neurons born in the adult dentate gyrus form functional synapses with target cells. Nature Neuroscience, 11(8), 901–907. https://doi.org/10.1038/nn.2156.
Urbán, N., Blomfield, I. M., & Guillemot, F. (2019). Quiescence of adult mammalian neural stem cells: A highly regulated rest. Neuron, 104(5), 834–848. http://doi.org/10.1016/j.neuron.2019.09.026.
Van Kampen, J. M., Baranowski, D., & Kay, D. G. (2014). Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease. PLoS ONE, 9(5), e97032. http://doi.org/10.1371/journal.pone.0097032.
Walton, N. M., Sutter, B. M., Laywell, E. D., Levkoff, L. H., Kearns, S. M., Marshall, G. P., Scheffler, B., & Steindler, D. A. (2006). Microglia instruct subventricular zone neurogenesis. Glia, 54(8), 815–825. http://doi.org/10.1002/glia.20419.
Xavier, A. L., Lima, F. R. S., Nedergaard, M., & Menezes, J. O. R. L. (2015). Ontogeny of CX3CR1‐EGFP expressing cells unveil microglia as an integral component of the postnatal subventricular zone. Frontiers in Cellular Neuroscience, 9, 37. http://doi.org/10.3389/fncel.2015.00037.
Ximerakis, M., Lipnick, S. L., Innes, B. T., Simmons, S. K., Adiconis, X., Dionne, D., Mayweather, B. A., Nguyen, L., Niziolek, Z., Ozek, C., Butty, V. L., Isserlin, R., Buchanan, S. M., Levine, S. S., Regev, A., Bader, G. D., Levin, J. Z., & Rubin, L. L. (2019). Single‐cell transcriptomic profiling of the aging mouse brain. Nature Neuroscience, 22(10), 1696–1708. http://doi.org/10.1038/s41593‐019‐0491‐3.
Zhao, C., Teng, E. M., Summers, R. G., Ming, G.‐L. I., & Gage, F. H. (2006). Distinct morphological stages of dentate granule neuron maturation in the adult mouse hippocampus. Journal of Neuroscience, 26(1), 3–11. http://doi.org/10.1523/JNEUROSCI.3648‐05.2006.
معلومات مُعتمدة: 2018-02695 Vetenskapsrådet
فهرسة مساهمة: Keywords: CX3C motif chemokine receptor 1; aging; disease‐associated microglia; microglia; neurogenesis; subventricular zone
المشرفين على المادة: 0 (CX3C Chemokine Receptor 1)
0 (Cx3cr1 protein, mouse)
0 (Receptors, Chemokine)
0 (CX3CR1 protein, human)
تواريخ الأحداث: Date Created: 20240415 Date Completed: 20240716 Latest Revision: 20240815
رمز التحديث: 20240815
DOI: 10.1002/dneu.22939
PMID: 38616340
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-846X
DOI:10.1002/dneu.22939