دورية أكاديمية

ROS formation, mitochondrial potential and osmotic stability of the lamprey red blood cells: effect of adrenergic stimulation and hypoosmotic stress.

التفاصيل البيبلوغرافية
العنوان: ROS formation, mitochondrial potential and osmotic stability of the lamprey red blood cells: effect of adrenergic stimulation and hypoosmotic stress.
المؤلفون: Chelebieva ES; Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991., Kladchenko ES; Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991. Kladchenko_ekaterina@bk.ru., Mindukshev IV; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223., Gambaryan S; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223., Andreyeva AY; Laboratory of Ecological Immunology of Aquatic Organisms, Moscow Representative Office A.O. Kovalevsky Institute of Biology of the Southern Seas of RAS, Leninsky Ave 38, Moscow, Russia, 119991.; Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, pr. Toreza, 44, St-Petersburg, Russia, 194223.
المصدر: Fish physiology and biochemistry [Fish Physiol Biochem] 2024 Aug; Vol. 50 (4), pp. 1341-1352. Date of Electronic Publication: 2024 Apr 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: Netherlands NLM ID: 100955049 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5168 (Electronic) Linking ISSN: 09201742 NLM ISO Abbreviation: Fish Physiol Biochem Subsets: MEDLINE
أسماء مطبوعة: Publication: Dordrecht ; Boston : Kluwer Academic Publishers
Original Publication: Amsterdam ; Berkeley : Kugler, 1986-
مواضيع طبية MeSH: Erythrocytes*/drug effects , Reactive Oxygen Species*/metabolism , Membrane Potential, Mitochondrial*/drug effects , Osmotic Pressure*/drug effects , Lampreys*/physiology , Epinephrine*/pharmacology, Animals ; Colforsin/pharmacology ; Osmoregulation/drug effects ; Cyclic AMP-Dependent Protein Kinases/metabolism
مستخلص: Semi-anadromous animals experience salinity fluctuations during their life-span period. Alterations of environmental conditions induce stress response where catecholamines (CA) play a central role. Physiological stress and changes in external and internal osmolarity are frequently associated with increased production of reactive oxygen species (ROS). In this work, we studied the involvement of the cAMP/PKA pathway in mediating catecholamine-dependent effects on osmoregulatory responses, intracellular production of ROS, and mitochondrial membrane potential of the river lamprey (Lampetra fluviatilis, Linnaeus, 1758) red blood cells (RBCs). We also investigated the role of hypoosmotic shock in the process of ROS production and mitochondrial respiration of RBCs. For this, osmotic stability and the dynamics of the regulatory volume decrease (RVD) following hypoosmotic swelling, intracellular ROS levels, and changes in mitochondrial membrane potential were assessed in RBCs treated with epinephrine (Epi, 25 μM) and forskolin (Forsk, 20 μM). Epi and Forsk markedly reduced the osmotic stability of the lamprey RBCs whereas did not affect the dynamics of the RVD response in a hypoosmotic environment. Activation of PKA with Epi and Forsk increased ROS levels and decreased mitochondrial membrane potential of the lamprey RBCs. In contrast, upon hypoosmotic shock enhanced ROS production in RBCs was accompanied by increased mitochondrial membrane potential. Overall, a decrease in RBC osmotic stability and the enhancement of ROS formation induced by β-adrenergic stimulation raises concerns about stress-associated changes in RBC functions in agnathans. Increased ROS production in RBCs under hypoosmotic shock indicates that a decrease in blood osmolarity may be associated with oxidative damage of RBCs during lamprey migration.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Andreyeva AY, Kladchenko ES, Sudnitsyna JS, Krivchenko AI, Mindukshev IV, Gambaryan S (2021) Protein kinase A activity and NO are involved in the regulation of crucian carp (Carassius carassius) red blood cell osmotic fragility. Fish Physiol Biochem 47(4):1105–1117. https://doi.org/10.1007/s10695-021-00971-4. (PMID: 10.1007/s10695-021-00971-434052972)
Andreyeva AY, Skverchinskaya EA, Gambaryan S, Soldatov AA, Mindukshev IV (2018) Hypoxia inhibits the regulatory volume decrease in red blood cells of common frog (Rana temporaria). Comp Biochem Physiol A Mol Integr Physiol 219:44–47. https://doi.org/10.1016/j.cbpa.2018.02.016. (PMID: 10.1016/j.cbpa.2018.02.01629501871)
Andreyeva AY, Soldatov AA, Krivchenko AI, Mindukshev IV, Gambaryan S (2019) Hemoglobin deoxygenation and methemoglobinemia prevent regulatory volume decrease in crucian carp (Carassius carassius) red blood cells. Fish Physiol Biochem 45:1933–1940. https://doi.org/10.1007/s10695-019-00689-4. (PMID: 10.1007/s10695-019-00689-431396800)
Bae YS, Oh H, Rhee SG, Yoo YD (2011) Regulation of reactive oxygen species generation in cell signaling. Mol Cells 32:491–509. https://doi.org/10.1007/s10059-011-0276-3. (PMID: 10.1007/s10059-011-0276-3222071953887685)
Bal A, Panda F, Pati SG, Das K, Agrawal PK, Paital B (2021) Modulation of physiological oxidative stress and antioxidant status by abiotic factors especially salinity in aquatic organisms. Comp Biochem Physiol C Toxicol Pharmacol 241:108971. https://doi.org/10.1016/j.cbpc.2020.108971. (PMID: 10.1016/j.cbpc.2020.10897133421636)
Butler PJ, Metcalfe JD, Ginley SA (1986) Plasma catecholamines in the lesser spotted dogfish and rainbow trout at rest and during different levels of exercise. J Exp Biol 123:409–421. https://doi.org/10.1242/jeb.123.1.409. (PMID: 10.1242/jeb.123.1.4093746197)
Clark RB, Goka TJ, Green DA, Barber R, Butcher RW (1982) Differences in the forskolin activation of adenylate cyclases in wild-type and variant lymphoma cells. Mol Pharmacol 22(3):609–613. (PMID: 6296654)
Collins-Nakai RL, Noseworthy DARREN, Lopaschuk GD (1994) Epinephrine increases ATP production in hearts by preferentially increasing glucose metabolism. Am J Phys Heart Circ Phys 267(5):H1862–H1871. https://doi.org/10.1152/ajpheart.1994.267.5.H1862. (PMID: 10.1152/ajpheart.1994.267.5.H1862)
De Rasmo D, Gattoni G, Papa F, Santeramo A, Pacelli C, Cocco T et al (2011) The β-adrenoceptor agonist isoproterenol promotes the activity of respiratory chain complex I and lowers cellular reactive oxygen species in fibroblasts and heart myoblasts. Eur J Pharmacol 652(1-3):15–22. https://doi.org/10.1016/j.ejphar.2010.11.016. (PMID: 10.1016/j.ejphar.2010.11.01621118678)
Dehnel PA (1960) Effect of temperature and salinity on the oxygen consumption of two intertidal crabs. Biol Bull 118(2):215–249. https://doi.org/10.2307/1538998. (PMID: 10.2307/1538998)
Devin A, Guérin B, Rigoulet M (1996) Dependence of flux size and efficiency of oxidative phosphorylation on external osmolarity in isolated rat liver mitochondria: role of adenine nucleotide carrier. Biochim Biophys Acta, Bioenerg 1273(1):13–20. https://doi.org/10.1016/0005-2728(95)00130-1. (PMID: 10.1016/0005-2728(95)00130-1)
Evans TG, Kültz D (2020) The cellular stress response in fish exposed to salinity fluctuations. J Exp Zool A: Ecol Integr Physiol 333(6):421–435. https://doi.org/10.1002/jez.2350. (PMID: 10.1002/jez.235032048473)
Geihs MA, Moreira DC, López-Martínez G, Minari M, Ferreira-Cravo M, Carvajalino-Fernández JM, Hermes-Lima M (2020) Commentary: Ultraviolet radiation triggers “preparation for oxidative stress” antioxidant response in animals: similarities and interplay with other stressors. Comp Biochem Physiol A Mol Integr Physiol 239:110585. https://doi.org/10.1016/j.cbpa.2019.110585. (PMID: 10.1016/j.cbpa.2019.11058531669953)
Halestrap AP (1989) The regulation of the matrix volume of mammalian mitochondria in vivo and in vitro and its role in the control of mitochondrial metabolism. Biochim Biophys Acta, Bioenerg 973(3):355–382. https://doi.org/10.1016/S0005-2728(89)80378-0. (PMID: 10.1016/S0005-2728(89)80378-0)
Kim JH, Park HJ, Kim KW, Hwang IK, Kim DH, Oh CW, Kang JC (2017) Growth performance, oxidative stress, and non-specific immune responses in juvenile sablefish, Anoplopoma fimbria, by changes of water temperature and salinity. Fish Physiol Biochem 43:1421–1431. https://doi.org/10.1007/s10695-017-0382-z. (PMID: 10.1007/s10695-017-0382-z28501978)
Konovalova SA, Zubatkina IS, Savina MV (2010) The influence of estradiol, epinephrine and cAMP on mitochondria energization and intracellular free Ca 2+ concentration in lamprey hepatocytes. Biochim Biophys Acta, Bioenerg 1797:126–127. https://doi.org/10.1016/j.bbabio.2010.04.376. (PMID: 10.1016/j.bbabio.2010.04.376)
Lai I, Chang CD, Shih WL (2019) Apoptosis induction by pseudorabies virus via oxidative stress and subsequent DNA damage signaling. Intervirology 62(3-4):116–123. https://doi.org/10.1159/000502047.
Lang F, Busch GL, Ritter M, Volkl H, Waldegger S, Gulbins E, Haussinger D (1998) Functional significance of cell volume regulatory mechanisms. Physiol Rev 78(1):247–306. https://doi.org/10.1152/physrev.1998.78.1.247. (PMID: 10.1152/physrev.1998.78.1.2479457175)
Larsen LO (1980) Physiology of adult lampreys, with special regard to natural starvation, reproduction, and death after spawning. Can J Fish Aquat Sci 37(11):1762–1779. https://doi.org/10.1139/f80-221.
Lenaz G, Genova ML (2012) Supramolecular organisation of the mitochondrial respiratory chain: a new challenge for the mechanism and control of oxidative phosphorylation. In: Mitochondrial oxidative phosphorylation: nuclear-encoded genes, enzyme regulation, and pathophysiology. Springer, pp 107–144. https://doi.org/10.1007/978-1-4614-3573-0_5. (PMID: 10.1007/978-1-4614-3573-0_5)
Li X, Zhao Y, Yin J, Lin W (2020) Organic fluorescent probes for detecting mitochondrial membrane potential. Coord Chem Rev 420:213419. https://doi.org/10.1016/j.ccr.2020.213419.
Makhro A, Huisjes R, Verhagen LP, Manu-Pereira MDM, Llaudet-Planas E, Petkova-Kirova P et al (2016) Red cell properties after different modes of blood transportation. Front Physiol 7:288. https://doi.org/10.3389/fphys.2016.00288. (PMID: 10.3389/fphys.2016.00288274714724945647)
Masroor W, Farcy E, Gros R, Lorin-Nebel C (2018) Effect of combined stress (salinity and temperature) in European sea bass Dicentrarchus labrax osmoregulatory processes. Comp Biochem Physiol A Mol Integr Physiol 215:45–54. https://doi.org/10.1016/j.cbpa.2017.10.019. (PMID: 10.1016/j.cbpa.2017.10.01929056479)
McAllen R, Taylor A (2001) The effect of salinity change on the oxygen consumption and swimming activity of the high-shore rockpool copepod Tigriopus brevicornis. J Exp Mar Biol Ecol 263(2):227–240. https://doi.org/10.1016/S0022-0981(01)00308-2. (PMID: 10.1016/S0022-0981(01)00308-2)
Miloslavich P, Klein E, Díaz JM, Hernandez CE, Bigatti G, Campos L, Martín A (2011) Marine biodiversity in the Atlantic and Pacific coasts of South America: knowledge and gaps. PLoS One 6(1):e14631. https://doi.org/10.1371/journal.pone.0014631. (PMID: 10.1371/journal.pone.0014631213049603031619)
Mindukshev I, Kudryavtsev I, Serebriakova M, Trulioff A, Gambaryan S, Sudnitsyna J, Khmelevskoy D, Voitenko N, Avdonin P, Jenkins R, Goncharov N (2016) Flow cytometry and light scattering technique in evaluation of nutraceuticals. In: Neutraceuticals: Efficacy, Safety and Toxicity. Academic Press, pp 319–332. https://doi.org/10.1016/B978-0-12-802147-7.00024-3. (PMID: 10.1016/B978-0-12-802147-7.00024-3)
Mindukshev IV, Krivoshlyk VV, Dobrylko IA, Goncharov NV, Vivulanets EV, Kuznetsov SV, Krivchenko AI (2010) Abnormalities of elastic and transporting properties of red blood cells under development of apoptosis. Biochem (Biokhimiya) Suppl Series A, Membr Cell Biol 4(1):22. https://doi.org/10.1134/S1990747810010046. (PMID: 10.1134/S1990747810010046)
Mindukshev IV, Krivoshlyk VV, Ermolaeva EE, Dobrylko IA, Senchenkov EV, Goncharov NV, Krivchenko AI (2007) Necrotic and apoptotic volume changes of red blood cells investigated by low-angle light scattering technique. Spectroscopy 21(2):105–120. https://doi.org/10.1155/2007/629870. (PMID: 10.1155/2007/629870)
Mindukshev IV, Sudnitsyna JS, Skverchinskaya EA, Andreyeva AY, Dobrylko IA, Senchenkova EY et al (2019) Erythrocytes’ reactions to osmotic, ammonium, and oxidative stress are inhibited under hypoxia. Biochemistry (Moscow). Suppl Series A: Membr Cell Biol 13:352–364. https://doi.org/10.1134/S1990747819040081. (PMID: 10.1134/S1990747819040081)
Mundy PC, Jeffries KM, Fangue NA, Connon RE (2020) Differential regulation of select osmoregulatory genes and Na + /K + -ATPase paralogs may contribute to population differences in salinity tolerance in a semi-anadromous fish. Comp Biochem Physiol A Mol Integr Physiol 240:110584. https://doi.org/10.1016/j.cbpa.2019.110584. (PMID: 10.1016/j.cbpa.2019.11058431676412)
Muravyov AV, Koshelev VB, Fadukova OE, Tikhomirova IA, Maimistova AA, Bulaeva SV (2011) The role of red blood cell adenylyl cyclase activation in changes of erythrocyte membrane microrheological properties. Biochem (Mosc) Suppl A: Membr Cell Biol 5:128–134. https://doi.org/10.1134/S1990747811020036. (PMID: 10.1134/S1990747811020036)
Nikinmaa M (2001) Haemoglobin function in vertebrates: evolutionary changes in cellular regulation in hypoxia. Respir Physiol 128(3):317–329. https://doi.org/10.1016/S0034-5687(01)00309-7. (PMID: 10.1016/S0034-5687(01)00309-711718761)
Nikinmaa M, Berenbrink M, Brauner CJ (2019) Regulation of erythrocyte function: multiple evolutionary solutions for respiratory gas transport and its regulation in fish. Acta Physiol 227(2):e13299. https://doi.org/10.1111/apha.13299. (PMID: 10.1111/apha.13299)
Paital B, Chainy GBN (2010) Antioxidant defenses and oxidative stress parameters in tissues of mud crab (Scylla serrata) with reference to changing salinity. Comp Biochem Physiol Part - C: Toxicol Pharmacol 151(1):142–151. https://doi.org/10.1016/j.cbpc.2009.09.007. (PMID: 10.1016/j.cbpc.2009.09.007)
Paital B, Chainy GBN (2012) Effects of salinity on O 2 consumption, ROS generation and oxidative stress status of gill mitochondria of the mud crab Scylla serrata. Comp Biochem Physiol Part - C: Toxicol Pharmacol 155(2):228–237. https://doi.org/10.1016/j.cbpc.2011.08.009. (PMID: 10.1016/j.cbpc.2011.08.009)
Paital B, Chainy GBN (2014) Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. J Therm Biol 41:104–111. https://doi.org/10.1016/j.jtherbio.2014.02.013. (PMID: 10.1016/j.jtherbio.2014.02.01324679979)
Palorini R, De Rasmo D, Gaviraghi M, Danna LS, Signorile A, Cirulli C, Papa S (2013) Oncogenic K-ras expression is associated with derangement of the cAMP/PKA pathway and forskolin-reversible alterations of mitochondrial dynamics and respiration. Oncogene 32(3):352–362. https://doi.org/10.1038/onc.2012.50. (PMID: 10.1038/onc.2012.5022410778)
Pankhurst NW (2011) The endocrinology of stress in fish: an environmental perspective. Gen Comp Endocrinol 170(2):265–275. https://doi.org/10.1016/j.ygcen.2010.07.017. (PMID: 10.1016/j.ygcen.2010.07.01720688064)
Pfaller W, Willinger C, Stoll B, Hallbrucker C, Lang F, Häussinger D (1993) Structural reaction pattern of hepatocytes following exposure to hypotonicity. J Cell Physiol 154(2):248–253. https://doi.org/10.1002/jcp.1041540206. (PMID: 10.1002/jcp.10415402068425906)
Pretini V, Koenen MH, Kaestner L, Fens MH, Schiffelers RM, Bartels M, Van Wijk R (2019) Red blood cells: chasing interactions. Front Physiol 10:945. (PMID: 10.3389/fphys.2019.00945314174156684843)
Randall DJ, Perry SF (1992) Catecholamines. In: Hoar WS, Randall DJ (eds) Fish Physiology: The Cardiovascular System, vol XIIB. Academic Press, New York, pp 255–300. (PMID: 10.1016/S1546-5098(08)60011-4)
Rivera-Ingraham GA, Barri K, Boël M, Farcy E, Charles AL, Geny B, Lignot JH (2016a) Osmoregulation and salinity-induced oxidative stress: is oxidative adaptation determined by gill function? J Exp Biol 219(1):80–89. https://doi.org/10.1242/jeb.128595. (PMID: 10.1242/jeb.12859526567341)
Rivera-Ingraham GA, Nommick A, Blondeau-Bidet E, Ladurner P, Lignot JH (2016b) Salinity stress from the perspective of the energy-redox axis: lessons from a marine intertidal flatworm. Redox Biol 10:53–64. https://doi.org/10.1016/j.redox.2016.09.012. (PMID: 10.1016/j.redox.2016.09.012276897385043416)
Sapolsky RM (2021) Glucocorticoids, the evolution of the stress-response, and the primate predicament. Neurobiol Stress 14:100320. https://doi.org/10.1016/j.ynstr.2021.100320. (PMID: 10.1016/j.ynstr.2021.100320338696838040328)
Savina MV, Konovalova SA, Zubatkina IS, Nikiforov AA (2011) Reversible metabolic depression in lamprey hepatocytes during prespawning migration: dynamics of mitochondrial membrane potential. Comp Biochem Physiol B: Biochem Mol Biol 160(4):194–200. https://doi.org/10.1016/j.cbpb.2011.08.007. (PMID: 10.1016/j.cbpb.2011.08.00721893210)
Schmidt-Nielsen B (1975) Comparative physiology of cellular ion and volume regulation. J Exp Zool 194(1):207–219. https://doi.org/10.1002/jez.1401940114. (PMID: 10.1002/jez.1401940114811755)
Semsar-Kazerouni M, Boerrigter JG, Verberk WC (2020) Changes in heat stress tolerance in a freshwater amphipod following starvation: The role of oxygen availability, metabolic rate, heat shock proteins and energy reserves. Comp Biochem Physiol A Mol Integr Physiol 245:110697. https://doi.org/10.1016/j.cbpa.2020.110697. (PMID: 10.1016/j.cbpa.2020.11069732247008)
Singh S, Ponnappan N, Verma A, Mittal A (2019) Osmotic tolerance of avian erythrocytes to complete hemolysis in solute free water. Sci Rep 9(1):7976. https://doi.org/10.1038/s41598-019-44487-7. (PMID: 10.1038/s41598-019-44487-7311388516538707)
Sudnitsyna J, Skverchinskaya E, Dobrylko I, Nikitina E, Gambaryan S, Mindukshev I (2020) Microvesicle formation induced by oxidative stress in human erythrocytes. Antioxidants (Basel) 9(10):929. https://doi.org/10.3390/antiox9100929. (PMID: 10.3390/antiox910092932998418)
Tuvia S, Moses A, Gulayev N, Levin S, Korenstein R (1999) β-Adrenergic agonists regulate cell membrane fluctuations of human erythrocytes. J Physiol 516(3):781–792. https://doi.org/10.1111/j.1469-7793.1999.0781u.x. (PMID: 10.1111/j.1469-7793.1999.0781u.x102004252269310)
Verlecar XN, Jena KB, Chainy GBN (2007) Biochemical markers of oxidative stress in Perna viridis exposed to mercury and temperature. Chem Biol Interact 167(3):219–226. https://doi.org/10.1016/j.cbi.2007.01.018. (PMID: 10.1016/j.cbi.2007.01.01817418111)
Virkki LV, Nikinmaa MIKKO (1995) Regulatory volume decrease in lamprey erythrocytes: mechanisms of K + and Cl-loss. Am J Phys Regul Integr Comp Phys 268(3):R590–R597. https://doi.org/10.1152/ajpregu.1995.268.3.R590. (PMID: 10.1152/ajpregu.1995.268.3.R590)
Welker AF, Moreira DC, Campos ÉG, Hermes-Lima M (2013) Role of redox metabolism for adaptation of aquatic animals to drastic changes in oxygen availability. Comp Biochem Physiol A Mol Integr Physiol 165(4):384–404. https://doi.org/10.1016/j.cbpa.2013.04.003. (PMID: 10.1016/j.cbpa.2013.04.00323587877)
Zeng L, Ai CX, Wang YH, Zhang JS, Wu CW (2017) Abrupt salinity stress induces oxidative stress via the Nrf2-Keap1 signaling pathway in large yellow croaker Pseudosciaena crocea. Fish Physiol Biochem 43(4):955–964. https://doi.org/10.1007/s10695-016-0334-z. (PMID: 10.1007/s10695-016-0334-z28616764)
Zhang J, Xiao H, Shen J, Wang N, Zhang Y (2017) Different roles of β-arrestin and the PKA pathway in mitochondrial ROS production induced by acute β-adrenergic receptor stimulation in neonatal mouse cardiomyocytes. Biochem Biophys Res Commun 489(4):393–398. https://doi.org/10.1016/j.bbrc.2017.05.140. (PMID: 10.1016/j.bbrc.2017.05.14028552530)
فهرسة مساهمة: Keywords: Mitochondrial membrane potential; Osmotic fragility; Reactive oxygen species; Red blood cells; Regulatory volume decrease; River lamprey
المشرفين على المادة: 0 (Reactive Oxygen Species)
YKH834O4BH (Epinephrine)
1F7A44V6OU (Colforsin)
EC 2.7.11.11 (Cyclic AMP-Dependent Protein Kinases)
تواريخ الأحداث: Date Created: 20240422 Date Completed: 20240729 Latest Revision: 20240729
رمز التحديث: 20240729
DOI: 10.1007/s10695-024-01342-5
PMID: 38647979
قاعدة البيانات: MEDLINE