دورية أكاديمية

Recognizing Complexity of CD8 T Cells in Transplantation.

التفاصيل البيبلوغرافية
العنوان: Recognizing Complexity of CD8 T Cells in Transplantation.
المؤلفون: Nicosia M; Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH., Valujskikh A
المصدر: Transplantation [Transplantation] 2024 Apr 19. Date of Electronic Publication: 2024 Apr 19.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 0132144 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1534-6080 (Electronic) Linking ISSN: 00411337 NLM ISO Abbreviation: Transplantation Subsets: MEDLINE
أسماء مطبوعة: Publication: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: Baltimore, Williams & Wilkins.
مستخلص: The major role of CD8+ T cells in clinical and experimental transplantation is well documented and acknowledged. Nevertheless, the precise impact of CD8+ T cells on graft tissue injury is not completely understood, thus impeding the development of specific treatment strategies. The goal of this overview is to consider the biology and functions of CD8+ T cells in the context of experimental and clinical allotransplantation, with special emphasis on how this cell subset is affected by currently available and emerging therapies.
Competing Interests: The authors declare no conflicts of interest.
(Copyright © 2024 Wolters Kluwer Health, Inc. All rights reserved.)
References: Wild MK, Cambiaggi A, Brown MH, et al. Dependence of T cell antigen recognition on the dimensions of an accessory receptor-ligand complex. J Exp Med. 1999;190:31–41.
Ali JM, Bolton EM, Bradley JA, et al. Allorecognition pathways in transplant rejection and tolerance. Transplantation. 2013;96:681–688.
DeWolf S, Sykes M. Alloimmune T cells in transplantation. J Clin Invest. 2017;127:2473–2481.
Heeger PS. T-cell allorecognition and transplant rejection: a summary and update. Am J Transplant. 2003;3:525–533.
Bennett SR, Carbone FR, Karamalis F, et al. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature. 1998;393:478–480.
Ridge JP, Di Rosa F, Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature. 1998;393:474–478.
Schoenberger SP, Toes RE, van der Voort EI, et al. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature. 1998;393:480–483.
Jiang S, Herrera O, Lechler RI. New spectrum of allorecognition pathways: implications for graft rejection and transplantation tolerance. Curr Opin Immunol. 2004;16:550–557.
Siu JHY, Surendrakumar V, Richards JA, et al. T cell allorecognition pathways in solid organ transplantation. Front Immunol. 2018;9:2548.
Liu Q, Rojas-Canales DM, Divito SJ, et al. Donor dendritic cell-derived exosomes promote allograft-targeting immune response. J Clin Invest. 2016;126:2805–2820.
Marino J, Babiker-Mohamed MH, Crosby-Bertorini P, et al. Donor exosomes rather than passenger leukocytes initiate alloreactive T cell responses after transplantation. Sci Immunol. 2016;1:aaf8759.
Benichou G, Valujskikh A, Heeger PS. Contributions of direct and indirect T cell alloreactivity during allograft rejection in mice. J Immunol. 1999;162:352–358.
Valujskikh A, Hartig C, Heeger PS. Indirectly primed CD8+ T cells are a prominent component of the allogeneic T-cell repertoire after skin graft rejection in mice. Transplantation. 2001;71:418–421.
Mintz B, Silvers WK. “Intrinsic” immunological tolerance in allophenic mice. Science. 1967;158:1484–1486.
Rosenberg AS, Singer A. Evidence that the effector mechanism of skin allograft rejection is antigen-specific. Proc Natl Acad Sci U S A. 1988;85:7739–7742.
Bagai R, Valujskikh A, Canaday DH, et al. Mouse endothelial cells cross-present lymphocyte-derived antigen on class I MHC via a TAP1- and proteasome-dependent pathway. J Immunol. 2005;174:7711–7715.
He C, Heeger PS. CD8 T cells can reject major histocompatibility complex class I-deficient skin allografts. Am J Transplant. 2004;4:698–704.
Valujskikh A, Zhang Q, Heeger PS. CD8 T cells specific for a donor-derived, self-restricted transplant antigen are nonpathogenic bystanders after vascularized heart transplantation in mice. J Immunol. 2006;176:2190–2196.
Al-Adra DP, Thangavelu G, Lin J, et al. CD8 T cells target antigen cross-presented by bone marrow derived cells to induce bystander rejection of grafts lacking the cognate peptide-MHC. Cell Transplant. 2022;31:9636897221136149.
Hashimoto M, Kamphorst AO, Im SJ, et al. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med. 2018;69:301–318.
Jameson SC, Masopust D. Understanding subset diversity in T cell memory. Immunity. 2018;48:214–226.
Martin MD, Badovinac VP. Defining memory CD8 T cell. Front Immunol. 2018;9:2692.
Niederlova V, Tsyklauri O, Chadimova T, et al. CD8(+) Tregs revisited: a heterogeneous population with different phenotypes and properties. Eur J Immunol. 2021;51:512–530.
Parish IA, Kaech SM. Diversity in CD8(+) T cell differentiation. Curr Opin Immunol. 2009;21:291–297.
Philip M, Schietinger A. CD8(+) T cell differentiation and dysfunction in cancer. Nat Rev Immunol. 2022;22:209–223.
Taniuchi I. CD4 helper and CD8 cytotoxic T cell differentiation. Annu Rev Immunol. 2018;36:579–601.
Wong P, Pamer EG. CD8 T cell responses to infectious pathogens. Annu Rev Immunol. 2003;21:29–70.
Zhang N, Bevan MJ. CD8(+) T cells: foot soldiers of the immune system. Immunity. 2011;35:161–168.
Posselt AM, Vincenti F, Bedolli M, et al. CD69 expression on peripheral CD8 T cells correlates with acute rejection in renal transplant recipients. Transplantation. 2003;76:190–195.
Schowengerdt KO, Fricker FJ, Bahjat KS, et al. Increased expression of the lymphocyte early activation marker CD69 in peripheral blood correlates with histologic evidence of cardiac allograft rejection. Transplantation. 2000;69:2102–2107.
Chellappa S, Kushekhar K, Hagness M, et al. The presence of activated T cell subsets prior to transplantation is associated with increased rejection risk in pancreas transplant recipients. J Immunol. 2021;207:2501–2511.
San Segundo D, Ballesteros MA, Naranjo S, et al. Increased numbers of circulating CD8 effector memory T cells before transplantation enhance the risk of acute rejection in lung transplant recipients. PLoS One. 2013;8:e80601.
Betjes MG, Meijers RW, de Wit EA, et al. Terminally differentiated CD8+ Temra cells are associated with the risk for acute kidney allograft rejection. Transplantation. 2012;94:63–69.
Doan Ngoc TM, Tilly G, Danger R, et al.; on behalf on the DIVAT Consortium. Effector Memory-Expressing CD45RA (TEMRA) CD8(+) T cells from kidney transplant recipients exhibit enhanced purinergic P2X4 receptor-dependent proinflammatory and migratory responses. J Am Soc Nephrol. 2022;33:2211–2231.
Jacquemont L, Tilly G, Yap M, et al. Terminally differentiated effector memory CD8(+) T cells identify kidney transplant recipients at high risk of graft failure. J Am Soc Nephrol. 2020;31:876–891.
Yap M, Boeffard F, Clave E, et al. Expansion of highly differentiated cytotoxic terminally differentiated effector memory CD8+ T cells in a subset of clinically stable kidney transplant recipients: a potential marker for late graft dysfunction. J Am Soc Nephrol. 2014;25:1856–1868.
Lo DJ, Weaver TA, Stempora L, et al. Selective targeting of human alloresponsive CD8+ effector memory T cells based on CD2 expression. Am J Transplant. 2011;11:22–33.
Crespo E, Bestard O. Biomarkers to assess donor-reactive T-cell responses in kidney transplant patients. Clin Biochem. 2016;49:329–337.
Fischer M, Leyking S, Schafer M, et al. Donor-specific alloreactive T cells can be quantified from whole blood, and may predict cellular rejection after renal transplantation. Eur J Immunol. 2017;47:1220–1231.
Deckers JG, Daha MR, Van der Kooij SW, et al. Epithelial- and endothelial-cell specificity of renal graft infiltrating T cells. Clin Transplant. 1998;12:285–291.
Dedeoglu B, Litjens NHR, Klepper M, et al. CD4(+) CD28(null) T cells are not alloreactive unless stimulated by interleukin-15. Am J Transplant. 2018;18:341–350.
Gandolfini I, Crespo E, Baweja M, et al. Impact of preformed T-cell alloreactivity by means of donor-specific and panel of reactive T cells (PRT) ELISPOT in kidney transplantation. PLoS One. 2018;13:e0200696.
Traitanon O, Gorbachev A, Bechtel JJ, et al. IL-15 induces alloreactive CD28(-) memory CD8 T cell proliferation and CTLA4-Ig resistant memory CD8 T cell activation. Am J Transplant. 2014;14:1277–1289.
Tian G, Li M, Lv G. Analysis of T-cell receptor repertoire in transplantation: fingerprint of T cell-mediated alloresponse. Front Immunol. 2021;12:778559.
Aschauer C, Jelencsics K, Hu K, et al. Prospective tracking of donor-reactive T-cell clones in the circulation and rejecting human kidney allografts. Front Immunol. 2021;12:750005.
Morris H, DeWolf S, Robins H, et al. Tracking donor-reactive T cells: evidence for clonal deletion in tolerant kidney transplant patients. Sci Transl Med. 2015;7:272ra210.
Dunlap GS, DiToro D, Henderson J, et al. Clonal dynamics of alloreactive T cells in kidney allograft rejection after anti-PD-1 therapy. Nat Commun. 2023;14:1549.
Shi T, Burg AR, Caldwell JT, et al. Single-cell transcriptomic analysis of renal allograft rejection reveals insights into intragraft TCR clonality. J Clin Invest. 2023;133:e170191.
Bishop GA, Hall BM, Duggin GG, et al. Immunopathology of renal allograft rejection analyzed with monoclonal antibodies to mononuclear cell markers. Kidney Int. 1986;29:708–717.
Sarwal M, Chua MS, Kambham N, et al. Molecular heterogeneity in acute renal allograft rejection identified by DNA microarray profiling. N Engl J Med. 2003;349:125–138.
Kummer JA, Wever PC, Kamp AM, et al. Expression of granzyme A and B proteins by cytotoxic lymphocytes involved in acute renal allograft rejection. Kidney Int. 1995;47:70–77.
Robertson H, Wheeler J, Kirby JA, et al. Renal allograft rejection—in situ demonstration of cytotoxic intratubular cells. Transplantation. 1996;61:1546–1549.
Anglicheau D, Suthanthiran M. Noninvasive prediction of organ graft rejection and outcome using gene expression patterns. Transplantation. 2008;86:192–199.
Li B, Hartono C, Ding R, et al. Noninvasive diagnosis of renal-allograft rejection by measurement of messenger RNA for perforin and granzyme B in urine. N Engl J Med. 2001;344:947–954.
Ibrahim S, Dawson DV, Killenberg PG, et al. The pattern and phenotype of T-cell infiltration associated with human liver allograft rejection. Hum Pathol. 1993;24:1365–1370.
Ibrahim S, Dawson DV, Van Trigt P, et al. Differential infiltration by CD45RO and CD45RA subsets of T cells associated with human heart allograft rejection. Am J Pathol. 1993;142:1794–1803.
Santamaria M, Marubayashi M, Arizon JM, et al. The activation antigen CD69 is selectively expressed on CD8+ endomyocardium infiltrating T lymphocytes in human rejecting heart allografts. Hum Immunol. 1992;33:1–4.
Santamaria P, Nakhleh RE, Sutherland DE, et al. Characterization of T lymphocytes infiltrating human pancreas allograft affected by isletitis and recurrent diabetes. Diabetes. 1992;41:53–61.
Diaz-Molina B, Diaz-Bulnes P, Carvajal Palao R, et al. Early everolimus initiation fails to counteract the cytotoxic response mediated by CD8(+) T and NK cells in heart transplant patients. Front Immunol. 2018;9:2181.
Bishop DK, Chan S, Li W, et al. CD4-positive helper T lymphocytes mediate mouse cardiac allograft rejection independent of donor alloantigen specific cytotoxic T lymphocytes. Transplantation. 1993;56:892–897.
Boisgerault F, Liu Y, Anosova N, et al. Role of CD4+ and CD8+ T cells in allorecognition: lessons from corneal transplantation. J Immunol. 2001;167:1891–1899.
Desai NM, Bassiri H, Kim J, et al. Islet allograft, islet xenograft, and skin allograft survival in CD8+ T lymphocyte-deficient mice. Transplantation. 1993;55:718–722.
Hall BM. Cells mediating allograft rejection. Transplantation. 1991;51:1141–1151.
Hao L, Wang Y, Gill RG, et al. Role of the L3T4+ T cell in allograft rejection. J Immunol. 1987;139:4022–4026.
Haskova Z, Usiu N, Pepose JS, et al. CD4+ T cells are critical for corneal, but not skin, allograft rejection. Transplantation. 2000;69:483–487.
Krieger NR, Yin DP, Fathman CG. CD4+ but not CD8+ cells are essential for allorejection. J Exp Med. 1996;184:2013–2018.
Ogura Y, Martinez OM, Villanueva JC, et al. Apoptosis and allograft rejection in the absence of CD8+ T cells. Transplantation. 2001;71:1827–1834.
Osorio RW, Ascher NL, Jaenisch R, et al. Major histocompatibility complex class I deficiency prolongs islet allograft survival. Diabetes. 1993;42:1520–1527.
Rosenberg AS, Mizuochi T, Sharrow SO, et al. Phenotype, specificity, and function of T cell subsets and T cell interactions involved in skin allograft rejection. J Exp Med. 1987;165:1296–1315.
Shelton MW, Walp LA, Basler JT, et al. Mediation of skin allograft rejection in SCID mice by CD4+ and CD8+ T cells. Transplantation. 1992;54:278–286.
Shizuru JA, Gregory AK, Chao CT, et al. Islet allograft survival after a single course of treatment of recipient with antibody to L3T4. Science. 1987;237:278–280.
Sleater M, Diamond AS, Gill RG. Islet allograft rejection by contact-dependent CD8+ T cells: perforin and FasL play alternate but obligatory roles. Am J Transplant. 2007;7:1927–1933.
Youssef AR, Otley C, Mathieson PW, et al. Role of CD4+ and CD8+ T cells in murine skin and heart allograft rejection across different antigenic desparities. Transpl Immunol. 2004;13:297–304.
Yamada J, Kurimoto I, Streilein JW. Role of CD4+ T cells in immunobiology of orthotopic corneal transplants in mice. Invest Ophthalmol Vis Sci. 1999;40:2614–2621.
Bishop DK, Chan Wood S, Eichwald EJ, et al. Immunobiology of allograft rejection in the absence of IFN-gamma: CD8+ effector cells develop independently of CD4+ cells and CD40-CD40 ligand interactions. J Immunol. 2001;166:3248–3255.
Baker MB, Podack ER, Levy RB. Perforin- and Fas-mediated cytotoxic pathways are not required for allogeneic resistance to bone marrow grafts in mice. Biol Blood Marrow Transplant. 1995;1:69–73.
Levy RB, Baker M, Podack ER. Perforin-deficient T cells can induce acute graft-versus-host disease after transplantation of MHC-matched or MHC disparate allogeneic bone marrow. Ann N Y Acad Sci. 1995;770:366–367.
Walsh CM, Hayashi F, Saffran DC, et al. Cell-mediated cytotoxicity results from, but may not be critical for, primary allograft rejection. J Immunol. 1996;156:1436–1441.
Choy JC, Kerjner A, Wong BW, et al. Perforin mediates endothelial cell death and resultant transplant vascular disease in cardiac allografts. Am J Pathol. 2004;165:127–133.
Schulz M, Schuurman HJ, Joergensen J, et al. Acute rejection of vascular heart allografts by perforin-deficient mice. Eur J Immunol. 1995;25:474–480.
Choy JC, Cruz RP, Kerjner A, et al. Granzyme B induces endothelial cell apoptosis and contributes to the development of transplant vascular disease. Am J Transplant. 2005;5:494–499.
Choy JC, Hung VH, Hunter AL, et al. Granzyme B induces smooth muscle cell apoptosis in the absence of perforin: involvement of extracellular matrix degradation. Arterioscler Thromb Vasc Biol. 2004;24:2245–2250.
Choy JC. Granzymes and perforin in solid organ transplant rejection. Cell Death Differ. 2010;17:567–576.
Einecke G, Fairhead T, Hidalgo LG, et al. Tubulitis and epithelial cell alterations in mouse kidney transplant rejection are independent of CD103, perforin or granzymes A/B. Am J Transplant. 2006;6:2109–2120.
Halloran PF, Urmson J, Ramassar V, et al. Lesions of T-cell-mediated kidney allograft rejection in mice do not require perforin or granzymes A and B. Am J Transplant. 2004;4:705–712.
Kayser D, Einecke G, Famulski KS, et al. Donor Fas is not necessary for T-cell-mediated rejection of mouse kidney allografts. Am J Transplant. 2008;8:2049–2055.
Wever PC, Boonstra JG, Laterveer JC, et al. Mechanisms of lymphocyte-mediated cytotoxicity in acute renal allograft rejection. Transplantation. 1998;66:259–264.
Bose A, Inoue Y, Kokko KE, et al. Cutting edge: perforin down-regulates CD4 and CD8 T cell-mediated immune responses to a transplanted organ. J Immunol. 2003;170:1611–1614.
Gondek DC, Devries V, Nowak EC, et al. Transplantation survival is maintained by granzyme B+ regulatory cells and adaptive regulatory T cells. J Immunol. 2008;181:4752–4760.
Selvaggi G, Ricordi C, Podack ER, et al. The role of the perforin and Fas pathways of cytotoxicity in skin graft rejection. Transplantation. 1996;62:1912–1915.
Ahmed KR, Guo TB, Gaal KK. Islet rejection in perforin-deficient mice: the role of perforin and Fas. Transplantation. 1997;63:951–957.
Diamond AS, Gill RG. An essential contribution by IFN-gamma to CD8+ T cell-mediated rejection of pancreatic islet allografts. J Immunol. 2000;165:247–255.
Lu X, Ledermann B, Borel JF. Survival of islet grafts in perforin-deficient mice. Transplant Proc. 1995;27:3262–3263.
Masopust D, Soerens AG. Tissue-resident T cells and other resident leukocytes. Annu Rev Immunol. 2019;37:521–546.
Fu J, Sykes M. Emerging concepts of tissue-resident memory T cells in transplantation. Transplantation. 2022;106:1132–1142.
Bartolome-Casado R, Landsverk OJB, Chauhan SK, et al. Resident memory CD8 T cells persist for years in human small intestine. J Exp Med. 2019;216:2412–2426.
de Leur K, Dieterich M, Hesselink DA, et al. Characterization of donor and recipient CD8+ tissue-resident memory T cells in transplant nephrectomies. Sci Rep. 2019;9:5984.
Fu J, Zuber J, Shonts B, et al. Lymphohematopoietic graft-versus-host responses promote mixed chimerism in patients receiving intestinal transplantation. J Clin Invest. 2021;131:e141698.
Lian CG, Bueno EM, Granter SR, et al. Biomarker evaluation of face transplant rejection: association of donor T cells with target cell injury. Mod Pathol. 2014;27:788–799.
Pallett LJ, Burton AR, Amin OE, et al. Longevity and replenishment of human liver-resident memory T cells and mononuclear phagocytes. J Exp Med. 2020;217:e20200050.
Snyder ME, Finlayson MO, Connors TJ, et al. Generation and persistence of human tissue-resident memory T cells in lung transplantation. Sci Immunol. 2019;4:eaav5581.
Taubert R, Danger R, Londono MC, et al. Hepatic infiltrates in operational tolerant patients after liver transplantation show enrichment of regulatory T cells before proinflammatory genes are downregulated. Am J Transplant. 2016;16:1285–1293.
Zuber J, Shonts B, Lau SP, et al. Bidirectional intragraft alloreactivity drives the repopulation of human intestinal allografts and correlates with clinical outcome. Sci Immunol. 2016;1:eaah3732.
Harper IG, Ali JM, Harper SJ, et al. Augmentation of recipient adaptive alloimmunity by donor passenger lymphocytes within the transplant. Cell Rep. 2016;15:1214–1227.
Harper IG, Gjorgjimajkoska O, Siu JHY, et al. Prolongation of allograft survival by passenger donor regulatory T cells. Am J Transplant. 2019;19:1371–1379.
Tomita Y, Satomi M, Bracamonte-Baran W, et al. Kinetics of alloantigen-specific regulatory CD4 T cell development and tissue distribution after donor-specific transfusion and costimulatory blockade. Transplant Direct. 2016;2:e73.
Zhang Q, Chen Y, Fairchild RL, et al. Lymphoid sequestration of alloreactive memory CD4 T cells promotes cardiac allograft survival. J Immunol. 2006;176:770–777.
Quezada SA, Fuller B, Jarvinen LZ, et al. Mechanisms of donor-specific transfusion tolerance: preemptive induction of clonal T-cell exhaustion via indirect presentation. Blood. 2003;102:1920–1926.
Iwakoshi NN, Mordes JP, Markees TG, et al. Treatment of allograft recipients with donor-specific transfusion and anti-CD154 antibody leads to deletion of alloreactive CD8+ T cells and prolonged graft survival in a CTLA4-dependent manner. J Immunol. 2000;164:512–521.
Phillips NE, Greiner DL, Mordes JP, et al. Costimulatory blockade induces hyporesponsiveness in T cells that recognize alloantigen via indirect antigen presentation. Transplantation. 2006;82:1085–1092.
Sanchez-Fueyo A, Domenig C, Strom TB, et al. The complement dependent cytotoxicity (CDC) immune effector mechanism contributes to anti-CD154 induced immunosuppression. Transplantation. 2002;74:898–900.
van der Touw W, Burrell B, Lal G, et al. NK cells are required for costimulatory blockade induced tolerance to vascularized allografts. Transplantation. 2012;94:575–584.
Cobbold SP. T cell tolerance induced by therapeutic antibodies. Philos Trans R Soc Lond B Biol Sci. 2005;360:1695–1705.
Nagelkerken L, Haspels I, van Rijs W, et al. FcR interactions do not play a major role in inhibition of experimental autoimmune encephalomyelitis by anti-CD154 monoclonal antibodies. J Immunol. 2004;173:993–999.
Monk NJ, Hargreaves RE, Marsh JE, et al. Fc-dependent depletion of activated T cells occurs through CD40L-specific antibody rather than costimulation blockade. Nat Med. 2003;9:1275–1280.
Hargreaves RE, Monk NJ, Jurcevic S. Selective depletion of activated T cells: the CD40L-specific antibody experience. Trends Mol Med. 2004;10:130–135.
Zhai Y, Meng L, Gao F, et al. Allograft rejection by primed/memory CD8+ T cells is CD154 blockade resistant: therapeutic implications for sensitized transplant recipients. J Immunol. 2002;169:4667–4673.
Larsen CP, Pearson TC, Adams AB, et al. Rational development of LEA29Y (belatacept), a high-affinity variant of CTLA4-Ig with potent immunosuppressive properties. Am J Transplant. 2005;5:443–453.
Vincenti F, Larsen C, Durrbach A, et al.; Belatacept Study Group. Costimulation blockade with belatacept in renal transplantation. N Engl J Med. 2005;353:770–781.
Larsen CP, Elwood ET, Alexander DZ, et al. Long-term acceptance of skin and cardiac allografts after blocking CD40 and CD28 pathways. Nature. 1996;381:434–438.
Kato M, Ono Y, Kinukawa T, et al. Long time follow up of CD28- CD4+ T cells in living kidney transplant patients. Clin Transplant. 2004;18:242–246.
Litjens NH, van Druningen CJ, Betjes MG. Progressive loss of renal function is associated with activation and depletion of naive T lymphocytes. Clin Immunol. 2006;118:83–91.
Mathews DV, Wakwe WC, Kim SC, et al. Belatacept-resistant rejection is associated with CD28(+) memory CD8 T cells. Am J Transplant. 2017;17:2285–2299.
Cortes-Cerisuelo M, Laurie SJ, Mathews DV, et al. Increased pretransplant frequency of CD28(+) CD4(+) T(EM) predicts belatacept-resistant rejection in human renal transplant recipients. Am J Transplant. 2017;17:2350–2362.
Turgeon NA, Avila JG, Cano JA, et al. Experience with a novel efalizumab-based immunosuppressive regimen to facilitate single donor islet cell transplantation. Am J Transplant. 2010;10:2082–2091.
Badell IR, Russell MC, Thompson PW, et al. LFA-1-specific therapy prolongs allograft survival in rhesus macaques. J Clin Invest. 2010;120:4520–4531.
Kitchens WH, Haridas D, Wagener ME, et al. Combined costimulatory and leukocyte functional antigen-1 blockade prevents transplant rejection mediated by heterologous immune memory alloresponses. Transplantation. 2012;93:997–1005.
Sun H, Hartigan CR, Chen CW, et al. TIGIT regulates apoptosis of risky memory T cell subsets implicated in belatacept-resistant rejection. Am J Transplant. 2021;21:3256–3267.
Hartigan CR, Tong KP, Liu D, et al. TIGIT agonism alleviates costimulation blockade-resistant rejection in a regulatory T cell-dependent manner. Am J Transplant. 2023;23:180–189.
Yu X, Harden K, Gonzalez LC, et al. The surface protein TIGIT suppresses T cell activation by promoting the generation of mature immunoregulatory dendritic cells. Nat Immunol. 2009;10:48–57.
Hasan MM, Nair SS, O’Leary JG, et al. Implication of TIGIT(+) human memory B cells in immune regulation. Nat Commun. 2021;12:1534.
Xiao S, Bod L, Pochet N, et al. Checkpoint receptor TIGIT expressed on Tim-1(+) B cells regulates tissue inflammation. Cell Rep. 2020;32:107892.
Joller N, Lozano E, Burkett PR, et al. Treg cells expressing the coinhibitory molecule TIGIT selectively inhibit proinflammatory Th1 and Th17 cell responses. Immunity. 2014;40:569–581.
Levin SD, Taft DW, Brandt CS, et al. Vstm3 is a member of the CD28 family and an important modulator of T-cell function. Eur J Immunol. 2011;41:902–915.
Salomon CE, Magarvey NA, Sherman DH. Merging the potential of microbial genetics with biological and chemical diversity: an even brighter future for marine natural product drug discovery. Nat Prod Rep. 2004;21:105–121.
Kohei N, Tanaka T, Miyairi S, et al. Failure of costimulatory blockade-induced regulatory T cells to sustain long-term survival of high ischemic allografts. Transplantation. 2023;107:1935–1944.
Liu D, Badell IR, Ford ML. Selective CD28 blockade attenuates CTLA-4-dependent CD8+ memory T cell effector function and prolongs graft survival. JCI Insight. 2018;3:e96378.
Su CA, Iida S, Abe T, et al. Endogenous memory CD8 T cells directly mediate cardiac allograft rejection. Am J Transplant. 2014;14:568–579.
Lo DJ, Anderson DJ, Song M, et al. A pilot trial targeting the ICOS-ICOS-L pathway in nonhuman primate kidney transplantation. Am J Transplant. 2015;15:984–992.
Nadazdin O, Boskovic S, Murakami T, et al. Host alloreactive memory T cells influence tolerance to kidney allografts in nonhuman primates. Sci Transl Med. 2011;3:86ra51.
Samy KP, Anderson DJ, Lo DJ, et al. Selective targeting of high-affinity LFA-1 does not augment costimulation blockade in a nonhuman primate renal transplantation model. Am J Transplant. 2017;17:1193–1203.
Mathews DV, Dong Y, Higginbotham LB, et al. CD122 signaling in CD8+ memory T cells drives costimulation-independent rejection. J Clin Invest. 2018;128:4557–4572.
Nicosia M, Valujskikh A. Total recall: can we reshape T cell memory by lymphoablation? Am J Transplant. 2016;17:1713–1718.
Ayasoufi K, Fan R, Fairchild RL, et al. CD4 T cell help via b cells is required for lymphopenia-induced CD8 T cell proliferation. J Immunol. 2016;196:3180–3190.
Ayasoufi K, Fan R, Valujskikh A. Depletion-resistant CD4 T cells enhance thymopoiesis during lymphopenia. Am J Transplant. 2017;17:2008–2019.
Ayasoufi K, Zwick DB, Fan R, et al. Interleukin-27 promotes CD8+ T cell reconstitution following antibody-mediated lymphoablation. JCI Insight. 2019;4:e125489.
Hasgur S, Yamamoto Y, Fan R, et al. Macrophage-inducible C-type lectin activates B cells to promote T cell reconstitution in heart allograft recipients. Am J Transplant. 2022;22:1779–1790.
Neujahr DC, Chen C, Huang X, et al. Accelerated memory cell homeostasis during T cell depletion and approaches to overcome it. J Immunol. 2006;176:4632–4639.
Haudebourg T, Poirier N, Vanhove B. Depleting T-cell subpopulations in organ transplantation. Transpl Int. 2009;22:509–518.
Pearl JP, Parris J, Hale DA, et al. Immunocompetent T-cells with a memory-like phenotype are the dominant cell type following antibody-mediated T-cell depletion. Am J Transplant. 2005;5:465–474.
Grayson JM, Harrington LE, Lanier JG, et al. Differential sensitivity of naive and memory CD8+ T cells to apoptosis in vivo. J Immunol. 2002;169:3760–3770.
Larsen R, Ryder LP, Svejgaard A, et al. Changes in circulating lymphocyte subpopulations following administration of the leucocyte function-associated antigen-3 (LFA-3)/IgG1 fusion protein alefacept. Clin Exp Immunol. 2007;149:23–30.
Weaver TA, Charafeddine AH, Agarwal A, et al. Alefacept promotes co-stimulation blockade based allograft survival in nonhuman primates. Nat Med. 2009;15:746–749.
Chamian F, Lowes MA, Lin SL, et al. Alefacept reduces infiltrating T cells, activated dendritic cells, and inflammatory genes in psoriasis vulgaris. Proc Natl Acad Sci U S A. 2005;102:2075–2080.
Shapira MY, Abdul-Hai A, Resnick IB, et al. Alefacept treatment for refractory chronic extensive GVHD. Bone Marrow Transplant. 2009;43:339–343.
Mishra S, Srinivasan S, Ma C, et al. CD8(+) Regulatory T cell—a mystery to be revealed. Front Immunol. 2021;12:708874.
Su J, Xie Q, Xu Y, et al. Role of CD8(+) regulatory T cells in organ transplantation. Burns Trauma. 2014;2:18–23.
Krupnick AS, Lin X, Li W, et al. Central memory CD8+ T lymphocytes mediate lung allograft acceptance. J Clin Invest. 2014;124:1130–1143.
Kaiser A, Donnadieu E, Abastado JP, et al. CC chemokine ligand 19 secreted by mature dendritic cells increases naive T cell scanning behavior and their response to rare cognate antigen. J Immunol. 2005;175:2349–2356.
Ngo VN, Tang HL, Cyster JG. Epstein-Barr virus-induced molecule 1 ligand chemokine is expressed by dendritic cells in lymphoid tissues and strongly attracts naive T cells and activated B cells. J Exp Med. 1998;188:181–191.
Vos IH, Joles JA, Schurink M, et al. Inhibition of inducible nitric oxide synthase improves graft function and reduces tubulointerstitial injury in renal allograft rejection. Eur J Pharmacol. 2000;391:31–38.
Szabolcs MJ, Ma N, Athan E, et al. Acute cardiac allograft rejection in nitric oxide synthase-2(-/-) and nitric oxide synthase-2(+/+) mice: effects of cellular chimeras on myocardial inflammation and cardiomyocyte damage and apoptosis. Circulation. 2001;103:2514–2520.
Sayegh MH, Akalin E, Hancock WW, et al. CD28-B7 blockade after alloantigenic challenge in vivo inhibits Th1 cytokines but spares Th2. J Exp Med. 1995;181:1869–1874.
Takeuchi T, Lowry RP, Konieczny B. Heart allografts in murine systems. The differential activation of Th2-like effector cells in peripheral tolerance. Transplantation. 1992;53:1281–1294.
Elzein SM, Zimmerer JM, Han JL, et al. CXCR5(+)CD8(+) T cells: a review of their antibody regulatory functions and clinical correlations. J Immunol. 2021;206:2775–2783.
Li Y, Tang L, Guo L, et al. CXCL13-mediated recruitment of intrahepatic CXCR5(+)CD8(+) T cells favors viral control in chronic HBV infection. J Hepatol. 2020;72:420–430.
Jiang H, Li L, Han J, et al. CXCR5(+) CD8(+) T cells indirectly offer B cell help and are inversely correlated with viral load in chronic hepatitis B infection. DNA Cell Biol. 2017;36:321–327.
Xing J, Zhang C, Yang X, et al. CXCR5(+)CD8(+) T cells infiltrate the colorectal tumors and nearby lymph nodes, and are associated with enhanced IgG response in B cells. Exp Cell Res. 2017;356:57–63.
Zimmerer JM, Basinger MW, Ringwald BA, et al. Inverse association between the quantity of human peripheral blood CXCR5+IFN-gamma+CD8+ T cells with de novo DSA production in the first year after kidney transplant. Transplantation. 2020;104:2424–2434.
Avila CL, Zimmerer JM, Elzein SM, et al. mTOR inhibition suppresses posttransplant alloantibody production through direct inhibition of alloprimed B cells and sparing of CD8+ antibody-suppressing T cells. Transplantation. 2016;100:1898–1906.
Zimmerer JM, Pham TA, Sanders VM, et al. CD8+ T cells negatively regulate IL-4-dependent, IgG1-dominant posttransplant alloantibody production. J Immunol. 2010;185:7285–7292.
Zimmerer JM, Pham TA, Wright CL, et al. Alloprimed CD8(+) T cells regulate alloantibody and eliminate alloprimed B cells through perforin- and FasL-dependent mechanisms. Am J Transplant. 2014;14:295–304.
Zimmerer JM, Ringwald BA, Elzein SM, et al. Antibody-suppressor CD8+ T cells require CXCR5. Transplantation. 2019;103:1809–1820.
Leavenworth JW, Tang X, Kim HJ, et al. Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. J Clin Invest. 2013;123:1382–1389.
تواريخ الأحداث: Date Created: 20240419 Latest Revision: 20240419
رمز التحديث: 20240419
DOI: 10.1097/TP.0000000000005001
PMID: 38637929
قاعدة البيانات: MEDLINE
الوصف
تدمد:1534-6080
DOI:10.1097/TP.0000000000005001