دورية أكاديمية

Neutron Activation Analysis Based on AB-BNCT Treatment Room.

التفاصيل البيبلوغرافية
العنوان: Neutron Activation Analysis Based on AB-BNCT Treatment Room.
المؤلفون: Cai Y; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China., Gu S; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China., Wang N; Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China., Cui F; Department of Radiation Oncology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou 253000, China., Liu W; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China., Li T; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China., Wu Z; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China., Gou C; Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.
المصدر: Health physics [Health Phys] 2024 Sep 01; Vol. 127 (3), pp. 386-391. Date of Electronic Publication: 2024 Apr 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Lippincott Williams & Wilkins Country of Publication: United States NLM ID: 2985093R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1538-5159 (Electronic) Linking ISSN: 00179078 NLM ISO Abbreviation: Health Phys Subsets: MEDLINE
أسماء مطبوعة: Publication: <2003->: Hagerstown, MD : Lippincott Williams & Wilkins
Original Publication: New York.
مواضيع طبية MeSH: Boron Neutron Capture Therapy*/methods , Monte Carlo Method*, Humans ; Neutron Activation Analysis/methods ; Radiation Dosage ; Neutrons ; Particle Accelerators ; Occupational Exposure/analysis ; Radiotherapy Dosage
مستخلص: Abstract: Boron neutron capture therapy (BNCT) is an ideal binary targeted radiotherapy for treating refractory tumors. An accelerator-based BNCT (AB-BNCT) neutron source has attracted more and more attention due to its advantages such as higher neutron yield in the keV energy region, less gamma radiation, and higher safety. In addition to 10 B, neutrons also react with other elements in the treatment room during BNCT to produce many activation products. Due to the long half-life of some activation products, there will be residual radiation after the end of treatment and the shutdown of the accelerator, which has adverse effects on radiation workers. Therefore, the ambient dose equivalent rate in the treatment room needs to be evaluated. The AB-BNCT neutron source model proposed by Li is studied in this paper. Based on the Monte Carlo method, the Geant4 platform was used to simulate the dose induced by radionuclides near the Beam Shaping Assembly (BSA) of the source. It is concluded that the concrete wall contributed the most to the radiation dose. The dose rate of 2.45 μSv h -1 after 13 min of shutdown meets the dose rate limit of 2.5 μSv h -1 , at which point it is safe for workers to enter the treatment room area.
(Copyright © 2024 Health Physics Society.)
References: Allen DA, Beynon TD. What is the best proton energy for accelerator-based BNCT using the Li-7(p,n)Be-7 reaction? Med Phys 27:1113–1118; 2000.
Amako K. Present status of Geant4. Geant4—a simulation toolkit. Nucl Instrum Meth Phys Res A 453:455–460; 2000.
Geant4. For Application Developers Release 11.1 [online[rsqab]. 2021. Available at https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/html/index.html . Accessed 1 October 2023.
Han YF. Development of fast neutron shielding suit with human exoskeleton robot. Lanzhou, ID: Lanzhou University; 2021. Thesis.
Hirose K, Konno A, Hiratsuka J, Yoshimoto S, Kato T, Ono K, Otsuki N, Hatazawa J, Tanaka H, Takayama K, Wada H, Suzuki M, Sato M, Yamaguchi H, Seto I, Ueki Y, Iketani S, Imai S, Nakamura T, Ono T, Endo H, Azami Y, Kikuchi Y, Murakami M, Takai Y. Boron neutron capture therapy using cyclotron-based epithermal neutron source and borofalan ( 10 B) for recurrent or locally advanced head and neck cancer (JHN002): an open-label phase II trial. Radiother Oncol 155:182–187; 2020.
International Atomic Energy Agency. Current status of neutron capture therapy [onliner]. 2001. Available at https://www-pub.iaea.org/MTCD/Publications/PDF/te&#95;1223&#95;prn.pdf . Accessed 1 January 2024.
International Commission on Radiological Protection. The 2007 recommendations of the International Commission on Radiological Protection. Oxford: ICRP; ICRP Publication 103, Ann. ICRP 37 (2-4); 2007.
Kanygin VV, Kichigin AI, Krivoshapkin AL, Taskaev SYu. Prospectives of boron-neutron capture therapy of malignant brain tumours. Tomsk, Proceedings of the International Conference on Physics of Cancer: Interdisciplinary Problems and Clinical Applications 1882:020030; 2017.
Koning AJ, Hilaire S, Duijvestijn MC. TALYS-1.0. EDP Sci 58:211–214; 2007.
Lee E, Lee CW, Cho G. Radiation safety analysis for the A-BNCT facility in Korea. Appl Radiat Isot 142:92–103; 2018.
Li GR. Monte Carlo optimization and design of beam shaping assembly for multi-terminal BNCT facility based on accelerator. Lanzhou, ID: University of Chinese Academy of Sciences; 2021. Thesis.
Li HP, Su HQ, Chen YQ, Kong GQ, Wang FY, Wang S, Lu YR. Beam dynamic design and study of a LINAC with variable output energy for an AB-BNCT facility. JINST 18:P07032; 2023.
Locher GL. Biological effects and therapeutic possibilities of neutrons. Am J Roentgenol Radium Ther 36:1–13; 1936.
Magni C, Ferrarini M, Postuma I, Protti N, Fatemi S, Gong C, Anselmi TU, Vercesi V, Battistoni G, Bortolussi S. Neutron activation and dosimetry studies for a clinical facility of Boron Neutron Capture Therapy. Il Nuovo Cimento C, Colloq and Communicat in Phys 44(4-5):135; 2021.
Malouff TD, Seneviratne DS, Ebner DK, Ebner DK, Stross WC, Waddle MR, Trifiletti DM, Krishnan S. Boron neutron capture therapy: a review of clinical applications. Front Oncol 11:601820; 2021.
Miyatake SI, Wanibuchi M, Hu N, Ono K. Boron neutron capture therapy for malignant brain tumors. J Neurooncol 149:1–11; 2020.
National Health Commission of the People’s Republic of China. Requirements for radiological protection in radiotherapy [online]. 2021. Available at http://www.nhc.gov.cn/wjw/pcrb/202101/f52880d6146d41b38af89645f0ca2aa0/files/c955263df5a84b449bf0c68e8d8cc149.pdf . Accessed 1 January 2024.
Plompen AJM, Cabellos O, De Saint Jean C, Fleming M, Algora A, Angelone M, Archier P, Bauge E, Bersillon O, Blokhin A, Cantargi F, Chebboubi A, Diez C, Duarte H, Dupont E, Dyrda J, Erasmus B, Fiorito L, Fischer U, Flammini D, Foligno D, Gilbert MR, Granada JR, Haeck W, Hambsch F-J, Helgesson P, Hilaire S, Hill I, Hursin M, Ichou R, Jacqmin R, Jansky B, Jouanne C, Kellett MA, Kim DH, Kim HI, Kodeli I, Koning AJ, Konobeyev AYu, Kopecky S, Kos B, Krása A, Leal LC, Leclaire N, Leconte P, Lee YO, Leeb H, Litaize O, Majerle M, I Márquez Damián J, Michel-Sendis F, Mills RW, Morillon B, Noguère G, Pecchia M, Pelloni S, Pereslavtsev P, Perry RJ, Rochman D, Röhrmoser A, Romain P, Romojaro P, Roubtsov D, Sauvan P, Schillebeeckx P, Schmidt KH, Serot O, Simakov S, Sirakov I, Sjöstrand H, Stankovskiy A, Sublet JC, Tamagno P, Trkov A, van der Marck S, Álvarez-Velarde F, Villari R, Ware TC, Yokoyama K, Žerovnik G. The joint evaluated fission and fusion nuclear data library, JEFF-3.3. Eur Phys J A 56(7):181; 2020.
Pouryavi M, Farhad Masoudi S, Rahmani F. Radiation shielding design of BNCT treatment room for D-T neutron source. Appl Radiat Isot 99:90–96; 2015.
Qiao ZP, Ma BL, Bo R, Jiang QX, Wang S. Beam shaping assembly design of Li(p,n) neutron source with a rotating target for boron neutron capture therapy. Nucl Instrum Meth A 1052:167248l; 2023.
Rasouli FS, Masoudi SF. Design and optimization of a beam shaping assembly for BNCT based on D–T neutron generator and dose evaluation using a simulated head phantom. Appl Radiat Isot 70:2755; 2012.
Takai S, Wanibuchi M, Kawabata S, Takeuchi K, Sakurai Y, Suzuki M, Ono K, Miyatake SI. Reactor-based boron neutron capture therapy for 44 cases of recurrent and refractory high-grade meningiomas with long-term follow-up. Neuro-Oncolog 24:90–98; 2022.
Vohradsky J, Tran LT, Guatelli S, Chartier L, Vandevoorde C, Alexander de Kock E, Nieto-Camero J, Bolst D, Peracchi S, Höglund C, B Rosenfeld A. Response of SOI microdosimeter in fast neutron beams: experiment and Monte Carlo simulations. Phys Medica 90:176–187; 2021.
Xie YP, Sun QY, Hu Y, Li JL, Li XB, Jiang QX, Wang J, Wang S. Effect of magnetron sputtering power on structure and properties of Ta films on Cu substrate of neutron production target for accelerator-based boron neutron capture therapy (AB-BNCT). Vacuum 219:112678; 2024.
Xu J, Wang JJ, Wei QC. Boron neutron capture therapy in clinical application: progress and prospect. Chin Sci Bull 67:1479–1489; 2022.
Yong Z, Song Z, Zhou Y, Liu T, Zhang Z, Zhao Y, Chen Y, Jin C, Chen X, Lu J, Han R, Li P, Sun X, Wang G, Shi G, Zhu S. Boron neutron capture therapy for malignant melanoma: first clinical case report in China. Chin J Cancer Res 28:634–40; 2016.
تواريخ الأحداث: Date Created: 20240429 Date Completed: 20240725 Latest Revision: 20240801
رمز التحديث: 20240801
DOI: 10.1097/HP.0000000000001819
PMID: 38683685
قاعدة البيانات: MEDLINE