دورية أكاديمية

Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice.

التفاصيل البيبلوغرافية
العنوان: Diet switch pre-vaccination improves immune response and metabolic status in formerly obese mice.
المؤلفون: Honce R; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.; Vermont Lung Center, Division of Pulmonology and Critical Care, Department of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA., Vazquez-Pagan A; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA.; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.; Weill Cornell Medicine, New York City, NY, USA.; Noguchi Medical Research Institute (NMRI), Accra, Ghana., Livingston B; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Mandarano AH; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA., Wilander BA; Graduate School of Biomedical Sciences, St Jude Children's Research Hospital, Memphis, TN, USA.; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA., Cherry S; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Hargest V; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Sharp B; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Brigleb PH; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Kirkpatrick Roubidoux E; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Van de Velde LA; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Skinner RC; Division of Natural Sciences and Mathematics, University of the Ozarks, Clarksville, AR, USA.; Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, VT, USA., McGargill MA; Department of Immunology, St Jude Children's Research Hospital, Memphis, TN, USA., Thomas PG; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA., Schultz-Cherry S; Department of Host Microbe Interactions, St Jude Children's Research Hospital, Memphis, TN, USA. stacey.schultz-cherry@stjude.org.
المصدر: Nature microbiology [Nat Microbiol] 2024 Jun; Vol. 9 (6), pp. 1593-1606. Date of Electronic Publication: 2024 Apr 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101674869 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2058-5276 (Electronic) Linking ISSN: 20585276 NLM ISO Abbreviation: Nat Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [London] : Nature Publishing Group, [2016]-
مواضيع طبية MeSH: Influenza Vaccines*/immunology , Influenza Vaccines*/administration & dosage , Diet, High-Fat*/adverse effects , Obesity*/immunology , Obesity*/metabolism , Orthomyxoviridae Infections*/immunology , Orthomyxoviridae Infections*/prevention & control, Animals ; Mice ; Mice, Inbred C57BL ; Vaccination ; Mice, Obese ; Leptin/metabolism ; Male ; Female ; Adiponectin/metabolism ; T-Lymphocytes/immunology
مستخلص: Metabolic disease is epidemiologically linked to severe complications upon influenza virus infection, thus vaccination is a priority in this high-risk population. Yet, vaccine responses are less effective in these same hosts. Here we examined how the timing of diet switching from a high-fat diet to a control diet affected influenza vaccine efficacy in diet-induced obese mice. Our results demonstrate that the systemic meta-inflammation generated by high-fat diet exposure limited T cell maturation to the memory compartment at the time of vaccination, impacting the recall of effector memory T cells upon viral challenge. This was not improved with a diet switch post-vaccination. However, the metabolic dysfunction of T cells was reversed if weight loss occurred 4 weeks before vaccination, restoring a functional recall response. This corresponded with changes in the systemic obesity-related biomarkers leptin and adiponectin, highlighting the systemic and specific effects of diet on influenza vaccine immunogenicity.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
References: Bluher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019). (PMID: 3081468610.1038/s41574-019-0176-8)
Honce, R. & Schultz-Cherry, S. Impact of obesity on influenza A virus pathogenesis, immune response, and evolution. Front. Immunol. 10, 1071 (2019). (PMID: 31134099652302810.3389/fimmu.2019.01071)
Zlotnikov, N. et al. Infection with the Lyme disease pathogen suppresses innate immunity in mice with diet-induced obesity. Cell. Microbiol. 19, e12689 (2017). (PMID: 2779420810.1111/cmi.12689)
Weger-Lucarelli, J. et al. Host nutritional status affects alphavirus virulence, transmission, and evolution. PLoS Pathog. 15, e1008089 (2019). (PMID: 31710653687217410.1371/journal.ppat.1008089)
Chuong, C. et al. Nutritional status impacts dengue virus infection in mice. BMC Biol. 18, 106 (2020). (PMID: 32854687745357410.1186/s12915-020-00828-x)
Van Kerkhove, M. D. et al. Risk factors for severe outcomes following 2009 influenza A (H1N1) infection: a global pooled analysis. PLoS Med. 8, e1001053 (2011). (PMID: 21750667313002110.1371/journal.pmed.1001053)
Dietz, W. & Santos-Burgoa, C. Obesity and its implications for COVID-19 mortality. Obesity 28, 1005 (2020). (PMID: 3223720610.1002/oby.22818)
Pausé, C., Parker, G. & Gray, L. Resisting the problematisation of fatness in COVID-19: in pursuit of health justice. Int. J. Disaster Risk Reduct. 54, 102021 (2021). (PMID: 34840940860624610.1016/j.ijdrr.2020.102021)
Kim, Y. H. et al. Diet-induced obesity dramatically reduces the efficacy of a 2009 pandemic H1N1 vaccine in a mouse model. J. Infect. Dis. 205, 244–251 (2012). (PMID: 2214780110.1093/infdis/jir731)
Karlsson, E. A. et al. Obesity outweighs protection conferred by adjuvanted influenza vaccination. mBio 7, e01144-6 (2016). (PMID: 27486196498172310.1128/mBio.01144-16)
Neidich, S. D. et al. Increased risk of influenza among vaccinated adults who are obese. Int. J. Obes. 41, 1324–1330 (2017). (PMID: 10.1038/ijo.2017.131)
Honce, R. et al. Obesity-related microenvironment promotes emergence of virulent influenza virus strains. mBio 11, e03341-19 (2020). (PMID: 32127459706478310.1128/mBio.03341-19)
Klein, S. L. & Flanagan, K. L. Sex differences in immune responses. Nat. Rev. Immunol. 16, 626–638 (2016). (PMID: 2754623510.1038/nri.2016.90)
Varghese, M., Griffin, C. & Singer, K. The role of sex and sex hormones in regulating obesity-induced inflammation. Adv. Exp. Med. Biol. 1043, 65–86 (2017). (PMID: 2922409110.1007/978-3-319-70178-3_5)
Namkoong, H. et al. Obesity worsens the outcome of influenza virus infection associated with impaired type I interferon induction in mice. Biochem. Biophys. Res. Commun. 513, 405–411 (2019). (PMID: 3096726110.1016/j.bbrc.2019.03.211)
Baaten, B. J., Li, C.-R. & Bradley, L. M. Multifaceted regulation of T cells by CD44. Commun. Integr. Biol. 3, 508–512 (2010). (PMID: 21331226303805010.4161/cib.3.6.13495)
Kiran, S., Kumar, V., Murphy, E. A., Enos, R. T. & Singh, U. P. High fat diet-induced CD8+ T cells in adipose tissue mediate macrophages to sustain low-grade chronic inflammation. Front. Immunol. 12, 680944 (2021). (PMID: 34248964826129710.3389/fimmu.2021.680944)
Myers, M. A. et al. Dynamically linking influenza virus infection kinetics, lung injury, inflammation, and disease severity. eLife 10, e68864 (2021). (PMID: 34282728837077410.7554/eLife.68864)
Rebeles, J. et al. Obesity-induced changes in T-cell metabolism are associated with impaired memory T-cell response to influenza and are not reversed with weight loss. J. Infect. Dis. 219, 1652–1661 (2019). (PMID: 3053516110.1093/infdis/jiy700)
Srikanthan, K., Feyh, A., Visweshwar, H., Shapiro, J. I. & Sodhi, K. Systematic review of metabolic syndrome biomarkers: a panel for early detection, management, and risk stratification in the West Virginian population. Int. J. Med. Sci. 13, 25–38 (2016). (PMID: 26816492471681710.7150/ijms.13800)
Frühbeck, G., Catalán, V., Rodríguez, A. & Gómez-Ambrosi, J. Adiponectin–leptin ratio: a promising index to estimate adipose tissue dysfunction. Relation with obesity-associated cardiometabolic risk. Adipocyte 7, 57–62 (2018). (PMID: 2920509910.1080/21623945.2017.1402151)
Pérez-Pérez, A., Sánchez-Jiménez, F., Vilariño-García, T. & Sánchez-Margalet, V. Role of leptin in inflammation and vice versa. Int. J. Mol. Sci. 21, 5887 (2020). (PMID: 32824322746064610.3390/ijms21165887)
van Niekerk, G., Christowitz, C., Conradie, D. & Engelbrecht, A.-M. Insulin as an immunomodulatory hormone. Cytokine Growth Factor Rev. 52, 34–44 (2020). (PMID: 3183133910.1016/j.cytogfr.2019.11.006)
Zhang, A. J. et al. Leptin mediates the pathogenesis of severe 2009 pandemic influenza A(H1N1) infection associated with cytokine dysregulation in mice with diet-induced obesity. J. Infect. Dis. 207, 1270–1280 (2013). (PMID: 2332591610.1093/infdis/jit031)
Cho, W. J. et al. Diet-induced obesity reduces the production of influenza vaccine-induced antibodies via impaired macrophage function. Acta Virol. 60, 298–306 (2016). (PMID: 2764044010.4149/av_2016_03_298)
Sheridan, P. A. et al. Obesity is associated with impaired immune response to influenza vaccination in humans. Int. J. Obes. 36, 1072–1077 (2012). (PMID: 10.1038/ijo.2011.208)
Paich, H. A. et al. Overweight and obese adult humans have a defective cellular immune response to pandemic H1N1 influenza A virus. Obesity 21, 2377–2386 (2013). (PMID: 2351282210.1002/oby.20383)
Kalil, A. C. & Thomas, P. G. Influenza virus-related critical illness: pathophysiology and epidemiology. Crit. Care 23, 258 (2019). (PMID: 31324202664258110.1186/s13054-019-2539-x)
O’Brien, A. et al. Obesity reduces mTORC1 activity in mucosal-associated invariant T cells, driving defective metabolic and functional responses. J. Immunol. 202, 3404–3411 (2019). (PMID: 3107652810.4049/jimmunol.1801600)
Andersen, C. J., Murphy, K. E. & Fernandez, M. L. Impact of obesity and metabolic syndrome on immunity. Adv. Nutr. 7, 66–75 (2016). (PMID: 26773015471789010.3945/an.115.010207)
Frasca, D. & Blomberg, B. B. The impact of obesity and metabolic syndrome on vaccination success. Interdiscip. Top. Gerontol. Geriatr. 43, 86–97 (2020). (PMID: 3230598110.1159/000504440)
Corrado, M. & Pearce, E. L. Targeting memory T cell metabolism to improve immunity. J. Clin. Invest. 132, e148546 (2022). (PMID: 34981777871813510.1172/JCI148546)
Xu, H. C. et al. Type I interferon protects antiviral CD8+ T cells from NK cell cytotoxicity. Immunity 40, 949–960 (2014). (PMID: 2490988710.1016/j.immuni.2014.05.004)
Le, C. T. et al. PD-1 blockade reverses obesity-mediated T cell priming impairment. Front. Immunol. 11, 590568 (2020). (PMID: 33193426765860810.3389/fimmu.2020.590568)
Herati, R. S. et al. PD-1 directed immunotherapy alters Tfh and humoral immune responses to seasonal influenza vaccine. Nat. Immunol. 23, 1183–1192 (2022). (PMID: 35902637988066310.1038/s41590-022-01274-3)
Jin, J. et al. Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals. Sci. Immunol. 6, eabg0791 (2021). (PMID: 34145066842238710.1126/sciimmunol.abg0791)
Kiernan, K., Nichols, A. G., Alwarawrah, Y. & MacIver, N. J. Effects of T cell leptin signaling on systemic glucose tolerance and T cell responses in obesity. PLoS ONE 18, e0286470 (2023). (PMID: 372762361024136410.1371/journal.pone.0286470)
Zani, F. et al. The dietary sweetener sucralose is a negative modulator of T cell-mediated responses. Nature 615, 705–711 (2023). (PMID: 369225981003344410.1038/s41586-023-05801-6)
Mauro, C. et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation via PI3K p110δ-Akt-mediated signals. Cell Metab. 25, 593–609 (2017). (PMID: 28190771535536310.1016/j.cmet.2017.01.008)
Messaoudi, I. et al. Long-lasting effect of obesity on skeletal muscle transcriptome. BMC Genomics 18, 411 (2017). (PMID: 28545403544527010.1186/s12864-017-3799-y)
Rossi, E. L. et al. Obesity-associated alterations in inflammation, epigenetics, and mammary tumor growth persist in formerly obese mice. Cancer Prev. Res. 9, 339–348 (2016). (PMID: 10.1158/1940-6207.CAPR-15-0348)
Frasca, D., Diaz, A., Romero, M. & Blomberg, B. B. Leptin induces immunosenescence in human B cells. Cell. Immunol. 348, 103994 (2020). (PMID: 3183113710.1016/j.cellimm.2019.103994)
Green, W. D. et al. Inflammation and metabolism of influenza-stimulated peripheral blood mononuclear cells from adults with obesity following bariatric surgery. J. Infect. Dis. 227, 92–102 (2022). (PMID: 359759681020560610.1093/infdis/jiac345)
Sipe, L. M. et al. Response to immune checkpoint blockade improved in pre-clinical model of breast cancer after bariatric surgery. eLife 11, e79143 (2022). (PMID: 35775614934295410.7554/eLife.79143)
Pingili, A. K. et al. Immune checkpoint blockade reprograms systemic immune landscape and tumor microenvironment in obesity-associated breast cancer. Cell Rep. 35, 109285 (2021). (PMID: 34161764857499310.1016/j.celrep.2021.109285)
Pearce, E. L. et al. Enhancing CD8 T-cell memory by modulating fatty acid metabolism. Nature 460, 103–107 (2009). (PMID: 19494812280308610.1038/nature08097)
van der Windt, G. J. W. et al. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity 36, 68–78 (2012). (PMID: 2220690410.1016/j.immuni.2011.12.007)
Hany, M. et al. Impact of bariatric surgery on the effectiveness of serological response after COVID-19 vaccination. Langenbecks Arch. Surg. 407, 2337–2346 (2022). (PMID: 35486149905048010.1007/s00423-022-02516-6)
Tylka, T. L. et al. The weight-inclusive versus weight-normative approach to health: evaluating the evidence for prioritizing well-being over weight loss. J. Obes. 2014, 983495 (2014). (PMID: 25147734413229910.1155/2014/983495)
Aminian, A. et al. Association of weight loss achieved through metabolic surgery with risk and severity of COVID-19 infection. JAMA Surg. https://doi.org/10.1001/jamasurg.2021.6496 (2021). (PMID: 10.1001/jamasurg.2021.64968717211)
Williams, L. M. et al. The development of diet-induced obesity and glucose intolerance in C57BL/6 mice on a high-fat diet consists of distinct phases. PLoS ONE 9, e106159 (2014). (PMID: 25170916414952010.1371/journal.pone.0106159)
Skinner, R. C., Warren, D. C., Lateef, S. N., Benedito, V. A. & Tou, J. C. Apple pomace consumption favorably alters hepatic lipid metabolism in young female Sprague-Dawley rats fed a western diet. Nutrients 10, E1882 (2018). (PMID: 10.3390/nu10121882)
Reber, A. & Katz, J. Immunological assessment of influenza vaccines and immune correlates of protection. Expert Rev. Vaccines 12, 519–536 (2013). (PMID: 23659300900292610.1586/erv.13.35)
Rowe, T. et al. Detection of antibody to avian influenza A (H5N1) virus in human serum by using a combination of serologic assays. J. Clin. Microbiol. 37, 937–943 (1999). (PMID: 100745058862810.1128/JCM.37.4.937-943.1999)
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc. 9, 209–222 (2014). (PMID: 24385150442834410.1038/nprot.2014.005)
de Brito Monteiro, L., Davanzo, G. G., de Aguiar, C. F. & Moraes-Vieira, P. M. M. Using flow cytometry for mitochondrial assays. MethodsX 7, 100938 (2020). (PMID: 10.1016/j.mex.2020.100938)
Pengcheng, L., Lu, J. L. & Koestler, D. pwr2: Power and Sample Size Analysis for One-Way and Two-Way ANOVA Models https://cran.r-project.org/web/packages/pwr2/pwr2.pdf (2017).
Ben-Shachar, M., Lüdecke, D. & Makowski, D. Effectsize: estimation of effect size indices and standardized parameters. J. Open Source Softw. 5, 2815 (2020). (PMID: 10.21105/joss.02815)
Meliopoulos, V. A. et al. An epithelial integrin regulates the amplitude of protective lung interferon responses against multiple respiratory pathogens. PLoS Pathog. 12, e1005804 (2016). (PMID: 27505057497849810.1371/journal.ppat.1005804)
معلومات مُعتمدة: 75N93019C00052 United States AI NIAID NIH HHS; 75N93021C00016 United States AI NIAID NIH HHS; HHSN27220140006C U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID); 75N93019C00052 United States AI NIAID NIH HHS; 75N93021C00016 United States AI NIAID NIH HHS; AI140766-03 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID); F31AI161986 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID); 75N93019C00052 United States AI NIAID NIH HHS; 75N93021C00016 United States AI NIAID NIH HHS; HHSN27220140006C U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID); T32AI106700-07 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID); T32AI106700-07 U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
المشرفين على المادة: 0 (Influenza Vaccines)
0 (Leptin)
0 (Adiponectin)
تواريخ الأحداث: Date Created: 20240418 Date Completed: 20240605 Latest Revision: 20240605
رمز التحديث: 20240606
DOI: 10.1038/s41564-024-01677-y
PMID: 38637722
قاعدة البيانات: MEDLINE
الوصف
تدمد:2058-5276
DOI:10.1038/s41564-024-01677-y