دورية أكاديمية

Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers.

التفاصيل البيبلوغرافية
العنوان: Comparative transcriptome and metabolite profiling reveal diverse pattern of CYP-TS gene expression during corosolic acid biosynthesis in Lagerstroemia speciosa (L.) Pers.
المؤلفون: Surendran K; Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India., Pradeep S; Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India., Pillai PP; Department of Genomic Science, Central University of Kerala, Kasaragod, 671320, India. padmeshpillai@gmail.com.
المصدر: Plant cell reports [Plant Cell Rep] 2024 Apr 20; Vol. 43 (5), pp. 122. Date of Electronic Publication: 2024 Apr 20.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, 1981-
مواضيع طبية MeSH: Transcriptome*/genetics , Lagerstroemia*/genetics , Lagerstroemia*/metabolism , Triterpenes*, Cytochrome P-450 Enzyme System/genetics ; Cytochrome P-450 Enzyme System/metabolism ; Gene Expression Profiling
مستخلص: Key Message: Extensive leaf transcriptome profiling and differential gene expression analysis of field grown and elicited shoot cultures of L. speciosa suggest that differential synthesis of CRA is mediated primarily by CYP and TS genes, showing functional diversity. Lagerstroemia speciosa L. is a tree species with medicinal and horticultural attributes. The pentacyclic triterpene, Corosolic acid (CRA) obtained from this species is widely used for the management of diabetes mellitus in traditional medicine. The high mercantile value of the compound and limited availability of innate resources entail exploration of alternative sources for CRA production. Metabolic pathway engineering for enhanced bioproduction of plant secondary metabolites is an attractive proposition for which, candidate genes in the pathway need to be identified and characterized. Therefore, in the present investigation, we focused on the identification of cytochrome P450 (CYP450) and oxidosqualene cyclases (OSC) genes and their differential expression during biosynthesis of CRA. The pattern of differential expression of these genes in the shoot cultures of L. speciosa, elicited with different epigenetic modifiers (azacytidine (AzaC), sodium butyrate (NaBu) and anacardic acid (AA)), was studied in comparison with field grown plant. Further, in vitro cultures with varying (low to high) concentrations of CRA were systematically assessed for the expression of CYP-TS and associated genes involved in CRA biosynthesis by transcriptome sequencing. The sequenced samples were de novo assembled into 180,290 transcripts of which, 92,983 transcripts were further annotated by UniProt. The results are collectively given in co-occurrence heat maps to identify the differentially expressed genes. The combined transcript and metabolite profiles along with RT-qPCR analysis resulted in the identification of CYP-TS genes with high sequence variation. Further, instances of concordant/discordant relation between CRA biosynthesis and CYP-TS gene expression were observed, indicating functional diversity in genes.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abe I, Rohmer M, Prestwich GD (1993) Enzymatic cyclization of squalene and oxidosqualene to sterols and triterpenes. Chem Rev 93:2189–2206. https://doi.org/10.1021/cr00022a009. (PMID: 10.1021/cr00022a009)
Ahmad N, Li T, Liu Y, Hoang NQV, Ma X, Zhang X, Liu J, Yao N, Liu X, Li H (2020) Molecular and biochemical rhythms in dihydroflavonol 4-reductase- mediated regulation of leucoanthocyanidin biosynthesis in Carthamus tinctorius L. Ind Crops Prod 156:112838. https://doi.org/10.1016/j.indcrop.2020.112838. (PMID: 10.1016/j.indcrop.2020.112838)
Ahn M-A, Lee J, Hyun TK (2023) Histone deacetylase inhibitor, sodium butyrate-induced metabolic modulation in Platycodon grandiflorus roots enhances anti-melanogenic properties. Int J Mol Sci 24:11804. https://doi.org/10.3390/ijms241411804. (PMID: 10.3390/ijms2414118043751156310380954)
Alami MM, Ouyang Z, Zhang Y, Shu S, Yang G, Mei Z, Wang X (2022) The current developments in medicinal plant genomics enabled the diversification of secondary metabolites’ biosynthesis. Int J Mol Sci 23:15932. https://doi.org/10.3390/ijms232415932. (PMID: 10.3390/ijms232415932365555729781956)
Alsoufi ASM, Staśkiewicz K, Markowski M (2021) Alterations in oleanolic acid and sterol content in marigold (Calendula officinalis) hairy root cultures in response to stimulation by selected phytohormones. Acta Physiol Plant 43:44. https://doi.org/10.1007/s11738-021-03212-6. (PMID: 10.1007/s11738-021-03212-6)
Bach TJ (1995) Some new aspects of isoprenoid biosynthesis in plants–a review. Lipids 30:191–202. https://doi.org/10.1007/BF02537822. (PMID: 10.1007/BF025378227791527)
Banerjee A, Hamberger B (2018) P450s controlling metabolic bifurcations in plant terpene specialized metabolism. Phytochem Rev 17:81–111. https://doi.org/10.1007/s11101-017-9530-4. (PMID: 10.1007/s11101-017-9530-429563859)
Bharadwaj R, Kumar SR, Sharma A, Sathishkumar R (2021) Plant metabolic gene clusters: evolution, organization, and their applications in synthetic biology. Front Plant Sci 12. https://doi.org/10.3389/fpls.2021.697318.
Bharatiya P, Rathod P, Hiray A, Kate AS (2021) Multifarious elicitors: invoking biosynthesis of various bioactive secondary metabolite in fungi. Appl Biochem Biotechnol 193:668–686. https://doi.org/10.1007/s12010-020-03423-6. (PMID: 10.1007/s12010-020-03423-633135129)
Boutanaev AM, Moses T, Zi J, Nelson DR, Mugford ST, Peters RJ, Osbourn A (2015) Investigation of terpene diversification across multiple sequenced plant genomes. Proc Natl Acad Sci 112:E81–E88. https://doi.org/10.1073/pnas.1419547112. (PMID: 10.1073/pnas.141954711225502595)
Busta L, Serra O, Kim OT, Molinas M, Peré-Fossoul I, Figueras M, Jetter R (2020) Oxidosqualene cyclases involved in the biosynthesis of triterpenoids in Quercus suber cork. Sci Rep 10. https://doi.org/10.1038/s41598-020-64913-5.
Chakraborty P (2018) Herbal genomics as tools for dissecting new metabolic pathways of unexplored medicinal plants and drug discovery. Biochimie Open 6:9–16. https://doi.org/10.1016/j.biopen.2017.12.003. (PMID: 10.1016/j.biopen.2017.12.003298925575991880)
Chan EWC, Tan LN, Wong SK (2014) Phytochemistry and pharmacology of Lagerstroemia speciosa: a natural remedy for diabetes. Int J Herb Med 6(2):81–87.
Chen X, Luck K, Rabe P, Dinh CQ, Shaulsky G, Nelson DR, Gershenzon J, Dickschat JS, Köllner TG, Chen F (2019) A terpene synthase-cytochrome P450 cluster in Dictyostelium discoideum produces a novel trisnorsesquiterpene. eLife 8: e44352. https://doi.org/10.7554/eLife.44352.
Cherukupalli N, Divate M, Mittapelli SR, Khareedu VR, Vudem DR (2016) De Novo assembly of leaf transcriptome in the medicinal plant Andrographis Paniculata. Front Plant Sci 7. https://doi.org/10.3389/fpls.2016.01203 .
Cho HJ, Kim SY, Kim KH, Kang WK, Kim JI, Oh ST, Kim JS, An CH (2009) The combination effect of sodium butyrate and 5-Aza-2’-deoxycytidine on radiosensitivity in RKO colorectal cancer and MCF-7 breast cancer cell lines. World J Surg Oncol 7:49. https://doi.org/10.1186/1477-7819-7-49. (PMID: 10.1186/1477-7819-7-49194601342692973)
Christianson DW (2017) Structural and chemical biology of Terpenoid Cyclases. Chem Rev 117:11570–11648. https://doi.org/10.1021/acs.chemrev.7b00287. (PMID: 10.1021/acs.chemrev.7b00287288410195599884)
Christman JK (2002) 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy. Oncogene 21:5483–5495. https://doi.org/10.1038/sj.onc.1205699. (PMID: 10.1038/sj.onc.120569912154409)
Dixon RA (1999) Plant natural products: the molecular genetic basis of biosynthetic diversity. Curr Opin Biotechnol 10:192–197. https://doi.org/10.1016/S0958-1669(99)80034-2. (PMID: 10.1016/S0958-1669(99)80034-210209133)
Dong L, Pollier J, Bassard J-E, Ntallas G, Almeida A, Lazaridi E, Khakimov B, Arendt P, de Oliveira LS, Lota F, Goossens A, Michoux F, Bak S (2018) Co-expression of squalene epoxidases with triterpene cyclases boosts production of triterpenoids in plants and yeast. Metab Eng 49:1–12. https://doi.org/10.1016/j.ymben.2018.07.002. (PMID: 10.1016/j.ymben.2018.07.00230016654)
Eisenreich W, Schwarz M, Cartayrade A, Arigoni D, Zenk MH, Bacher A (1998) The deoxyxylulose phosphate pathway of terpenoid biosynthesis in plants and microorganisms. Chem Biol 5:R221-233. https://doi.org/10.1016/s1074-5521(98)90002-3. (PMID: 10.1016/s1074-5521(98)90002-39751645)
Fukushima EO, Seki H, Ohyama K, Ono E, Umemoto N, Mizutani M, Saito K, Muranaka T (2011) CYP716A subfamily members are multifunctional oxidases in triterpenoid biosynthesis. Plant Cell Physiol 52:2050–2061. https://doi.org/10.1093/pcp/pcr146. (PMID: 10.1093/pcp/pcr14622039103)
Ghosh S (2016) Biosynthesis of structurally diverse triterpenes in plants: the role of Oxidosqualene Cyclases. Proc Indian Natl Sci Acad 82:1189–1210. https://doi.org/10.16943/ptinsa/2016/48578. (PMID: 10.16943/ptinsa/2016/48578)
Ghosh S (2017) Triterpene structural diversification by plant cytochrome P450 enzymes. Front Plant Sci 8:1886. https://doi.org/10.3389/fpls.2017.01886. (PMID: 10.3389/fpls.2017.01886291706725684119)
GlucoFit 18% Corosolic Acid [WWW Document] (n.d.) https://www.dclabs.com/glucotrim.
Grassi G, Maccaroni P, Meyer R, Kaiser H, D’Ambrosio E, Pascale E, Grassi M, Kuhn A, Di Nardo P, Kandolf R, Küpper J-H (2003) Inhibitors of DNA methylation and histone deacetylation activate cytomegalovirus promoter-controlled reporter gene expression in human glioblastoma cell line U87. Carcinogenesis 24:1625–1635. https://doi.org/10.1093/carcin/bgg118. (PMID: 10.1093/carcin/bgg11812869421)
Hou W, Li Y, Zhang Q, Wei X, Peng A, Chen L, Wei Y (2009) Triterpene acids isolated from Lagerstroemia speciosa leaves as α-glucosidase inhibitors. Phytother Res 23:614–618. https://doi.org/10.1002/ptr.2661. (PMID: 10.1002/ptr.266119107840)
Iturbe-Ormaetxe I, Haralampidis K, Papadopoulou K, Osbourn AE (2003) Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol Biol 51:731–743. https://doi.org/10.1023/a:1022519709298. (PMID: 10.1023/a:102251970929812683345)
Jayakumar KS, Sajan JS, Aswati Nair R, Padmesh Pillai P, Deepu S, Padmaja R, Agarwal A, Pandurangan AG (2014) Corosolic acid content and SSR markers in Lagerstroemia speciosa (L.) Pers.: a comparative analysis among populations across the Southern Western Ghats of India. Phytochemistry 106:94–103. https://doi.org/10.1016/j.phytochem.2014.07.004. (PMID: 10.1016/j.phytochem.2014.07.00425092227)
Judy WV, Hari SP, Stogsdill WW, Judy JS, Naguib YMA, Passwater R (2003) Antidiabetic activity of a standardized extract (Glucosol) from Lagerstroemia speciosa leaves in Type II diabetics A Dose-Dependence Study. J Ethnopharmacol 87:115–117. https://doi.org/10.1016/s0378-8741(03)00122-3. (PMID: 10.1016/s0378-8741(03)00122-312787964)
Karunanithi PS, Zerbe P (2019) Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front Plant Sci 10:1166. https://doi.org/10.3389/fpls.2019.01166. (PMID: 10.3389/fpls.2019.01166316324186779861)
Lee MH, Lee J, Choi SH, Jie EY, Jeong JC, Kim CY, Kim SW (2020) The effect of sodium butyrate on adventitious shoot formation varies among the plant species and the explant types. Int J Mol Sci 21:E8451. https://doi.org/10.3390/ijms21228451. (PMID: 10.3390/ijms21228451)
Li B, Dewey CN (2011) RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12:323. https://doi.org/10.1186/1471-2105-12-323. (PMID: 10.1186/1471-2105-12-323218160403163565)
Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8. (PMID: 10.1186/s13059-014-0550-8255162814302049)
Mafezoli J, Xu Y, Hilário F, Freidhof B, Espinosa-Artiles P, dos Santos LC, de Oliveira MCF, Gunatilaka AAL (2018) Modulation of polyketide biosynthetic pathway of the endophytic fungus, Anteaglonium sp. FL0768, by copper (II) and anacardic acid. Phytochem Lett 28:157–163. https://doi.org/10.1016/j.phytol.2018.10.011. (PMID: 10.1016/j.phytol.2018.10.011313548866660184)
Malhotra K, Franke J (2022) Cytochrome P450 monooxygenase-mediated tailoring of triterpenoids and steroids in plants. Beilstein J Org Chem 18:1289–1310. https://doi.org/10.3762/bjoc.18.135. (PMID: 10.3762/bjoc.18.135362257259520826)
McGarvey DJ, Crotea R (1995) Terpenoid metabolism. Plant Cell 7:1015–1026. https://doi.org/10.1105/tpc.7.7.1015. (PMID: 10.1105/tpc.7.7.10157640522160903)
Miettinen K, Pollier J, Buyst D, Arendt P, Csuk R, Sommerwerk S, Moses T, Mertens J, Sonawane PD, Pauwels L, Aharoni A, Martins J, Nelson DR, Goossens A (2017) The ancient CYP716 family is a major contributor to the diversification of eudicot triterpenoid biosynthesis. Nat Commun 8. https://doi.org/10.1038/ncomms14153.
Nakamura M, Linh TM, Lien LQ, Suzuki H, Mai NC, Giang VH, Tamura K, Thanh NV, Suzuki H, Misaki R, Muranaka T, Ban NK, Fujiyama K, Seki H (2018) Transcriptome sequencing and identification of cytochrome P450 monooxygenases involved in the biosynthesis of maslinic acid and corosolic acid in Avicennia marina. Plant Biotechnol (tokyo) 35:341–348. https://doi.org/10.5511/plantbiotechnology.18.0810a. (PMID: 10.5511/plantbiotechnology.18.0810a31892821)
Nazaruk J, Borzym-Kluczyk M (2015) The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem Rev 14:675–690. https://doi.org/10.1007/s11101-014-9369-x. (PMID: 10.1007/s11101-014-9369-x26213526)
Nelson DR (2009) The cytochrome P450 homepage. Hum Genomics 4:59. https://doi.org/10.1186/1479-7364-4-1-59. (PMID: 10.1186/1479-7364-4-1-59199518953500189)
Nelson D, Werck-Reichhart D (2011) A P450-centric view of plant evolution. Plant J 66:194–211. https://doi.org/10.1111/j.1365-313X.2011.04529.x. (PMID: 10.1111/j.1365-313X.2011.04529.x21443632)
Nelson AT, Camelio AM, Claussen KR, Cho J, Tremmel L, DiGiovanni J, Siegel D (2015) Synthesis of oxygenated oleanolic and ursolic acid derivatives with anti-inflammatory properties. Bioorg Med Chem Lett 25:4342–4346. https://doi.org/10.1016/j.bmcl.2015.07.029. (PMID: 10.1016/j.bmcl.2015.07.029262598034835183)
Nes WR, McKean ML (1977) Biochemistry of steroids and other isoprenoids. University Park Press, Baltimore.
Oboh M, Govender L, Siwela M, Mkhwanazi BN (2021) Anti-diabetic potential of plant-based pentacyclic triterpene derivatives: progress made to improve efficacy and bioavailability. Molecules 26:7243. https://doi.org/10.3390/molecules26237243. (PMID: 10.3390/molecules26237243348858168659003)
Ozyigit II, Dogan I, Hocaoglu-Ozyigit A, Yalcin B, Erdogan A, Yalcin IE, Cabi E, Kaya Y (2023) Production of secondary metabolites using tissue culture-based biotechnological applications. Front Plant Sci 14:1132555. https://doi.org/10.3389/fpls.2023.1132555. (PMID: 10.3389/fpls.2023.11325553745734310339834)
Pateraki I, Heskes A, Hamberger B (2015) Cytochromes P450 for terpene functionalisation and metabolic engineering. Adv Biochem Eng Biotechnol 148. https://doi.org/10.1007/10_2014_301.
Prism 10.0.2 Release Notes [WWW Document] (n.d.) https://www.graphpad.com/updates/prism-1002-release-notes.
QIAGEN (n.d.) RNeasy Plant Mini Kit | Plant RNA Extraction | QIAGEN [WWW Document]. https://www.qiagen.com/us/products/discovery-and-translational-research/dna-rna-purification/rna-purification/total-rna/rneasy-plant-mini-kit . Accessed 26 Feb 2024.
Rahman M, Amin MN, Rahman M, Sharmin R (2010) In vitro adventitious shoot organogenesis and plantlet regeneration from leaf-derived callus of Lagerstroemia speciosa (L.) Pers. Propag Ornamental Plants 10:149–155.
Rohmer M, Knani M, Simonin P, Sutter B, Sahm H (1993) Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem J 295:517–524. https://doi.org/10.1042/bj2950517. (PMID: 10.1042/bj295051782402511134910)
Sandeep MRC, Chanotiya CS, Mukhopadhyay P, Ghosh S (2019) Oxidosqualene cyclase and CYP716 enzymes contribute to triterpene structural diversity in the medicinal tree banaba. New Phytol 222:408–424. https://doi.org/10.1111/nph.15606. (PMID: 10.1111/nph.1560630472753)
Schubert M, Lindgreen S, Orlando L (2016) AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res Notes 9:88. https://doi.org/10.1186/s13104-016-1900-2. (PMID: 10.1186/s13104-016-1900-2268682214751634)
Seki H, Tamura K, Muranaka T (2015) P450s and UGTs: key players in the structural diversity of Triterpenoid Saponins. Plant Cell Physiol 56:1463–1471. https://doi.org/10.1093/pcp/pcv062. (PMID: 10.1093/pcp/pcv06225951908)
Shi H, Wei SH, Leu Y-W, Rahmatpanah F, Liu JC, Yan PS, Nephew KP, Huang TH-M (2003) Triple analysis of the cancer epigenome: an integrated microarray system for assessing gene expression, DNA methylation, and histone acetylation. Can Res 63:2164–2171.
Shim KS, Lee S-U, Ryu SY, Min YK, Kim SH (2009) Corosolic acid stimulates osteoblast differentiation by activating transcription factors and MAP kinases. Phytother Res 23:1754–1758. https://doi.org/10.1002/ptr.284. (PMID: 10.1002/ptr.28419441063)
Sivakumar G, Vail DR, Nair V, Medina-Bolivar F, Lay JO (2009) Plant-based corosolic acid: future anti-diabetic drug? Biotechnol J 4:1704–1711. https://doi.org/10.1002/biot.200900207. (PMID: 10.1002/biot.20090020719946881)
Sprenger GA, Schörken U, Wiegert T, Grolle S, de Graaf AA, Taylor SV, Begley TP, Bringer-Meyer S, Sahm H (1997) Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA 94:12857–12862. https://doi.org/10.1073/pnas.94.24.12857. (PMID: 10.1073/pnas.94.24.12857937176524228)
Stohs SJ, Miller H, Kaats GR (2012) A review of the efficacy and safety of banaba (Lagerstroemia speciosa L.) and corosolic acid. Phytother Res 26:317–324. https://doi.org/10.1002/ptr.3664. (PMID: 10.1002/ptr.366422095937)
Su W, Jing Y, Lin S Yue Z, Yang X, Xu J, Wu J, Zhang Z, Xia R, Zhu J, An N, Chen H, Hong Y, Yuan Y, Long T, Zhang L, Jiang Y, Liu Z, Zhang H, Gao Y, Liu Y, Lin H, Wang H, Yant L, Lin S, Liu Z (2021) Polyploidy underlies co-option and diversification of biosynthetic triterpene pathways in the apple tribe. Proc Natl Acad Sci USA 118. https://doi.org/10.1073/pnas.2101767118.
Takayama H, Kitajima M, Ishizuka T, Seo S (2006) Process for producing corosolic acid. US7071229B2.
ThermoFisher (n.d.) Verso cDNA Synthesis Kit [WWW Document]. https://www.thermofisher.com/order/catalog/product/AB1453A . Accessed 26 Feb 2024.
Vijayan A, Padmesh Pillai P, Hemanthakumar AS, Krishnan PN (2015) Improved in vitro propagation, genetic stability and analysis of corosolic acid synthesis in regenerants of Lagerstroemia speciosa (L.) Pers. by HPLC and gene expression profiles. Plant Cell, Tissue Organ Cult 120:1209–1214. https://doi.org/10.1007/s11240-014-0665-3. (PMID: 10.1007/s11240-014-0665-3)
Wen X, Xia J, Cheng K, Zhang L, Zhang P, Liu J, Zhang L, Ni P, Sun H (2007) Pentacyclic triterpenes. Part 5: synthesis and SAR study of corosolic acid derivatives as inhibitors of glycogen phosphorylases. Bioorg Med Chem Lett 17:5777–5782. https://doi.org/10.1016/j.bmcl.2007.08.057. (PMID: 10.1016/j.bmcl.2007.08.05717869102)
Wen X, Sun H, Liu J, Cheng K, Zhang P, Zhang L, Hao J, Zhang L, Ni P, Zographos SE, Leonidas DD, Alexacou K-M, Gimisis T, Hayes JM, Oikonomakos NG (2008) Naturally occurring pentacyclic triterpenes as inhibitors of glycogen phosphorylase: synthesis, structure−activity relationships, and X-ray crystallographic studies. J Med Chem 51:3540–3554. https://doi.org/10.1021/jm8000949. (PMID: 10.1021/jm800094918517260)
Xu Y, Zhao Y, Xu Y, Guan Y, Zhang X, Chen Y, Wu Q, Zhu G, Chen Y, Sun F, Wang J, Yu Y (2017) Blocking inhibition to YAP by ActinomycinD enhances anti-tumor efficacy of Corosolic acid in treating liver cancer. Cell Signal 29:209–217. https://doi.org/10.1016/j.cellsig.2016.11.001. (PMID: 10.1016/j.cellsig.2016.11.00127836738)
Yamaguchi Y, Yamada K, Yoshikawa N, Nakamura K, Haginaka J, Kunitomo M (2006) Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci 79:2474–2479. https://doi.org/10.1016/j.lfs.2006.08.007. (PMID: 10.1016/j.lfs.2006.08.00716959274)
Yang B-C, Lee M-S, Lin M-K, Chang W-T (2022) 5-Azacytidine increases tanshinone production in Salvia miltiorrhiza hairy roots through epigenetic modulation. Sci Rep 12:9349. https://doi.org/10.1038/s41598-022-12577-8. (PMID: 10.1038/s41598-022-12577-8356723349174287)
Yang C, Halitschke R, O’Connor SE (2023) OXIDOSQUALENE CYCLASE 1 and 2 influence triterpene biosynthesis and defense in Nicotiana attenuata. Plant Physiol kiad643. https://doi.org/10.1093/plphys/kiad643.
Zhao L, Chang W, Xiao Y, Liu Y, Liu H (2013) Methylerythritol phosphate pathway of isoprenoid biosynthesis. Annu Rev Biochem 82:497–530. https://doi.org/10.1146/annurev-biochem-052010-100934. (PMID: 10.1146/annurev-biochem-052010-100934237462615031371)
Zhao J, Zhou H, An Y, Shen K, Yu L (2021) Biological effects of corosolic acid as an anti-inflammatory, anti-metabolic syndrome and anti-neoplastic natural compound. Oncol Lett 21:84. https://doi.org/10.3892/ol.2020.12345. (PMID: 10.3892/ol.2020.1234533363621)
Zhou H-C, Shamala LF, Yi X-K, Yan Z, Wei S (2020) Analysis of terpene synthase family genes in Camellia sinensis with an emphasis on abiotic stress conditions. Sci Rep 10:933. https://doi.org/10.1038/s41598-020-57805-1. (PMID: 10.1038/s41598-020-57805-1319696416976640)
فهرسة مساهمة: Keywords: Lagerstroemia speciosa L.; Anacardic acid; Azacytidine; Corosolic acid; Sodium butyrate
المشرفين على المادة: AMX2I57A98 (corosolic acid)
9035-51-2 (Cytochrome P-450 Enzyme System)
0 (Triterpenes)
تواريخ الأحداث: Date Created: 20240420 Date Completed: 20240422 Latest Revision: 20240509
رمز التحديث: 20240510
DOI: 10.1007/s00299-024-03203-0
PMID: 38642121
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-203X
DOI:10.1007/s00299-024-03203-0