دورية أكاديمية

Molecular recording of calcium signals via calcium-dependent proximity labeling.

التفاصيل البيبلوغرافية
العنوان: Molecular recording of calcium signals via calcium-dependent proximity labeling.
المؤلفون: Kim JW; Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA., Yong AJH; Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA.; Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA., Aisenberg EE; Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA., Lobel JH; Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA., Wang W; Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA., Dawson TM; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Dawson VL; Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA., Gao R; Department of Chemistry at the University of Illinois, Chicago, Chicago, IL, USA., Jan YN; Department of Physiology at the University of California, San Francisco, San Francisco, CA, USA.; Howard Hughes Medical Institute at the University of California, San Francisco, San Francisco, CA, USA., Bateup HS; Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA.; Helen Wills Neuroscience Institute at the University of California, Berkeley, Berkeley, CA, USA.; Chan Zuckerberg Biohub, San Francisco, CA, USA., Ingolia NT; Department of Molecular and Cell Biology at the University of California, Berkeley, Berkeley, CA, USA. ingolia@berkeley.edu.
المصدر: Nature chemical biology [Nat Chem Biol] 2024 Jul; Vol. 20 (7), pp. 894-905. Date of Electronic Publication: 2024 Apr 24.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Pub. Group Country of Publication: United States NLM ID: 101231976 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1552-4469 (Electronic) Linking ISSN: 15524450 NLM ISO Abbreviation: Nat Chem Biol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: New York, NY : Nature Pub. Group, [2005]-
مواضيع طبية MeSH: Calcium*/metabolism , Neurons*/metabolism , Calcium Signaling* , Biotinylation*, Animals ; Carbon-Nitrogen Ligases/metabolism ; Carbon-Nitrogen Ligases/chemistry ; Humans ; Mice ; HEK293 Cells ; Repressor Proteins ; Escherichia coli Proteins
مستخلص: Calcium ions serve as key intracellular signals. Local, transient increases in calcium concentrations can activate calcium sensor proteins that in turn trigger downstream effectors. In neurons, calcium transients play a central role in regulating neurotransmitter release and synaptic plasticity. However, it is challenging to capture the molecular events associated with these localized and ephemeral calcium signals. Here we present an engineered biotin ligase that generates permanent molecular traces in a calcium-dependent manner. The enzyme, calcium-dependent BioID (Cal-ID), biotinylates nearby proteins within minutes in response to elevated local calcium levels. The biotinylated proteins can be identified via mass spectrometry and visualized using microscopy. In neurons, Cal-ID labeling is triggered by neuronal activity, leading to prominent protein biotinylation that enables transcription-independent activity labeling in the brain. In summary, Cal-ID produces a biochemical record of calcium signals and neuronal activity with high spatial resolution and molecular specificity.
(© 2024. The Author(s), under exclusive licence to Springer Nature America, Inc.)
References: Bagur, R. & Hajnóczky, G. Intracellular Ca 2+ sensing: its role in calcium homeostasis and signaling. Mol. Cell 66, 780–788 (2017). (PMID: 286225235657234)
Berridge, M. J. Calcium microdomains: organization and function. Cell Calcium 40, 405–412 (2006). (PMID: 17030366)
Augustine, G. J., Santamaria, F. & Tanaka, K. Local calcium signaling in neurons. Neuron 40, 331–346 (2003). (PMID: 14556712)
Greer, P. L. & Greenberg, M. E. From synapse to nucleus: calcium-dependent gene transcription in the control of synapse development and function. Neuron 59, 846–860 (2008). (PMID: 18817726)
Simms, B. A. & Zamponi, G. W. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82, 24–45 (2014). (PMID: 24698266)
Lin, M. Z. & Schnitzer, M. J. Genetically encoded indicators of neuronal activity. Nat. Neurosci. 19, 1142–1153 (2016). (PMID: 275711935557009)
Qin, W., Cho, K. F., Cavanagh, P. E. & Ting, A. Y. Deciphering molecular interactions by proximity labeling. Nat. Methods 18, 133–143 (2021). (PMID: 3343224210548357)
Branon, T. C. et al. Efficient proximity labeling in living cells and organisms with TurboID. Nat. Biotechnol. 36, 880–887 (2018). (PMID: 301252706126969)
Roux, K. J., Kim, D. I., Raida, M. & Burke, B. A promiscuous biotin ligase fusion protein identifies proximal and interacting proteins in mammalian cells. J. Cell Biol. 196, 801–810 (2012). (PMID: 224120183308701)
Han, S., Li, J. & Ting, A. Y. Proximity labeling: spatially resolved proteomic mapping for neurobiology. Curr. Opin. Neurobiol. 50, 17–23 (2018). (PMID: 29125959)
Uezu, A. & Soderling, S. Identifying synaptic proteins by in vivo bioid from mouse brain. Methods Mol. Biol. 2008, 107–119 (2019). (PMID: 31124092)
Uezu, A. et al. Identification of an elaborate complex mediating postsynaptic inhibition. Science 353, 1123–1129 (2016). (PMID: 276098865432043)
Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013). (PMID: 238682583777791)
Schopp, I. M. et al. Split-BioID a conditional proteomics approach to monitor the composition of spatiotemporally defined protein complexes. Nat. Commun. 8, 15690 (2017). (PMID: 285855475467174)
Munter, S. D. et al. Split-BioID: a proximity biotinylation assay for dimerization-dependent protein interactions. FEBS Lett. 591, 415–424 (2017). (PMID: 28032891)
Cho, K. F. et al. Split-TurboID enables contact-dependent proximity labeling in cells. Proc. Natl Acad. Sci. USA 117, 12143–12154 (2020). (PMID: 324241077275672)
Kwak, C. et al. Contact-ID, a tool for profiling organelle contact sites, reveals regulatory proteins of mitochondrial-associated membrane formation. Proc. Natl Acad. Sci. USA 117, 12109–12120 (2020). (PMID: 324149197275737)
Choy, E. et al. Endomembrane trafficking of Ras the CAAX motif targets proteins to the ER and Golgi. Cell 98, 69–80 (1999). (PMID: 10412982)
Davidson, A. E., Gratsch, T. E., Morell, M. H., O’Shea, K. S. & Krull, C. E. Use of the Sleeping Beauty transposon system for stable gene expression in mouse embryonic stem cells. Cold Spring Harb. Protoc. 10.1101/pdb.prot5270 (2009).
Kowarz, E., Löscher, D. & Marschalek, R. Optimized Sleeping Beauty transposons rapidly generate stable transgenic cell lines. Biotechnol. J. 10, 647–653 (2015). (PMID: 25650551)
Helassa, N., Nugues, C., Rajamanoharan, D., Burgoyne, R. D. & Haynes, L. P. A centrosome-localized calcium signal is essential for mammalian cell mitosis. FASEB J. 33, 14602–14610 (2019). (PMID: 316827646910830)
Whitaker, M. Calcium microdomains and cell cycle control. Cell Calcium 40, 585–592 (2006). (PMID: 170456453292880)
Groigno, L. & Whitaker, M. An anaphase calcium signal controls chromosome disjunction in early sea urchin embryos. Cell 92, 193–204 (1998). (PMID: 9458044)
Lagos-Cabré, R., Ivanova, A. & Taylor, C. W. Ca 2+ release by IP3 receptors is required to orient the mitotic spindle. Cell Rep. 33, 108483 (2020). (PMID: 333267747758162)
Fazal, F. M. et al. Atlas of subcellular RNA localization revealed by APEX-seq. Cell 178, 473–490.e26 (2019). (PMID: 312307156786773)
Padrón, A., Iwasaki, S. & Ingolia, N. T. Proximity RNA labeling by APEX-Seq reveals the organization of translation initiation complexes and repressive RNA granules. Mol. Cell 75, 875–887.e5 (2019). (PMID: 314424266834362)
Qin, W., Myers, S. A., Carey, D. K., Carr, S. A. & Ting, A. Y. Spatiotemporally-resolved mapping of RNA binding proteins via functional proximity labeling reveals a mitochondrial mRNA anchor promoting stress recovery. Nat. Commun. 12, 4980 (2021). (PMID: 344047928370977)
Zhong, X., Liu, L., Zhao, A., Pfeifer, G. P. & Xu, X. The abnormal spindle-like, microcephaly-associated (ASPM) gene encodes a centrosomal protein. Cell Cycle Georget. Tex. 4, 1227–1229 (2005).
Hart, M. J., Callow, M. G., Souza, B. & Polakis, P. IQGAP1, a calmodulin-binding protein with a rasGAP-related domain, is a potential effector for cdc42Hs. EMBO J. 15, 2997–3005 (1996). (PMID: 8670801450241)
Mammucari, C., Gherardi, G. & Rizzuto, R. Structure, activity regulation, and role of the mitochondrial calcium uniporter in health and disease. Front. Oncol. 7, 139 (2017). (PMID: 287408305502327)
Zhang, X. et al. The mouse FKBP23 binds to BiP in ER and the binding of C‐terminal domain is interrelated with Ca 2+ concentration. FEBS Lett. 559, 57–60 (2004). (PMID: 14960307)
Oeffinger, M., Fatica, A., Rout, M. P. & Tollervey, D. Yeast Rrp14p is required for ribosomal subunit synthesis and for correct positioning of the mitotic spindle during mitosis. Nucleic Acids Res. 35, 1354–1366 (2007). (PMID: 172722951849896)
Zheng, Q. et al. Calcium transients on the ER surface trigger liquid-liquid phase separation of FIP200 to specify autophagosome initiation sites. Cell 185, 4082–4098.e22 (2022). (PMID: 36198318)
Chen, F., Tillberg, P. W. & Boyden, E. S. Expansion microscopy. Science 347, 543–548 (2015). (PMID: 255924194312537)
Tillberg, P. W. et al. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34, 987–992 (2016). (PMID: 273765845068827)
Gao, R. et al. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363, eaau8302 (2019). (PMID: 306554156481610)
Bootman, M. D. & Bultynck, G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb. Perspect. Biol. 12, a038802 (2020). (PMID: 314273726942118)
Berridge, M. J. Neuronal calcium signaling. Neuron 21, 13–26 (1998). (PMID: 9697848)
Cheng, G., Rong, X.-W. & Feng, T.-P. Block of induction and maintenance of calcium-induced LTP by inhibition of protein kinase C in postsynaptic neuron in hippocampal CA1 region. Brain Res. 646, 230–234 (1994). (PMID: 8069668)
Knight, Z. A. et al. Molecular profiling of activated neurons by phosphorylated ribosome capture. Cell 151, 1126–1137 (2012). (PMID: 23178128)
Lu, W.-Y. et al. Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron 29, 243–254 (2001). (PMID: 11182095)
Garcia, M. L. & Strehler, E. E. Plasma membrane calcium ATPases as critical regulators of calcium homeostasis during neuronal cell function. Front. Biosci. 4, d869 (1999). (PMID: 10577388)
Strehler, E. E. Plasma membrane calcium ATPases: from generic Ca 2+ sump pumps to versatile systems for fine-tuning cellular Ca 2+ . Biochem. Biophys. Res. Commun. 460, 26–33 (2015). (PMID: 25998731)
Strehler, E. E. et al. Plasma membrane Ca 2+ ATPases as dynamic regulators of cellular calcium handling. Ann. N. Y. Acad. Sci. 1099, 226–236 (2007). (PMID: 17446463)
Brini, M. & Carafoli, E. The plasma membrane Ca 2+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb. Perspect. Biol. 3, a004168 (2011). (PMID: 214219193039526)
Yurimoto, S. et al. Identification and characterization of wolframin, the product of the wolfram syndrome gene (WFS1), as a novel calmodulin-binding protein. Biochemistry 48, 3946–3955 (2009). (PMID: 19292454)
Osman, A. A. et al. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. J. Biol. Chem. 278, 52755–52762 (2003). (PMID: 14527944)
Angebault, C. et al. ER-mitochondria cross-talk is regulated by the Ca 2+ sensor NCS1 and is impaired in Wolfram syndrome. Sci. Signal. 11, eaaq1380 (2018). (PMID: 30352948)
Morgia, C. L. et al. Calcium mishandling in absence of primary mitochondrial dysfunction drives cellular pathology in Wolfram Syndrome. Sci. Rep. 10, 4785 (2020). (PMID: 321798407075867)
Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006). (PMID: 17072308)
Takano, T. et al. Chemico-genetic discovery of astrocytic control of inhibition in vivo. Nature 588, 296–302 (2020). (PMID: 331777168011649)
Spence, E. F. et al. In vivo proximity proteomics of nascent synapses reveals a novel regulator of cytoskeleton-mediated synaptic maturation. Nat. Commun. 10, 386 (2019). (PMID: 306748776344529)
Rayaprolu, S. et al. Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain. Nat. Commun. 13, 2927 (2022). (PMID: 356140649132937)
Lévesque, M. & Avoli, M. The kainic acid model of temporal lobe epilepsy. Neurosci. Biobehav. Rev. 37, 2887–2899 (2013). (PMID: 241847434878897)
Erum, J. V., Dam, D. V. & Deyn, P. P. D. PTZ-induced seizures in mice require a revised Racine scale. Epilepsy Behav. 95, 51–55 (2019). (PMID: 31026782)
Wu, G.-Y., Deisseroth, K. & Tsien, R. W. Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc. Natl Acad. Sci. USA 98, 2808–2813 (2001). (PMID: 1122632230221)
Hrvatin, S., Nagy, M. A. & Greenberg, M. E. Catching the brain in the act. Cell 165, 1570–1571 (2016). (PMID: 27315474)
Surmeier, D. J., Ding, J., Day, M., Wang, Z. & Shen, W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci. 30, 228–235 (2007). (PMID: 17408758)
Renier, N. et al. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 165, 1789–1802 (2016). (PMID: 272380214912438)
Nishi, A., Kuroiwa, M. & Shuto, T. Mechanisms for the modulation of dopamine D1 receptor signaling in striatal neurons. Front. Neuroanat. 5, 43 (2011). (PMID: 218114413140648)
Vermeulen, R. J. et al. The dopamine D1 agonist SKF 81297 and the dopamine D2 agonist LY 171555 act synergistically to stimulate motor behavior of 1‐methyl‐4‐phenyl‐1,2,3,6‐tetrahydropyridine‐lesioned parkinsonian rhesus monkeys. Mov. Disord. 9, 664–672 (1994). (PMID: 7845408)
Gillingham, A. K. & Munro, S. The PACT domain, a conserved centrosomal targeting motif in the coiled‐coil proteins AKAP450 and pericentrin. EMBO Rep. 1, 524–529 (2000). (PMID: 112634981083777)
Moisoi, N., Erent, M., Whyte, S., Martin, S. & Bayley, P. M. Calmodulin-containing substructures of the centrosomal matrix released by microtubule perturbation. J. Cell Sci. 115, 2367–2379 (2002). (PMID: 12006621)
Clapham, D. E. Calcium signaling. Cell 131, 1047–1058 (2007). (PMID: 18083096)
Fosque, B. F. et al. Labeling of active neural circuits in vivo with designed calcium integrators. Science 347, 755–760 (2015). (PMID: 25678659)
Moeyaert, B. et al. Improved methods for marking active neuron populations. Nat. Commun. 9, 4440 (2018). (PMID: 303615636202339)
McMahon, S. M. & Jackson, M. B. An inconvenient truth: calcium sensors are calcium buffers. Trends Neurosci. 41, 880–884 (2018). (PMID: 302870846252283)
Chin, D. & Means, A. R. Calmodulin: a prototypical calcium sensor. Trends Cell Biol. 10, 322–328 (2000). (PMID: 10884684)
Zhang, C., Kang, J. S., Asano, S. M., Gao, R. & Boyden, E. S. Expansion microscopy for beginners: visualizing microtubules in expanded cultured HeLa cells. Curr. Protoc. Neurosci. 92, e96 (2020). (PMID: 324974047286065)
Cho, K. F. et al. Proximity labeling in mammalian cells with TurboID and split-TurboID. Nat. Protoc. 15, 3971–3999 (2020). (PMID: 33139955)
Rappsilber, J., Mann, M. & Ishihama, Y. Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat. Protoc. 2, 1896–1906 (2007). (PMID: 17703201)
Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43, e47 (2015). (PMID: 256057924402510)
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012). (PMID: 22743772)
Wickham, H. ggplot2, Elegant Graphics for Data Analysis 147–168 (Springer, 2016).
Nectow, A. R. et al. Identification of a brainstem circuit controlling feeding. Cell 170, 429–435.e11 (2017). (PMID: 28753423)
معلومات مُعتمدة: DP2CA195768 U.S. Department of Health & Human Services | NIH | NIH Office of the Director (OD); R21NS112842 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS); R35NS097227 U.S. Department of Health & Human Services | NIH | National Institute of Neurological Disorders and Stroke (NINDS)
المشرفين على المادة: SY7Q814VUP (Calcium)
EC 6.3.- (Carbon-Nitrogen Ligases)
EC 6.3.4.15 (birA protein, E coli)
0 (Repressor Proteins)
0 (Escherichia coli Proteins)
تواريخ الأحداث: Date Created: 20240424 Date Completed: 20240628 Latest Revision: 20240628
رمز التحديث: 20240629
DOI: 10.1038/s41589-024-01603-7
PMID: 38658655
قاعدة البيانات: MEDLINE
الوصف
تدمد:1552-4469
DOI:10.1038/s41589-024-01603-7