دورية أكاديمية

Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation through modulation of cecal microbiota and enhanced butyric acid production.

التفاصيل البيبلوغرافية
العنوان: Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation through modulation of cecal microbiota and enhanced butyric acid production.
المؤلفون: Li Y; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Chen X; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., He J; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Zheng P; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Luo Y; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Yu B; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Chen D; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China., Huang Z; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, P. R. China.
المصدر: Journal of food science [J Food Sci] 2024 Jun; Vol. 89 (6), pp. 3788-3801. Date of Electronic Publication: 2024 Apr 18.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Proanthocyanidins*/pharmacology , Gastrointestinal Microbiome*/drug effects , Grape Seed Extract*/pharmacology , Mice, Inbred BALB C* , Butyric Acid*/metabolism , Butyric Acid*/pharmacology, Animals ; Male ; Mice ; Cecum/microbiology ; Cecum/metabolism ; Muscle Fibers, Skeletal/drug effects ; Muscle Fibers, Slow-Twitch/drug effects ; Muscle Fibers, Slow-Twitch/metabolism ; Muscle Fibers, Fast-Twitch/drug effects ; Muscle Fibers, Fast-Twitch/metabolism ; Muscle, Skeletal/drug effects ; Bacteria/drug effects ; Bacteria/classification
مستخلص: The conversion of fast-twitch fibers into slow-twitch fibers within skeletal muscle plays a crucial role in improving physical stamina and safeguarding against metabolic disorders in individuals. Grape seed proanthocyanidin extract (GSPE) possesses numerous pharmacological and health advantages, effectively inhibiting the onset of chronic illnesses. However, there is a lack of research on the specific mechanisms by which GSPE influences muscle physiology and gut microbiota. This study aims to investigate the role of gut microbiota and their metabolites in GSPE regulation of skeletal muscle fiber type conversion. In this experiment, 54 male BALB/c mice were randomly divided into three groups: basal diet, basal diet supplemented with GSPE, and basal diet supplemented with GSPE and antibiotics. During the feeding period, glucose tolerance and forced swimming tests were performed. After euthanasia, samples of muscle and feces were collected for analysis. The results showed that GSPE increased the muscle mass and anti-fatigue capacity of the mice, as well as the expression of slow-twitch fibers. However, the beneficial effects of GSPE on skeletal muscle fibers disappeared after adding antibiotics to eliminate intestinal microorganisms, suggesting that GSPE may play a role by regulating intestinal microbial structure. In addition, GSPE increased the relative abundance of Blautia, Muribaculaceae, and Enterorhabdus, as well as butyrate production. Importantly, these gut microbes exhibited a significant positive correlation with the expression of slow-twitch muscle fibers. In conclusion, supplementation with GSPE can increase the levels of slow-twitch fibers by modulating the gut microbiota, consequently prolonging the duration of exercise before exhaustion. PRACTICAL APPLICATION: This research suggests that grape seed proanthocyanidin extract (GSPE) has potential applications in improving physical stamina and preventing metabolic disorders. By influencing the gut microbiota and increasing butyric acid production, GSPE contributes to the conversion of fast-twitch muscle fibers into slow-twitch fibers, thereby enhancing anti-fatigue capacity and exercise endurance. While further studies are needed, incorporating GSPE into dietary supplements or functional foods could support individuals seeking to optimize their exercise performance and overall metabolic health.
(© 2024 Institute of Food Technologists.)
References: Arreaza‐Gil, V., Escobar‐Martínez, I., Mulero, M., Muguerza, B., Suárez, M., Arola‐Arnal, A., & Torres‐Fuentes, C. (2023). Gut microbiota influences the photoperiod effects on proanthocyanidins bioavailability in diet‐induced obese rats. Molecular Nutrition & Food Research, 67(9), e2200600. https://doi.org/10.1002/mnfr.202200600.
Blackwood, S. J., Horwath, O., Moberg, M., Pontén, M., Apró, W., Ekblom, M. M., Larsen, F. J., & Katz, A. (2022). Extreme variations in muscle fiber composition enable detection of insulin resistance and excessive insulin secretion. The Journal of Clinical Endocrinology and Metabolism, 107(7), e2729–e2737. https://doi.org/10.1210/clinem/dgac221.
Blackwood, S. J., Horwath, O., Moberg, M., Pontén, M., Apró, W., Ekblom, M. M., Larsen, F. J., & Katz, A. (2023). Insulin resistance after a 3‐day fast is associated with an increased capacity of skeletal muscle to oxidize lipids. American Journal of Physiology. Endocrinology and Metabolism, 324(5), E390–E401. https://doi.org/10.1152/ajpendo.00317.2022.
Casanova‐Martí, À., Serrano, J., Portune, K. J., Sanz, Y., Blay, M. T., Terra, X., Ardévol, A., & Pinent, M. (2018). Grape seed proanthocyanidins influence gut microbiota and enteroendocrine secretions in female rats. Food & Function, 9(3), 1672–1682. https://doi.org/10.1039/C7FO02028G.
Chang, S., Chen, X., Huang, Z., Chen, D., Yu, B., Chen, H., He, J., Luo, J., Zheng, P., Yu, J., & Luo, Y. (2018). Dietary sodium butyrate supplementation promotes oxidative fiber formation in mice. Animal Biotechnology, 29(3), 212–215. https://doi.org/10.1080/10495398.2017.1358734.
Chen, X., Luo, X., Chen, D., Yu, B., He, J., & Huang, Z. (2020). Arginine promotes porcine type I muscle fibres formation through improvement of mitochondrial biogenesis. The British Journal of Nutrition, 123(5), 499–507. https://doi.org/10.1017/S000711451900309X.
Chen, Y.‐M., Wei, L., Chiu, Y.‐S., Hsu, Y.‐J., Tsai, T.‐Y., Wang, M.‐F., & Huang, C.‐C. (2016). Lactobacillus plantarum TWK10 supplementation improves exercise performance and increases muscle mass in mice. Nutrients, 8(4), 205. https://doi.org/10.3390/nu8040205.
Ferreira, Y. A. M., Jamar, G., Estadella, D., & Pisani, L. P. (2023). Proanthocyanidins in grape seeds and their role in gut microbiota‐white adipose tissue axis. Food Chemistry, 404(Pt A), 134405. https://doi.org/10.1016/j.foodchem.2022.134405.
Guan, T., Li, S., Guan, Q., Shi, J.‐S., Lu, Z.‐M., Xu, Z.‐H., & Geng, Y. (2022). Spore powder of Paecilomyces hepiali shapes gut microbiota to relieve exercise‐induced fatigue in mice. Nutrients, 14(14), 2973. https://doi.org/10.3390/nu14142973.
Guo, Z., Chen, X., Chen, D., Yu, B., He, J., Zheng, P., Chen, H., Yan, H., & Huang, Z. (2022). Dihydromyricetin alters myosin heavy chain expression via AMPK signaling pathway in porcine myotubes. Food & Function, 13(20), 10525–10534. https://doi.org/10.1039/d2fo02173k.
Hamer, H. M., Jonkers, D., Venema, K., Vanhoutvin, S., Troost, F. J., & Brummer, R.‐J. (2008). Review article: The role of butyrate on colonic function. Alimentary Pharmacology & Therapeutics, 27(2), 104–119. https://doi.org/10.1111/j.1365‐2036.2007.03562.x.
Henagan, T. M., Stefanska, B., Fang, Z., Navard, A. M., Ye, J., Lenard, N. R., & Devarshi, P. P. (2015). Sodium butyrate epigenetically modulates high‐fat diet‐induced skeletal muscle mitochondrial adaptation, obesity and insulin resistance through nucleosome positioning. British Journal of Pharmacology, 172(11), 2782–2798. https://doi.org/10.1111/bph.13058.
Huang, Y., Gao, S., Jun, G., Zhao, R., & Yang, X. (2017). Supplementing the maternal diet of rats with butyrate enhances mitochondrial biogenesis in the skeletal muscles of weaned offspring. The British Journal of Nutrition, 117(1), 12–20. https://doi.org/10.1017/S0007114516004402.
Kuhnen, G., Guedes Russomanno, T., Murgia, M., Pillon, N. J., Schönfelder, M., & Wackerhage, H. (2022). Genes whose gain or loss of function changes type 1, 2A, 2X, or 2B muscle fibre proportions in mice—A systematic review. International Journal of Molecular Sciences, 23(21), 12933. https://doi.org/10.3390/ijms232112933.
Lefaucheur, L., Ecolan, P., Plantard, L., & Gueguen, N. (2002). New insights into muscle fiber types in the pig. The Journal of Histochemistry and Cytochemistry: Official Journal of the Histochemistry Society, 50(5), 719–730. https://doi.org/10.1177/002215540205000513.
Li, Q. H., Yan, H. S., Li, H. Q., Gao, J. J., & Hao, R. R. (2020). Effects of dietary supplementation with grape seed procyanidins on nutrient utilisation and gut function in weaned piglets. Animal: An International Journal of Animal Bioscience, 14(3), 491–498. https://doi.org/10.1017/S1751731119002234.
Li, Y., Feng, Y., Chen, X., He, J., Luo, Y., Yu, B., Chen, D., & Huang, Z. (2024). Dietary short‐term supplementation of grape seed proanthocyanidin extract improves pork quality and promotes skeletal muscle fiber type conversion in finishing pigs. Meat Science, 210, 109436. https://doi.org/10.1016/j.meatsci.2024.109436.
Liu, J., Wu, S., Cheng, Y., Liu, Q., Su, L., Yang, Y., Zhang, X., Wu, M., Choi, J. I., & Tong, H. (2021). Sargassum fusiforme alginate relieves hyperglycemia and modulates intestinal microbiota and metabolites in type 2 diabetic mice. Nutrients, 13(8), 2887. https://doi.org/10.3390/nu13082887.
Nay, K., Jollet, M., Goustard, B., Baati, N., Vernus, B., Pontones, M., Lefeuvre‐Orfila, L., Bendavid, C., Rué, O., Mariadassou, M., Bonnieu, A., Ollendorff, V., Lepage, P., Derbré, F., & Koechlin‐Ramonatxo, C. (2019). Gut bacteria are critical for optimal muscle function: A potential link with glucose homeostasis. American Journal of Physiology. Endocrinology and Metabolism, 317(1), E158–E171. https://doi.org/10.1152/ajpendo.00521.2018.
Pan, J. H., Kim, J. H., Kim, H. M., Lee, E. S., Shin, D.‐H., Kim, S., Shin, M., Kim, S. H., Lee, J. H., & Kim, Y. J. (2015). Acetic acid enhances endurance capacity of exercise‐trained mice by increasing skeletal muscle oxidative properties. Bioscience, Biotechnology, and Biochemistry, 79(9), 1535–1541. https://doi.org/10.1080/09168451.2015.1034652.
Pette, D., & Staron, R. S. (2000). Myosin isoforms, muscle fiber types, and transitions. Microscopy Research and Technique, 50(6), 500–509. https://doi.org/10.1002/1097‐0029(20000915)50:6<500::AID‐JEMT7>3.0.CO;2‐7.
Rakoff‐Nahoum, S., Paglino, J., Eslami‐Varzaneh, F., Edberg, S., & Medzhitov, R. (2004). Recognition of commensal microflora by toll‐like receptors is required for intestinal homeostasis. Cell, 118(2), 229–241. https://doi.org/10.1016/j.cell.2004.07.002.
Schiaffino, S., & Reggiani, C. (2011). Fiber types in mammalian skeletal muscles. Physiological Reviews, 91(4), 1447–1531. https://doi.org/10.1152/physrev.00031.2010.
Shen, Y., Jiang, Y., Zhang, S., Zou, J., Gao, X., Song, Y., Zhang, Y., Hu, Y., Huang, Y., & Jiang, Q. (2022). The effect of dietary supplementation with resveratrol on growth performance, carcass and meat quality, blood lipid levels and ruminal microbiota in fattening goats. Foods (Basel, Switzerland), 11(4), 598. https://doi.org/10.3390/foods11040598.
Sheng, K., Yang, J., Xu, Y., Kong, X., Wang, J., & Wang, Y. (2022). Alleviation effects of grape seed proanthocyanidin extract on inflammation and oxidative stress in a d‐galactose‐induced aging mouse model by modulating the gut microbiota. Food & Function, 13(3), 1348–1359. https://doi.org/10.1039/d1fo03396d.
Spranger, I., Sun, B., Mateus, A. M., de Freitas, V., & Ricardo‐da‐Silva, J. M. (2008). Chemical characterization and antioxidant activities of oligomeric and polymeric procyanidin fractions from grape seeds. Food Chemistry, 108(2), 519–532. https://doi.org/10.1016/j.foodchem.2007.11.004.
Sugimura, Y., Kanda, A., Sawada, K., Wai, K. M., Tanabu, A., Ozato, N., Midorikawa, T., Hisada, T., Nakaji, S., & Ihara, K. (2022). Association between gut microbiota and body composition in Japanese general population: A focus on gut microbiota and skeletal muscle. International Journal of Environmental Research and Public Health, 19(12), 7464. https://doi.org/10.3390/ijerph19127464.
Ticinesi, A., Lauretani, F., Milani, C., Nouvenne, A., Tana, C., Del Rio, D., Maggio, M., Ventura, M., & Meschi, T. (2017). Aging gut microbiota at the cross‐road between nutrition, physical frailty, and sarcopenia: Is there a gut‐muscle axis? Nutrients, 9(12), 1303. https://doi.org/10.3390/nu9121303.
Unusan, N. (2020). Proanthocyanidins in grape seeds: An updated review of their health benefits and potential uses in the food industry. Journal of Functional Foods, 67, 103861. https://doi.org/10.1016/j.jff.2020.103861.
Walsh, M. E., Bhattacharya, A., Sataranatarajan, K., Qaisar, R., Sloane, L., Rahman, M. M., Kinter, M., & van Remmen, H. (2015). The histone deacetylase inhibitor butyrate improves metabolism and reduces muscle atrophy during aging. Aging Cell, 14(6), 957–970. https://doi.org/10.1111/acel.12387.
Wen, W., Chen, X., Huang, Z., Chen, D., Yu, B., He, J., Zheng, P., Luo, Y., Yan, H., & Yu, J. (2021). Lycopene increases the proportion of slow‐twitch muscle fiber by AMPK signaling to improve muscle anti‐fatigue ability. The Journal of Nutritional Biochemistry, 94, 108750. https://doi.org/10.1016/j.jnutbio.2021.108750.
Xu, M., Chen, X., Huang, Z., Chen, D., Yu, B., Chen, H., Luo, Y., Zheng, P., Yu, J., & He, J. (2020). Grape seed proanthocyanidin extract promotes skeletal muscle fiber type transformation via AMPK signaling pathway. The Journal of Nutritional Biochemistry, 84, 108462. https://doi.org/10.1016/j.jnutbio.2020.108462.
Yan, H., Diao, H., Xiao, Y., Li, W., Yu, B., He, J., Yu, J., Zheng, P., Mao, X., Luo, Y., Zeng, B., Wei, H., & Chen, D. (2016). Gut microbiota can transfer fiber characteristics and lipid metabolic profiles of skeletal muscle from pigs to germ‐free mice. Scientific Reports, 6, 31786. https://doi.org/10.1038/srep31786.
Yang, W., Gao, B., Qin, L., & Wang, X. (2022). Puerarin improves skeletal muscle strength by regulating gut microbiota in young adult rats. Journal of Orthopaedic Translation, 35, 87–98. https://doi.org/10.1016/j.jot.2022.08.009.
Yin, Y., Guo, Q., Zhou, X., Duan, Y., Yang, Y., Gong, S., Han, M., Liu, Y., Yang, Z., Chen, Q., & Li, F. (2022). Role of brain‐gut‐muscle axis in human health and energy homeostasis. Frontiers in Nutrition, 9, 947033. https://doi.org/10.3389/fnut.2022.947033.
Yuan, Q., Zhan, B., Chang, R., Du, M., & Mao, X. (2020). Antidiabetic effect of casein glycomacropeptide hydrolysates on high‐fat diet and STZ‐induced diabetic mice via regulating insulin signaling in skeletal muscle and modulating gut microbiota. Nutrients, 12(1), 220. https://doi.org/10.3390/nu12010220.
معلومات مُعتمدة: No. 2023YFD1301302 National Key R&D Program of China; No. 32372901 National Natural Science Foundation of China; No. 2023NSFSC0238 Natural Science Foundation of Sichuan Province; No. 2021ZDZX0009 Sichuan Science and Technology Program
فهرسة مساهمة: Keywords: butyric acid; grape seed proanthocyanidin extract; gut microbes; muscle fiber type transformation; skeletal muscle
المشرفين على المادة: 0 (Proanthocyanidins)
0 (Grape Seed Extract)
0 (Grape Seed Proanthocyanidins)
107-92-6 (Butyric Acid)
تواريخ الأحداث: Date Created: 20240419 Date Completed: 20240613 Latest Revision: 20240613
رمز التحديث: 20240614
DOI: 10.1111/1750-3841.17075
PMID: 38638069
قاعدة البيانات: MEDLINE