دورية أكاديمية

Maternal obesity: sex-specific in utero changes in fetal brain autophagy and mTOR.

التفاصيل البيبلوغرافية
العنوان: Maternal obesity: sex-specific in utero changes in fetal brain autophagy and mTOR.
المؤلفون: Merabova N; Department of Family Medicine, Medical College of Wisconsin-Prevea, Green Bay, Wisconsin, USA., Ugartemendia L; Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA., Edlow AG; Department of Obstetrics and Gynecology, Massachusetts General Hospital, Vincent Center for Reproductive Biology, Boston, Massachusetts, USA., Ibarra C; Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA., Darbinian N; Shriners Pediatric Research Center, Center for Neural Repair and Rehabilitation, Temple University, Philadelphia, Pennsylvania, USA., Tatevosian G; Shriners Pediatric Research Center, Center for Neural Repair and Rehabilitation, Temple University, Philadelphia, Pennsylvania, USA., Goetzl L; Department of Obstetrics, Gynecology and Reproductive Sciences, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, USA.
المصدر: Obesity (Silver Spring, Md.) [Obesity (Silver Spring)] 2024 Jun; Vol. 32 (6), pp. 1136-1143. Date of Electronic Publication: 2024 Apr 21.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: John Wiley & Sons Country of Publication: United States NLM ID: 101264860 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1930-739X (Electronic) Linking ISSN: 19307381 NLM ISO Abbreviation: Obesity (Silver Spring) Subsets: MEDLINE
أسماء مطبوعة: Publication: 2013- : Malden, MA : John Wiley & Sons
Original Publication: Silver Spring, MD : NAASO, the Obesity Society, c2006-
مواضيع طبية MeSH: Autophagy* , Obesity, Maternal*/metabolism , Brain*/metabolism , TOR Serine-Threonine Kinases*/metabolism , Adiponectin*/metabolism , Adiponectin*/blood , Beclin-1*/metabolism , Microtubule-Associated Proteins*/metabolism, Humans ; Female ; Pregnancy ; Male ; Case-Control Studies ; Adult ; Autophagy-Related Protein 5/metabolism ; Autophagy-Related Protein 5/genetics ; Autophagy-Related Protein 7/genetics ; Autophagy-Related Protein 7/metabolism ; Receptors, Adiponectin/metabolism ; Receptors, Adiponectin/genetics ; Fetus/metabolism ; RNA, Messenger/metabolism ; Sex Factors ; Gestational Age ; Down-Regulation ; Obesity/metabolism
مستخلص: Objective: Maternal obesity affects 39.7% of reproductive-age women in the United States. Emerging research has suggested that in utero exposure to maternal obesity is associated with adverse neurodevelopmental outcomes, but knowledge of underlying mechanisms in human samples is lacking.
Methods: A matched case-control study was performed in women with singleton fetuses who were undergoing elective pregnancy termination at gestational ages 15 to 21 weeks. Maternal adiponectin levels from plasma were measured using ELISA kits. RNA was extracted from fetal brain tissue using RNeasy Mini Kit (QIAGEN). mRNA expression from ADIPOR1, ADIPOR2, MTOR, ATG5, ATG7, BECN1, and MAP1LC3B was quantified through the ΔΔCt method and using GAPDH as a housekeeping gene.
Results: We have identified transcription patterns associated with inhibition of autophagy in male fetal brain tissue exposed to maternal obesity (↑MTOR, ↓ATG5, ↓ATG7, and ↓MAP1LC3B), with female fetuses demonstrating either no change in transcription or nonsignificant changes associated with increased autophagy. There was significant downregulation of the autophagy-associated gene BECN1 in both male and female individuals who were exposed to obesity in utero.
Conclusions: We present novel evidence suggesting that in utero exposure to maternal obesity in humans may significantly affect neurodevelopment, especially in male fetuses, through alterations in normal autophagy molecular mechanisms and with adiponectin as a potential mediator.
(© 2024 The Obesity Society.)
References: Hales CM, Carroll MD, Fryar CD, Ogden CL. Prevalence of obesity and severe obesity among adults: United States, 2017–2018. NCHS Data Brief, no 360. National Center for Health Statistics; 2020.
Edlow AG, Vora NL, Hui L, Wick HC, Cowan JM, Bianchi DW. Maternal obesity affects fetal neurodevelopmental and metabolic gene expression: a pilot study. PLoS ONE. 2014;9(2):e88661.
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: an inflammatory hypothesis. Brain Neurosci Adv. 2021;5:23982128211003484.
Lei J, Calvo P, Vigh R, Burd I. Journey to the center of the fetal brain: environmental exposures and autophagy. Front Cell Neurosci. 2018;12:118.
Kadandale P, Kiger AA. Role of selective autophagy in cellular remodeling: “self‐eating” into shape. Autophagy. 2010;6(8):1194‐1195.
Cecconi F, di Bartolomeo S, Nardacci R, et al. A novel role for autophagy in neurodevelopment. Autophagy. 2007;3(5):506‐508.
Kwon CH, Luikart BW, Powell CM, et al. Pten regulates neuronal arborization and social interaction in mice. Neuron. 2006;50:377‐388.
Tang G, Gudsnuk K, Kuo SH, et al. Loss of mTOR‐dependent macroautophagy causes autistic‐like synaptic pruning deficits. Neuron. 2014;83(5):1131‐1143.
Liang Q, Luo Z, Zeng J, et al. Zika virus NS4A and NS4B proteins deregulate akt‐mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell. 2016;19(5):663‐671.
Wang XY, Li S, Wang G, et al. High glucose environment inhibits cranial neural crest survival by activating excessive autophagy in the chick embryo. Sci Rep. 2015;5:18321.
Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12):2099‐2108.
Zhao LN, Yan ML, Wang XJ, Dou TT, Chang XL, Zhou ZJ. The effect of paraquat on autophagy in human embryonic neural progenitor cells. Article in Chinese. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2016;34(3):178‐183.
Chae M, Rhee GS, Jang IS, et al. ATG5 expression induced by MDMA (ecstasy), interferes with neuronal differentiation of neuroblastoma cells. Mol Cells. 2009;27(5):571‐575.
Mercer LD, Higgins GC, Lau CL, Lawrence AJ, Beart PM. MDMA‐induced neurotoxicity of serotonin neurons involves autophagy and rilmenidine is protective against its pathobiology. Neurochem Int. 2017;105:80‐90.
Munson MJ, Ganley IG. MTOR, PIK3C3, and autophagy: signaling the beginning from the end. Autophagy. 2015;11(12):2375‐2376.
Aye IL, Powell TL, Jansson T. Review: adiponectin–the missing link between maternal adiposity, placental transport and fetal growth? Placenta. 2013;34(Suppl):S0‐S5.
Lindberger E, Larsson A, Kunovac Kallak T, et al. Maternal early mid‐pregnancy adiponectin in relation to infant birth weight and the likelihood of being born large‐for‐gestational‐age. Sci Rep. 2023;13:20919.
Thundyil J, Pavlovski D, Sobey CG, Arumugam TV. Adiponectin receptor signaling in the brain. Br J Pharmacol. 2012;165(2):313‐327.
Qi Y, Takahashi N, Hileman SM, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524‐529.
Song L, Sun B, Boersma GJ, et al. Prenatal high‐fat diet alters placental morphology, nutrient transporter expression, and mtorc1 signaling in rat. Obesity (Silver Spring). 2017;25(5):909‐919.
Rosario FJ, Powell TL, Jansson T. Activation of placental insulin and mTOR signaling in a mouse model of maternal obesity associated with fetal overgrowth. Am J Physiol Regul Integr Comp Physiol. 2016;310(1):87‐R93.
Rosario FJ, Schumacher MA, Jiang J, Kanai Y, Powell TL, Jansson T. Chronic maternal infusion of full‐length adiponectin in pregnant mice down‐regulates placental amino acid transporter activity and expression and decreases fetal growth. J Physiol. 2012;590(6):1495‐1509.
Jansson N, Rosario FJ, Gaccioli F, et al. Activation of placental mTOR signaling and amino acid transporters in obese women giving birth to large babies. J Clin Endocrinol Metab. 2013;98(1):105‐113.
Reginato A, de Fante T, Portovedo M, et al. Autophagy proteins are modulated in the liver and hypothalamus of the offspring of mice with diet‐induced obesity. J Nutr Biochem. 2016;34:30‐41.
Boudoures AL, Saben J, Drury A, et al. Obesity‐exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy. Dev Biol. 2017;426(1):126‐138.
Hasegawa Y, Zhang Z, Taha AY, et al. Impact of maternal obesity on the gestational metabolome and infant metabolome, brain, and behavioral development in rhesus macaques. Metabolites. 2022;12(8):764.
Edlow AG, Guedj F, Pennings JL, Sverdlov D, Neri C, Bianchi DW. Males are from Mars, and females are from Venus: sex‐specific fetal brain gene expression signatures in a mouse model of maternal diet‐induced obesity. Am J Obstet Gynecol. 2016;214(5):623.e10.
Edlow AG, Glass RM, Smith CJ, Tran PK, James K, Bilbo S. Placental macrophages: a window into fetal microglial function in maternal obesity. Int J Dev Neurosci. 2019;77:60‐68.
Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta‐specific mouse model. Autophagy. 2016;12(5):752‐769.
Massingham LJ, Johnson KL, Bianchi DW, et al. Proof of concept study to assess fetal gene expression in amniotic fluid by nanoarray PCR. J Mol Diagn. 2011;13(5):565‐570.
Settin A, Elsobky E, Hammad A, Al‐Erany A. Rapid sex determination using PCR technique compared to classic cytogenetics. Int J Health Sci (Qassim). 2008;2(1):49‐52.
Garcia‐Moreno A, López‐Domínguez R, Villatoro‐García JA, et al. Functional enrichment analysis of regulatory elements. Biomedicines. 2022;10(3):590.
Wang Y, Tang S, Xu S, Weng S, Liu Z. Maternal body mass index and risk of autism spectrum disorders in offspring: a meta‐analysis. Sci Rep. 2016;6:34248.
Jo H, Schieve LA, Sharma AJ, Hinkle SN, Li R, Lind JN. Maternal pre‐pregnancy body mass index and child psychosocial development at 6 years of age. Pediatrics. 2015;135(5):1198‐e1209.
Baron‐Cohen S, Lombardo MV, Auyeung B, Ashwin E, Chakrabarti B, Knickmeyer R. Why are autism spectrum conditions more prevalent in males? PLoS Biol. 2011;9(6):e1001081.
Haghiac M, Basu S, Presley L, Serre D, Catalano PM, Hauguel‐de MS. Patterns of adiponectin expression in term pregnancy: impact of obesity. J Clin Endocrinol Metab. 2014;99(9):3427‐3434.
Aye IL, Rosario FJ, Powell TL, Jansson T. Adiponectin supplementation in pregnant mice prevents the adverse effects of maternal obesity on placental function and fetal growth. Proc Natl Acad Sci U S A. 2015;112(41):12858‐12863.
Basu S, Laffineuse L, Presley L, Minium J, Catalano PM, Mouzon SHD. In utero gender dimorphism of adiponectin reflects insulin sensitivity and adiposity of the fetus. Obesity (Silver Spring). 2009;17(6):1144‐1149.
Bloemer J, Pinky PD, Govindarajulu M, et al. Role of adiponectin in central nervous system disorders. Neural Plast. 2018;4593530:1‐15.
Dupont J, Chabrolle C, Ramé C, Tosca L, Coyral‐Castel S. Role of the peroxisome proliferator‐activated receptors, adenosine monophosphate‐activated kinase, and adiponectin in the ovary. PPAR Res. 2008;2008:176275.
Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321.
Mohammadi E, Rafraf M, Farzadi L, Asghari‐Jafarabadi M, Sabour S. Effects of omega‐3 fatty acids supplementation on serum adiponectin levels and some metabolic risk factors in women with polycystic ovary syndrome. Asia Pac J Clin Nutr. 2012;21(4):511‐518.
Sanchis P, Calvo P, Pujol A, et al. Daily phytate intake increases adiponectin levels among patients with diabetes type 2: a randomized crossover trial. Nutr Diabetes. 2023;13(1):2.
Arck P, Toth B, Pestka A, Jeschke U. Nuclear receptors of the peroxisome proliferator‐activated receptor (PPAR) family in gestational diabetes: from animal models to clinical trials. Biol Reprod. 2010;83:168‐176.
Izadi V, Azadbakht L. Specific dietary patterns and concentrations of adiponectin. J Res Med Sci. 2015;20(2):178‐184.
معلومات مُعتمدة: R01HD069238 Eunice Kennedy Shriver National Institute of Child Health and Human Development; OPP1119489 Grand Challenges in Global Health
المشرفين على المادة: EC 2.7.11.1 (TOR Serine-Threonine Kinases)
0 (Adiponectin)
0 (Beclin-1)
EC 2.7.1.1 (MTOR protein, human)
0 (Microtubule-Associated Proteins)
0 (BECN1 protein, human)
0 (Autophagy-Related Protein 5)
EC 6.2.1.45 (Autophagy-Related Protein 7)
0 (MAP1LC3B protein, human)
EC 6.2.1.45 (ATG7 protein, human)
0 (ATG5 protein, human)
0 (Receptors, Adiponectin)
0 (RNA, Messenger)
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240528 Latest Revision: 20240806
رمز التحديث: 20240807
DOI: 10.1002/oby.24017
PMID: 38644654
قاعدة البيانات: MEDLINE
الوصف
تدمد:1930-739X
DOI:10.1002/oby.24017