دورية أكاديمية

The effect of feeding on different hosts on the egg proteins in Haemaphysalis qinghaiensis tick.

التفاصيل البيبلوغرافية
العنوان: The effect of feeding on different hosts on the egg proteins in Haemaphysalis qinghaiensis tick.
المؤلفون: Li Y; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China., Cheng R; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China., Liu XY; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China., Mihaljica D; Group for Medical Entomology, Centre of Excellence for Food- and Vector-Borne Zoonoses, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia. darko.mihaljica@imi.bg.ac.rs., Cheng TY; Research Center for Parasites & Vectors, College of Veterinary Medicine, Hunan Agricultural University, Hunan Province 410128, Changsha, China. hn5368@163.com.
المصدر: Parasitology research [Parasitol Res] 2024 Apr 26; Vol. 123 (4), pp. 197. Date of Electronic Publication: 2024 Apr 26.
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Springer International Country of Publication: Germany NLM ID: 8703571 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-1955 (Electronic) Linking ISSN: 09320113 NLM ISO Abbreviation: Parasitol Res Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin : Springer International, c1987-
مواضيع طبية MeSH: Ixodidae*/physiology , Ixodidae*/metabolism , Ixodidae*/growth & development , Egg Proteins*/metabolism, Animals ; Female ; Cattle ; Sheep ; Proteome ; Ovum/chemistry ; Tandem Mass Spectrometry ; Chromatography, Liquid ; Tick Infestations/veterinary ; Tick Infestations/parasitology ; Feeding Behavior
مستخلص: The majority of ixodid ticks display host-specificity to varying extents. Feeding on different hosts affects their development and reproduction. Consequences can be analyzed at the level of the egg, as it is the initial stage of tick development. Tick egg proteins are abundant and diverse, providing nutrients for embryonic development. However, studies on tick egg profiles are scarce. In this study, we aimed to analyze whether feeding Haemaphysalis qinghaiensis ticks on the yaks (Bos grunniens) and domestic sheep (Ovis aries) has an impact on the variety and variability of the egg proteome. Detached engorged females were used to lay eggs, which were then collected, dewaxed, and subjected to protein extraction. The extracted egg proteins were enzymatically digested using Filter-Aided Sample Preparation (FASP), and the unique peptides were separated and detected by Liquid Chromatography-tandem Mass Spectrometry (LC-MS/MS). The MS data were searched against the previously constructed whole tick transcriptome library of H. qinghaiensis, and the UniProt database for the identification of tick-derived egg proteins. The analysis revealed 49 and 53 high-confidence proteins identified in eggs collected from B. grunniens (EggBg) and O. aries (EggOa), respectively. Of these, 46 high-confidence proteins were common to both egg types, while three were unique to EggBg and seven to EggOa. All the identified proteins mainly belonged to enzymes, enzyme inhibitors, transporters, and proteins with unknown functions. The differential abundance analysis showed that nine proteins were significantly more present in EggBg, while six were significantly more present in EggOa. Overall, enzymes were the most diverse group, while vitellogenin (Vg) was the most abundant. Blood meal uptake on different hosts has a certain effect on the egg proteome composition and the abundance of some proteins, but it may also lead to compensation of protein roles.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Andreotti R, Malavazi-Piza KC, Sasaki SD, Torquato RJ, Gomes A, Tanaka AS (2001) Serine proteinase inhibitors from eggs and larvae of tick Boophilus microplus: purification and biochemical characterization. J Protein Chem 20(5):337–343. https://doi.org/10.1023/a:1012242817869. (PMID: 10.1023/a:101224281786911732684)
Arrieta MC, Leskiw BK, Kaufman WR (2006) Antimicrobial activity in the egg wax of the African cattle tick Amblyomma hebraeum (Acari: Ixodidae). Exp Appl Acarol 39(3):297–313. https://doi.org/10.1007/s10493-006-9014-5. (PMID: 10.1007/s10493-006-9014-516874555)
Beys-da-Silva WO et al (2020) Updating the application of Metarhizium anisopliae to control cattle tick Rhipicephalus microplus (Acari: Ixodidae). Exp Parasitol 208:107812. https://doi.org/10.1016/j.exppara.2019.107812. (PMID: 10.1016/j.exppara.2019.10781231809704)
Blisnick AA, Foulon T, Bonnet SI (2017) Serine Protease Inhibitors in Ticks: An Overview of Their Role in Tick Biology and Tick-Borne Pathogen Transmission. Front Cell Infect Microbiol 7:199. https://doi.org/10.3389/fcimb.2017.00199. (PMID: 10.3389/fcimb.2017.00199285890995438962)
Boctor FN, Kamel MY (1976) Purification and characterization of two lipovitellins from eggs of the tick. Dermacentor Andersoni Insect Biochemistry 6(3):233–240. https://doi.org/10.1016/0020-1790(76)90088-3. (PMID: 10.1016/0020-1790(76)90088-3)
Boudida Y et al (2016) Serine Protease Inhibitors as Good Predictors of Meat Tenderness: Which Are They and What Are Their Functions? Crit Rev Food Sci Nutr 56(6):957–972. https://doi.org/10.1080/10408398.2012.741630. (PMID: 10.1080/10408398.2012.74163025085261)
Cecerska-Heryć E, Surowska O, Heryć R, Serwin N, Napiontek-Balińska S, Dołęgowska B (2021) Are antioxidant enzymes essential markers in the diagnosis and monitoring of cancer patients - A review. Clin Biochem 93:1–8. https://doi.org/10.1016/j.clinbiochem.2021.03.008. (PMID: 10.1016/j.clinbiochem.2021.03.00833773993)
Cheng R, Li D, Duan DY, Parry R, Cheng TY, Liu L (2023) Egg protein profile and dynamics during embryogenesis in Haemaphysalis flava ticks. Ticks Tick Borne Dis 14(4):102180. https://doi.org/10.1016/j.ttbdis.2023.102180. (PMID: 10.1016/j.ttbdis.2023.10218037011496)
Chmelar J et al (2011) A tick salivary protein targets cathepsin G and chymase and inhibits host inflammation and platelet aggregation. Blood 117(2):736–744. https://doi.org/10.1182/blood-2010-06-293241. (PMID: 10.1182/blood-2010-06-293241209404213031492)
Chmelař J, Kotál J, Langhansová H, Kotsyfakis M (2017) Protease Inhibitors in Tick Saliva: The Role of Serpins and Cystatins in Tick-host-Pathogen Interaction. Front Cell Infect Microbiol 7:216. https://doi.org/10.3389/fcimb.2017.00216. (PMID: 10.3389/fcimb.2017.00216286119515447049)
Coons LB, Lamoreaux WJ, Rosell-Davis R, Tarnowski BI (1989) Onset of vitellogenin production and vitellogenesis, and their relationship to changes in the midgut epithelium and oocytes in the tick Dermacentor variabilis. Exp Appl Acarol 6(4):291–305. https://doi.org/10.1007/bf01193301. (PMID: 10.1007/bf011933012501073)
Corral-Rodríguez MA, Macedo-Ribeiro S, Barbosa Pereira PJ, Fuentes-Prior P (2009) Tick-derived Kunitz-type inhibitors as antihemostatic factors. Insect Biochem Mol Biol 39(9):579–595. https://doi.org/10.1016/j.ibmb.2009.07.003. (PMID: 10.1016/j.ibmb.2009.07.00319631744)
Dai SX, Zhang AD, Huang JF (2012) Evolution, expansion and expression of the Kunitz/BPTI gene family associated with long-term blood feeding in Ixodes Scapularis. BMC Evol Biol 12:4. https://doi.org/10.1186/1471-2148-12-4. (PMID: 10.1186/1471-2148-12-4222441873273431)
Fagotto F (1990) Yolk degradation in tick eggs: II. Evidence that cathepsin L‐like proteinase is stored as a latent, acid‐activable proenzyme. Archives of insect biochemistry and physiology 14(4):237–252. https://doi.org/10.1002/arch.940140404.
Finley D, Bartel B, Varshavsky A (1989) The tails of ubiquitin precursors are ribosomal proteins whose fusion to ubiquitin facilitates ribosome biogenesis. Nature 338(6214):394–401. https://doi.org/10.1038/338394a0. (PMID: 10.1038/338394a02538753)
Galay RL et al (2013) Multiple ferritins are vital to successful blood feeding and reproduction of the hard tick Haemaphysalis longicornis. J Exp Biol 216(Pt 10):1905–1915. https://doi.org/10.1242/jeb.081240. (PMID: 10.1242/jeb.08124023393286)
Galay RL et al (2014) Two kinds of ferritin protect ixodid ticks from iron overload and consequent oxidative stress. PLoS ONE 9(3):e90661. https://doi.org/10.1371/journal.pone.0090661. (PMID: 10.1371/journal.pone.0090661245948323940913)
Gao J et al (2008) Cloning and characterization of a cDNA clone encoding calreticulin from Haemaphysalis qinghaiensis (Acari: Ixodidae). Parasitol Res 102(4):737–746. https://doi.org/10.1007/s00436-007-0826-y. (PMID: 10.1007/s00436-007-0826-y18087723)
Giorgi F, Bradley J, Nordin J (1999) Differential vitellin polypeptide processing in insect embryos. Micron 30(6):579–596. https://doi.org/10.1016/s0968-4328(99)00054-2. (PMID: 10.1016/s0968-4328(99)00054-2)
Guan R, Hu S, Li X, An S, Miao X, Li H (2022) A TIL-Type Serine Protease Inhibitor Involved in Humoral Immune Response of Asian Corn Borer Ostrinia furnaculis. Front Immunol 13:900129. https://doi.org/10.3389/fimmu.2022.900129. (PMID: 10.3389/fimmu.2022.900129356516139149172)
Hajdusek O et al (2009) Knockdown of proteins involved in iron metabolism limits tick reproduction and development. Proc Natl Acad Sci U S A 106(4):1033–1038. https://doi.org/10.1073/pnas.0807961106. (PMID: 10.1073/pnas.0807961106191718992633537)
Hatta T et al (2010) Leucine aminopeptidase, HlLAP, from the ixodid tick Haemaphysalis longicornis, plays vital roles in the development of oocytes. Parasitol Int 59(2):286–289. https://doi.org/10.1016/j.parint.2010.03.001. (PMID: 10.1016/j.parint.2010.03.00120230906)
Huntington JA (2011) Serpin structure, function and dysfunction. J Thromb Haemost 9(Suppl 1):26–34. https://doi.org/10.1111/j.1538-7836.2011.04360.x. (PMID: 10.1111/j.1538-7836.2011.04360.x21781239)
Jennissen HP (1995) Ubiquitin and the enigma of intracellular protein degradation. Eur J Biochem 231(1):1–30. (PMID: 10.1111/j.1432-1033.1995.tb20665.x7628459)
Kelly-Robinson GA, et al. (2021) The Serpin Superfamily and Their Role in the Regulation and Dysfunction of Serine Protease Activity in COPD and Other Chronic Lung Diseases. Int J Mol Sci 22(12). https://doi.org/10.3390/ijms22126351.
Kluck GEG, Silva Cardoso L, De Cicco NNT, Lima MS, Folly E, Atella GC (2018) A new lipid carrier protein in the cattle tick Rhipicephalus microplus. Ticks Tick Borne Dis 9(4):850–859. https://doi.org/10.1016/j.ttbdis.2018.03.010. (PMID: 10.1016/j.ttbdis.2018.03.01029567146)
Kuniyori M et al (2022) Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 12:908142. https://doi.org/10.3389/fcimb.2022.908142. (PMID: 10.3389/fcimb.2022.908142358003839253295)
Kusakisako K, Morokuma H, Talactac MR, Hernandez EP, Yoshii K, Tanaka T (2020) A Peroxiredoxin From the Haemaphysalis longicornis Tick Affects Langat Virus Replication in a Hamster Cell Line. Front Cell Infect Microbiol 10:7. https://doi.org/10.3389/fcimb.2020.00007. (PMID: 10.3389/fcimb.2020.00007320477256997474)
Li Y et al (2009) Experimental transmission of Theileria uilenbergi infective for small ruminants by Haemaphysalis longicornis and Haemaphysalis qinghaiensis. Parasitol Res 104(5):1227–1231. https://doi.org/10.1007/s00436-009-1347-7. (PMID: 10.1007/s00436-009-1347-719198881)
Logullo C et al (1998) Isolation of an aspartic proteinase precursor from the egg of a hard tick. Boophilus Microplus Parasitology 116(Pt 6):525–532. https://doi.org/10.1017/s0031182098002698. (PMID: 10.1017/s00311820980026989651935)
Luo J, Yin H (1997) Theileriosis of sheep and goats in China. Trop Anim Health Prod 29(4 Suppl):8s–10s. https://doi.org/10.1007/bf02632907. (PMID: 10.1007/bf026329079512737)
Ma M et al (2016) Biological Parameters of Rhipicephalus (Boophilus) microplus (Acari: Ixodidae) Fed on Rabbits, Sheep, and Cattle. Korean J Parasitol 54(3):301–305. https://doi.org/10.3347/kjp.2016.54.3.301. (PMID: 10.3347/kjp.2016.54.3.301274170844977778)
Marcos I, Ruiz A, Blaschak CJ, Borrego S, Cutting GR, Antinolo G (2000) Mutation analysis of GABRR1 and GABRR2 in autosomal recessive retinitis pigmentosa. J Med Genet 37(6):E5. https://doi.org/10.1136/jmg.37.6.e5. (PMID: 10.1136/jmg.37.6.e5108512581734609)
Motobu M et al (2007) Molecular characterization of a blood-induced serine carboxypeptidase from the ixodid tick Haemaphysalis longicornis. Febs j 274(13):3299–3312. https://doi.org/10.1111/j.1742-4658.2007.05852.x. (PMID: 10.1111/j.1742-4658.2007.05852.x17542992)
Niu Q et al (2022) Molecular Characterization and Gene Expression Analysis of Aquaporin in Haemaphysalis qinghaiensis. Front Physiol 13:811628. https://doi.org/10.3389/fphys.2022.811628. (PMID: 10.3389/fphys.2022.811628352506168891643)
Parola P (2004) Tick-borne rickettsial diseases: emerging risks in Europe. Comp Immunol Microbiol Infect Dis 27(5):297–304. https://doi.org/10.1016/j.cimid.2004.03.006. (PMID: 10.1016/j.cimid.2004.03.00615225980)
Pohl PC et al (2008) An extraovarian aspartic protease accumulated in tick oocytes with vitellin-degradation activity. Comp Biochem Physiol B Biochem Mol Biol 151(4):392–399. https://doi.org/10.1016/j.cbpb.2008.08.008. (PMID: 10.1016/j.cbpb.2008.08.00818782630)
Qiu ZX, Li Y, Li MM, Wang WY, Zhang TT, Liu JZ (2020) Investigation of three enzymes and their roles in the embryonic development of parthenogenetic Haemaphysalis longicornis. Parasit Vectors 13(1):46. https://doi.org/10.1186/s13071-020-3916-7. (PMID: 10.1186/s13071-020-3916-7320052846995198)
Rosell R, Coons LB (1991) Determination of vitellogenin titer in the hemolymph of Dermacentor variabilis (Acarina: Ixodidae) using an indirect enzyme-linked immunosorbent assay. J Med Entomol 28(1):41–44. https://doi.org/10.1093/jmedent/28.1.41. (PMID: 10.1093/jmedent/28.1.412033618)
Schechter I, Berger A (1967) On the size of the active site in proteases. I Papain Biochem Biophys Res Commun 27(2):157–162. https://doi.org/10.1016/s0006-291x(67)80055-x. (PMID: 10.1016/s0006-291x(67)80055-x6035483)
Seixas A et al (2003) A Boophilus microplus vitellin-degrading cysteine endopeptidase. Parasitology 126(Pt 2):155–163. https://doi.org/10.1017/s0031182002002731. (PMID: 10.1017/s003118200200273112636353)
Sonenshine DE, Roe RM (2014) Overview: Ticks, People and Animals. In: Sonenhine DE, Roe RM (eds) Biology of Ticks, vol 1, 2 edn. Oxford University Press, Oxford, pp 13–14.
Sottrup-Jensen L (1989) Alpha-macroglobulins: structure, shape, and mechanism of proteinase complex formation. J Biol Chem 264(20):11539–11542. (PMID: 10.1016/S0021-9258(18)80094-12473064)
Sun L, Wüthrich RP (1999) Molecular identification of a murine ubiquitin/60S ribosomal fusion protein and expression study in mouse kidney. Biochem Genet 37(3–4):139–147. https://doi.org/10.1023/a:1018778320235. (PMID: 10.1023/a:101877832023510495888)
Teng KF, Cui YQ (1984) Biological observations and descriptions of immature stages of Haemaphysalis qinghaiensis. Acta Entomologica Sinica 27(3):330–333. https://doi.org/10.16380/j.kcxb.1984.03.014.
Tufail M, Takeda M (2008) Molecular characteristics of insect vitellogenins. J Insect Physiol 54(12):1447–1458. https://doi.org/10.1016/j.jinsphys.2008.08.007. (PMID: 10.1016/j.jinsphys.2008.08.00718789336)
Valdés JJ, Moal IH (2014) Prediction of Kunitz ion channel effectors and protease inhibitors from the Ixodes ricinus sialome. Ticks Tick Borne Dis 5(6):947–950. https://doi.org/10.1016/j.ttbdis.2014.07.016. (PMID: 10.1016/j.ttbdis.2014.07.01625108785)
van Gent D, Sharp P, Morgan K, Kalsheker N (2003) Serpins: structure, function and molecular evolution. Int J Biochem Cell Biol 35(11):1536–1547. https://doi.org/10.1016/s1357-2725(03)00134-1. (PMID: 10.1016/s1357-2725(03)00134-112824063)
Waxman L, Connolly TM (1993) Isolation of an inhibitor selective for collagen-stimulated platelet aggregation from the soft tick Ornithodoros moubata. J Biol Chem 268(8):5445–5449. https://doi.org/10.1016/s0021-9258(18)53341-x. (PMID: 10.1016/s0021-9258(18)53341-x8449906)
Wiśniewski JR, Zougman A, Nagaraj N, Mann M (2009) Universal sample preparation method for proteome analysis. Nat Methods 6(5):359–362. https://doi.org/10.1038/nmeth.1322. (PMID: 10.1038/nmeth.132219377485)
Xu Z et al (2020) A serpin from the tick Rhipicephalus haemaphysaloides: Involvement in vitellogenesis. Vet Parasitol 279:109064. https://doi.org/10.1016/j.vetpar.2020.109064. (PMID: 10.1016/j.vetpar.2020.10906432143012)
Yin H, Schnittger L, Luo J, Seitzer U, Ahmed JS (2007) Ovine theileriosis in China: a new look at an old story. Parasitol Res 101(Suppl 2):S191–S195. https://doi.org/10.1007/s00436-007-0689-2. (PMID: 10.1007/s00436-007-0689-217823827)
Yuan GL, et al. (2002) Observations on the life history of Haemaphysalis qinghaiensis. Chinese Journal of Veterinary Science and Technology 32(4):10–11. https://doi.org/10.16656/j.issn.1673-4696.2002.04.003.
Zhao Y, Liu L, Liu JB, Wu CY, Duan DY, Cheng TY (2022) Cloning, expression, and function of ferritins in the tick Haemaphysalis flava. Ticks Tick Borne Dis 13(2):101892. https://doi.org/10.1016/j.ttbdis.2021.101892. (PMID: 10.1016/j.ttbdis.2021.10189234942560)
معلومات مُعتمدة: No. 31372431 the National Natural Science Foundation of China; 2023JJ30287 the Natural Science Foundation of Hunan
فهرسة مساهمة: Keywords: Haemaphysalis qinghaiensis; Compensation of protein roles; Egg proteins; Host
المشرفين على المادة: 0 (Egg Proteins)
0 (Proteome)
تواريخ الأحداث: Date Created: 20240426 Date Completed: 20240426 Latest Revision: 20240510
رمز التحديث: 20240510
DOI: 10.1007/s00436-024-08211-3
PMID: 38668762
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-1955
DOI:10.1007/s00436-024-08211-3