دورية أكاديمية

PGE 2 limits effector expansion of tumour-infiltrating stem-like CD8 + T cells.

التفاصيل البيبلوغرافية
العنوان: PGE 2 limits effector expansion of tumour-infiltrating stem-like CD8 + T cells.
المؤلفون: Lacher SB; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Dörr J; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., de Almeida GP; Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, TUM, Freising, Germany., Hönninger J; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany.; Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, TUM, Munich, Germany., Bayerl F; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Hirschberger A; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Pedde AM; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Meiser P; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Ramsauer L; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Rudolph TJ; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Spranger N; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Morotti M; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.; Department of Oncology, University Hospital of Lausanne (CHUV) and UNIL, Lausanne, Switzerland.; Agora Cancer Research Center, Lausanne, Switzerland., Grimm AJ; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.; Department of Oncology, University Hospital of Lausanne (CHUV) and UNIL, Lausanne, Switzerland.; Agora Cancer Research Center, Lausanne, Switzerland., Jarosch S; Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, TUM, Munich, Germany.; Boehringer Ingelheim, Biberach, Germany., Oner A; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Gregor L; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Lesch S; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Michaelides S; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Fertig L; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Briukhovetska D; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Majed L; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany., Stock S; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany.; Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany., Busch DH; Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, TUM, Munich, Germany., Buchholz VR; Institute for Medical Microbiology, Immunology and Hygiene, School of Medicine and Health, TUM, Munich, Germany., Knolle PA; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany., Zehn D; Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, TUM, Freising, Germany., Dangaj Laniti D; Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne (UNIL), Lausanne, Switzerland.; Department of Oncology, University Hospital of Lausanne (CHUV) and UNIL, Lausanne, Switzerland.; Agora Cancer Research Center, Lausanne, Switzerland., Kobold S; Division of Clinical Pharmacology, Department of Medicine IV, LMU University Hospital, Member of the German Center for Lung Research (DZL), LMU Munich, Munich, Germany.; German Cancer Consortium (DKTK), partner site Munich, a partnership between DKFZ and LMU University Hospital, Munich, Germany.; Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany., Böttcher JP; Institute of Molecular Immunology, School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany. j.boettcher@tum.de.
المصدر: Nature [Nature] 2024 May; Vol. 629 (8011), pp. 417-425. Date of Electronic Publication: 2024 Apr 24.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't; Research Support, N.I.H., Extramural
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: CD8-Positive T-Lymphocytes*/cytology , CD8-Positive T-Lymphocytes*/immunology , CD8-Positive T-Lymphocytes*/metabolism , Cell Proliferation* , Dinoprostone*/metabolism , Lymphocytes, Tumor-Infiltrating*/cytology , Lymphocytes, Tumor-Infiltrating*/immunology , Lymphocytes, Tumor-Infiltrating*/metabolism , Neoplasms*/immunology , Neoplasms*/prevention & control , Stem Cells*/cytology , Stem Cells*/immunology , Stem Cells*/metabolism , Tumor Escape*/immunology, Animals ; Female ; Humans ; Male ; Mice ; Cell Differentiation ; Cell Line, Tumor ; Disease Models, Animal ; Hepatocyte Nuclear Factor 1-alpha/metabolism ; Interleukin-2 ; Lymph Nodes/cytology ; Lymph Nodes/immunology ; Mice, Inbred C57BL ; Receptors, Prostaglandin E, EP2 Subtype/deficiency ; Receptors, Prostaglandin E, EP2 Subtype/metabolism ; Receptors, Prostaglandin E, EP4 Subtype/deficiency ; Receptors, Prostaglandin E, EP4 Subtype/metabolism ; Signal Transduction
مستخلص: Cancer-specific TCF1 + stem-like CD8 + T cells can drive protective anticancer immunity through expansion and effector cell differentiation 1-4 ; however, this response is dysfunctional in tumours. Current cancer immunotherapies 2,5-9 can promote anticancer responses through TCF1 + stem-like CD8 + T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1 + CD8 + T cell-mediated anticancer immunity. Here we demonstrate that tumour-derived prostaglandin E2 (PGE 2 ) restricts the proliferative expansion and effector differentiation of TCF1 + CD8 + T cells within tumours, which promotes cancer immune escape. PGE 2 does not affect the priming of TCF1 + CD8 + T cells in draining lymph nodes. PGE 2 acts through EP 2 and EP 4 (EP 2 /EP 4 ) receptor signalling in CD8 + T cells to limit the intratumoural generation of early and late effector T cell populations that originate from TCF1 + tumour-infiltrating CD8 + T lymphocytes (TILs). Ablation of EP 2 /EP 4 signalling in cancer-specific CD8 + T cells rescues their expansion and effector differentiation within tumours and leads to tumour elimination in multiple mouse cancer models. Mechanistically, suppression of the interleukin-2 (IL-2) signalling pathway underlies the PGE 2 -mediated inhibition of TCF1 + TIL responses. Altogether, we uncover a key mechanism that restricts the IL-2 responsiveness of TCF1 + TILs and prevents anticancer T cell responses that originate from these cells. This study identifies the PGE 2 -EP 2 /EP 4 axis as a molecular target to restore IL-2 responsiveness in anticancer TILs to achieve cancer immune control.
(© 2024. The Author(s).)
References: Jansen, C. S. et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature 576, 465–470 (2019). (PMID: 31827286710817110.1038/s41586-019-1836-5)
Siddiqui, I. et al. Intratumoral Tcf1 + PD-1 + CD8 + T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019). (PMID: 3063523710.1016/j.immuni.2018.12.021)
Prokhnevska, N. et al. CD8 + T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity 56, 107–124.e5 (2023). (PMID: 3658091810.1016/j.immuni.2022.12.002)
Zehn, D., Thimme, R., Lugli, E., de Almeida, G. P. & Oxenius, A. ‘Stem-like’ precursors are the fount to sustain persistent CD8 + T cell responses. Nat. Immunol. 23, 836–847 (2022). (PMID: 3562420910.1038/s41590-022-01219-w)
Miller, B. C. et al. Subsets of exhausted CD8 + T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 20, 326–336 (2019). (PMID: 30778252667365010.1038/s41590-019-0312-6)
Codarri Deak, L. et al. PD-1-cis IL-2R agonism yields better effectors from stem-like CD8 + T cells. Nature 610, 161–172 (2022). (PMID: 36171284953475210.1038/s41586-022-05192-0)
Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020). (PMID: 33303615888357910.1126/science.abb9847)
Liu, B. et al. Temporal single-cell tracing reveals clonal revival and expansion of precursor exhausted T cells during anti-PD-1 therapy in lung cancer. Nat. Cancer 3, 108–121 (2022). (PMID: 3512199110.1038/s43018-021-00292-8)
Kurtulus, S. et al. Checkpoint blockade immunotherapy induces dynamic changes in PD-1–CD8 + tumor-infiltrating T cells. Immunity 50, 181–194.e6 (2019). (PMID: 30635236633611310.1016/j.immuni.2018.11.014)
Gatto, F., Schulze, A. & Nielsen, J. Systematic analysis reveals that cancer mutations converge on deregulated metabolism of arachidonate and xenobiotics. Cell Rep. 16, 878–895 (2016). (PMID: 2739633210.1016/j.celrep.2016.06.038)
Wang, D. & DuBois, R. N. Eicosanoids and cancer. Nat. Rev. Cancer 10, 181–193 (2010). (PMID: 20168319289813610.1038/nrc2809)
Wang, Q., Morris, R. J., Bode, A. M. & Zhang, T. Prostaglandin pathways: opportunities for cancer prevention and therapy. Cancer Res. 82, 949–965 (2022). (PMID: 34949672893050810.1158/0008-5472.CAN-21-2297)
Finetti, F. et al. Prostaglandin E2 and cancer: insight into tumor progression and immunity. Biology 9, 434 (2020). (PMID: 33271839776029810.3390/biology9120434)
Zelenay, S. et al. Cyclooxygenase-dependent tumor growth through evasion of immunity. Cell 162, 1257–1270 (2015). (PMID: 26343581459719110.1016/j.cell.2015.08.015)
Böttcher, J. P. et al. NK cells stimulate recruitment of cDC1 into the tumor microenvironment promoting cancer immune control. Cell 172, 1022–1037.e14 (2018). (PMID: 29429633584716810.1016/j.cell.2018.01.004)
Kalinski, P. Regulation of immune responses by prostaglandin E2. J. Immunol. 188, 21–28 (2012). (PMID: 2218748310.4049/jimmunol.1101029)
Chen, J. H. et al. Prostaglandin E2 and programmed cell death 1 signaling coordinately impair CTL function and survival during chronic viral infection. Nat. Med. 21, 327–334 (2015). (PMID: 25799228450561910.1038/nm.3831)
Mosenden, R. et al. Mice with disrupted type I protein kinase A anchoring in T cells resist retrovirus-induced immunodeficiency. J. Immunol. 186, 5119–5130 (2011). (PMID: 2143022610.4049/jimmunol.1100003)
Newick, K. et al. Augmentation of CAR T-cell trafficking and antitumor efficacy by blocking protein kinase A localization. Cancer Immunol. Res. 4, 541–551 (2015). (PMID: 10.1158/2326-6066.CIR-15-0263)
Lone, A. M. & Taskén, K. Phosphoproteomics-based characterization of prostaglandin E2 signaling in T cells. Mol. Pharmacol. 99, 370–382 (2021). (PMID: 3367436310.1124/molpharm.120.000170)
Roberts, E. W. et al. Critical role for CD103 + /CD141 + dendritic cells bearing CCR7 for tumor antigen trafficking and priming of T cell immunity in melanoma. Cancer Cell 30, 324–336 (2016). (PMID: 27424807537486210.1016/j.ccell.2016.06.003)
Spranger, S., Bao, R. & Gajewski, T. F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523, 231–235 (2015). (PMID: 2597024810.1038/nature14404)
Böttcher, J. P. et al. Functional classification of memory CD8 + T cells by CX3CR1 expression. Nat Commun. 6, 8306 (2015). (PMID: 2640469810.1038/ncomms9306)
Zander, R. et al. CD4 + T cell help is required for the formation of a cytolytic CD8 + T cell subset that protects against chronic infection and cancer. Immunity 51, 1028–1042.e4 (2019). (PMID: 31810883692932210.1016/j.immuni.2019.10.009)
Aandahl, E. M. et al. CD7 is a differentiation marker that identifies multiple CD8 T cell effector subsets. J. Immunol. 170, 2349–2355 (2003). (PMID: 1259425710.4049/jimmunol.170.5.2349)
Alfei, F. et al. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature 571, 265–269 (2019). (PMID: 3120760510.1038/s41586-019-1326-9)
Scott, A. C. et al. TOX is a critical regulator of tumour-specific T cell differentiation. Nature 571, 270–274 (2019). (PMID: 31207604769899210.1038/s41586-019-1324-y)
Tsui, C. et al. MYB orchestrates T cell exhaustion and response to checkpoint inhibition. Nature 609, 354–360 (2022). (PMID: 35978192945229910.1038/s41586-022-05105-1)
Yost, K. E. et al. Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat. Med. 25, 1251–1259 (2019). (PMID: 31359002668925510.1038/s41591-019-0522-3)
Lucca, L. E. et al. Circulating clonally expanded T cells reflect functions of tumor-infiltrating T cells. J. Exp. Med. 218, e20200921 (2021). (PMID: 33651881793399110.1084/jem.20200921)
Mandala, S. et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296, 346–349 (2002). (PMID: 1192349510.1126/science.1070238)
Ross, S. H. & Cantrell, D. A. Signaling and function of interleukin-2 in T lymphocytes. Annu. Rev. Immunol. 36, 411–433 (2018). (PMID: 29677473647268410.1146/annurev-immunol-042617-053352)
Hashimoto, M. et al. PD-1 combination therapy with IL-2 modifies CD8 + T cell exhaustion program. Nature 610, 173–181 (2022). (PMID: 36171288979389010.1038/s41586-022-05257-0)
Corria-Osorio, J. et al. Orthogonal cytokine engineering enables novel synthetic effector states escaping canonical exhaustion in tumor-rejecting CD8 + T cells. Nat. Immunol. 24, 869–883 (2023). (PMID: 370811501015425010.1038/s41590-023-01477-2)
Di Pilato, M. et al. CXCR6 positions cytotoxic T cells to receive critical survival signals in the tumor microenvironment. Cell 184, 4512–4530.e22 (2021). (PMID: 34343496871945110.1016/j.cell.2021.07.015)
Danilo, M., Chennupati, V., Silva, J. G., Siegert, S. & Held, W. Suppression of Tcf1 by inflammatory cytokines facilitates effector CD8 T cell differentiation. Cell Rep. 22, 2107–2117 (2018). (PMID: 2946673710.1016/j.celrep.2018.01.072)
Morotti, M. et al. PGE 2 inhibits TIL expansion by disrupting IL-2 signalling and mitochondrial function. Nature https://doi.org/10.1038/s41586-024-07352-w (2024).
Bayerl, F. et al. Tumor-derived prostaglandin E2 programs cDC1 dysfunction to impair intratumoral orchestration of anti-cancer T cell responses. Immunity 56, 1341–1358.e11 (2023). (PMID: 3731553610.1016/j.immuni.2023.05.011)
Meiser, P. et al. A distinct stimulatory cDC1 subpopulation amplifies CD8 + T cell responses in tumors for protective anti-cancer immunity. Cancer Cell 41, 1498–1515.e10 (2023). (PMID: 3745127110.1016/j.ccell.2023.06.008)
Mo, F. et al. An engineered IL-2 partial agonist promotes CD8 + T cell stemness. Nature 597, 544–548 (2021). (PMID: 34526724917291710.1038/s41586-021-03861-0)
Tichet, M. et al. Bispecific PD1-IL2v and anti-PD-L1 break tumor immunity resistance by enhancing stem-like tumor-reactive CD8 + T cells and reprogramming macrophages. Immunity 56, 162–179.e6 (2023). (PMID: 3663091410.1016/j.immuni.2022.12.006)
Leonard, W. J., Lin, J.-X. & O’Shea, J. J. The γc family of cytokines: basic biology to therapeutic ramifications. Immunity 50, 832–850 (2019). (PMID: 3099550210.1016/j.immuni.2019.03.028)
Biringer, R. G. A review of prostanoid receptors: expression, characterization, regulation, and mechanism of action. J. Cell Commun. Signal. 15, 155–184 (2021). (PMID: 3297027610.1007/s12079-020-00585-0)
Wübbenhorst, D. et al. Tetracycline-regulated bone morphogenetic protein 2 gene expression in lentivirally transduced primary rabbit chondrocytes for treatment of cartilage defects. Arthritis Rheum. 62, 2037–2046 (2010). (PMID: 2030986910.1002/art.27461)
Di Pilato, M. et al. Targeting the CBM complex causes T reg cells to prime tumours for immune checkpoint therapy. Nature 570, 112–116 (2019). (PMID: 31092922665639110.1038/s41586-019-1215-2)
Oh, S. A., Seki, A. & Rutz, S. Ribonucleoprotein transfection for CRISPR/Cas9-mediated gene knockout in primary T cells. Curr. Protoc. Immunol. 124, e69 (2019). (PMID: 3033461710.1002/cpim.69)
Labun, K. et al. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 47, W171–W174 (2019). (PMID: 31106371660242610.1093/nar/gkz365)
Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR–Cas9. Nat. Biotechnol. 34, 184–191 (2016). (PMID: 26780180474412510.1038/nbt.3437)
Zheng, G. X. Y. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 8, 14049 (2017). (PMID: 28091601524181810.1038/ncomms14049)
Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587.e29 (2021). (PMID: 34062119823849910.1016/j.cell.2021.04.048)
Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019). (PMID: 31870423692718110.1186/s13059-019-1874-1)
Ahlmann-Eltze, C. & Huber, W. glmGamPoi: fitting Gamma–Poisson generalized linear models on single cell count data. Bioinformatics 36, 5701–5702 (2021). (PMID: 3329560410.1093/bioinformatics/btaa1009)
Aran, D. et al. Reference-based analysis of lung single-cell sequencing reveals a transitional profibrotic macrophage. Nat. Immunol. 20, 163–172 (2019). (PMID: 30643263634074410.1038/s41590-018-0276-y)
Gattinoni, L. et al. A human memory T cell subset with stem cell-like properties. Nat. Med. 17, 1290–1297 (2011). (PMID: 21926977319222910.1038/nm.2446)
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). (PMID: 25516281430204910.1186/s13059-014-0550-8)
Kaech, S. M., Hemby, S., Kersh, E. & Ahmed, R. Molecular and functional profiling of memory CD8 T cell differentiation. Cell 111, 837–851 (2002). (PMID: 1252681010.1016/S0092-8674(02)01139-X)
Street, K. et al. Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics. BMC Genomics 19, 477 (2018). (PMID: 29914354600707810.1186/s12864-018-4772-0)
Borcherding, N., Bormann, N. L. & Kraus, G. scRepertoire: an R-based toolkit for single-cell immune receptor analysis. F1000Research 9, 47 (2020). (PMID: 32789006740069310.12688/f1000research.22139.1)
Badia-I-Mompel, P. et al. decoupleR: ensemble of computational methods to infer biological activities from omics data. Bioinform. Adv. 2, vbac016 (2022). (PMID: 36699385971065610.1093/bioadv/vbac016)
Holland, C. H., Szalai, B. & Saez-Rodriguez, J. Transfer of regulatory knowledge from human to mouse for functional genomics analysis. Biochim. Biophys. Acta Gene Regul. Mech. 1863, 194431 (2020). (PMID: 3152546010.1016/j.bbagrm.2019.194431)
Pedersen, T. tidygraph: A tidy API for graph manipulation. GitHub https://github.com/thomasp85/tidygraph (2023).
Csárdi, G. and Nepusz, T. The igraph software package for complex network research. Gigascience https://doi.org/10.1093/gigascience/giab008 (2006).
Ramírez, F. et al. deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res. 44, W160–W165 (2016). (PMID: 27079975498787610.1093/nar/gkw257)
Danecek, P. et al. Twelve years of SAMtools and BCFtools. GigaScience 10, giab008 (2021). (PMID: 33590861793181910.1093/gigascience/giab008)
Ou, J. & Zhu, L. J. trackViewer: a Bioconductor package for interactive and integrative visualization of multi-omics data. Nat. Methods 16, 453–454 (2019). (PMID: 3113375710.1038/s41592-019-0430-y)
المشرفين على المادة: K7Q1JQR04M (Dinoprostone)
0 (Hepatocyte Nuclear Factor 1-alpha)
0 (Hnf1a protein, mouse)
0 (Interleukin-2)
0 (Receptors, Prostaglandin E, EP2 Subtype)
0 (Receptors, Prostaglandin E, EP4 Subtype)
تواريخ الأحداث: Date Created: 20240424 Date Completed: 20240509 Latest Revision: 20240511
رمز التحديث: 20240512
مُعرف محوري في PubMed: PMC11078747
DOI: 10.1038/s41586-024-07254-x
PMID: 38658748
قاعدة البيانات: MEDLINE