دورية أكاديمية

Vermicompost and millicompost as a resource in sustainable agriculture in semiarid: decomposition, nutrient release, and microstructure under the action of nitrogen and organic-mineral fertilizers.

التفاصيل البيبلوغرافية
العنوان: Vermicompost and millicompost as a resource in sustainable agriculture in semiarid: decomposition, nutrient release, and microstructure under the action of nitrogen and organic-mineral fertilizers.
المؤلفون: de Lavôr WKB; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., da Silva EF; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., de Almeida Ferreira E; Center of Bioscience, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., Gondim JEF; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., Portela JC; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., de Sousa Antunes LF; Federal Rural University of Rio de Janeiro, Seropédica, RJ, 23897000, Brazil. fernando.ufrrj.agro@gmail.com.; Federal Rural University of Rio de Janeiro, Rodovia BR 465, Km 07, Seropédica, Rio de Janeiro, Zip Code 23890-000, Brazil. fernando.ufrrj.agro@gmail.com., de Almeida Vasconcelos A; Center of Agrarian Sciences, Federal University of Sergipe, São Cristovão, SE, 49107230, Brazil., de Freitas DF; Center of Agrarian Sciences, Federal University of Ceará, Fortaleza, CE, 60020181, Brazil., Mendonça V; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil., Fernandes BCC; Center of Agrarian Sciences, Federal Rural University of the Semi-Arid, Mossoró, RN, 59625900, Brazil.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (23), pp. 33924-33941. Date of Electronic Publication: 2024 May 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Fertilizers* , Nitrogen* , Soil*/chemistry , Agriculture*, Composting ; Animals ; Brazil ; Manure ; Nutrients
مستخلص: With the expansion of organic agriculture, research is needed to indicate economically and ecologically viable fertilizer options, especially in semiarid regions, with low soil organic matter and nitrogen content. In the Brazilian semiarid region, vermicomposts are widely used by farmers and are scientifically investigated; however, there is no information for millicompost, a new type of organic compound that has shown very promising results in other regions. Thus, this study aimed to analyze the decomposition rate, nutrient release, and microstructure evaluation of vermicomposts from different sources and of millicompost produced from plant residues, with the application of mineral nitrogen-urea and organo-mineral fertilizer in the Brazilian semiarid region. The experimental design was a randomized block in a 4 × 3 factorial scheme, with four replicates; four organic composts (millicompost, commercial vermicompost, vermicompost from bovine manure, vermicompost from goat manure); and three types of fertilization (without fertilizer, with mineral-urea and organo-mineral fertilizer). The organic composts were decomposed using litterbags at the soil surface. The variable's decomposition rate and the nutrient release were evaluated at six-time intervals (0, 30, 60, 90, 120, and 150 days), and microstructure was evaluated at the beginning and the end of the experiment, with scanning electron microscopy (SEM). The highest decomposition was verified for commercial vermicompost rich in macro and micronutrients and with lower P contents. The lignin:N ratio and the initial P content were more important in the permanence of the organic compost in the field than the C:N ratio. Regardless of the organic composts, the use of urea as a mineral fertilizer stimulated decomposition more than the organo-mineral fertilizer. The initial composition of the nutrients was decisive in the dynamics of nutrient release, mass loss, and decomposition of C. There was no pattern in the release order of macronutrients. However, for the micronutrients, the release order was Cu > Fe > Mn, in all treatments. Microstructure analysis is a visual analysis where differences are detected through microphotographs and the biggest difference occurred with millicompost, which showed elongated fibers and fiber bundles, forming a relatively open structure characteristic of the presence of fulvic acid. However, the addition of organo-mineral fertilizer formed agglomerates in compacted micro-portions, helping the mineralization of C and N.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Afshari R, Tavakkol SM, Seyyedi SM (2023) Mirmiran. Clean application of pistachio residues-based vermicompost with γ-aminobutyric acid can alleviate the negative effects of high soil pH on P uptake in saffron (Crocus sativus L.). Ind Crops Prod 195:e116443. https://doi.org/10.1016/j.indcrop.2023.116443. (PMID: 10.1016/j.indcrop.2023.116443)
Ahmad A, Aslam Z, Ahmad M, Zulfiqar U, Yaqoob S, Hussain S, Niazi NK, Din KU, Gastelbondo M, Al-Ashkar I, Elshikh MS (2024) Vermicompost application upregulates morpho-physiological and antioxidant defense to conferring drought tolerance in wheat. Plant Stress e100360. https://doi.org/10.1016/j.stress.2024.100360.
Almagro M, Ruiz-Navarro A, Díaz-Pereira E, Albaladejo J, Martínez-Mena M (2021) Plant residue chemical quality modulates the soil microbial response related to decomposition and soil organic carbon and nitrogen stabilization in a rainfed Mediterranean agroecosystem. Soil Biol Biochem 156:108198. https://doi.org/10.1016/j.soilbio.2021.108198. (PMID: 10.1016/j.soilbio.2021.108198)
Alvares CA, Stape JL, Sentelhas PC, Alves JLMG, Sparovek G (2013) Koppen’s climate classification map for Brazil. Meteorol Z 22:711–728. https://doi.org/10.1127/0941-2948/2013/0507. (PMID: 10.1127/0941-2948/2013/0507)
Amritha K, Sankar S (2021) Surface morphology and structural characteristics of rice husk. its biochar and vermicompost. J Nat Res Cons Manag 2(2):114–119. https://doi.org/10.51396/ANRCM.2.2.2021.114-119. (PMID: 10.51396/ANRCM.2.2.2021.114-119)
Antunes L, Scoriza R, França E, Silva D, Correia M, Leal M, Rouws J (2018) Desempenho agronômico da alface crespa a partir de mudas produzidas com gongocomposto. Rev Bras Agropecu Sustent 8:57–65. https://doi.org/10.21206/rbas.v8i3.3009. (PMID: 10.21206/rbas.v8i3.3009)
Antunes L, Azevedo G, Correia M (2019) Produção de mudas de girassol ornamental e seu desenvolvimento em vasos utilizando como substrato o gongocomposto. Rev Cient Rural 21:299–314. https://doi.org/10.30945/rcr-v21i2.2698. (PMID: 10.30945/rcr-v21i2.2698)
Antunes L, Souza R, Vaz A, Ferreira T, Correia M (2021a) Evaluation of millicomposts from different vegetable residues and production systems in the lettuce seedling development. Org Agr 11:367–378. https://doi.org/10.1007/s13165-020-00342-y. (PMID: 10.1007/s13165-020-00342-y)
Antunes L, Vaz A, Silva A, Correia M, Cruvinel F, Martelleto L (2021b) Millicompost: sustainable substrate for the production of dragon fruit seedlings (Selenicereus undatus). Clean Eng Technol 4:100107. https://doi.org/10.1016/j.clet.2021.100107. (PMID: 10.1016/j.clet.2021.100107)
Antunes L, Vaz A, Martelleto L, Leal M, Alves R, Ferreira T, Rumjanek N, Correia M, Rosa R, Guerra J (2022) Sustainable organic substrate production using millicompost in combination with different plant residues for the cultivation of Passiflora edulis seedlings. Environ Technol Innov 28:102612. https://doi.org/10.1016/j.eti.2022.102612. (PMID: 10.1016/j.eti.2022.102612)
Arslan H, Eskikaya O, Bilici Z, Dizge N, Balakrishnan D (2022) Comparison of Cr(VI) adsorption and photocatalytic reduction efficiency using leonardite powder. Chemosphere 300:134492. https://doi.org/10.1016/j.chemosphere.2022.134492. (PMID: 10.1016/j.chemosphere.2022.134492)
Bayram C, Büyük G, Kaya A (2021) Effects of farm manure, vermicompost and plant growth regulators on yield and fruit quality in watermelon. KSU J Agric Nat 24(1):64–69. https://doi.org/10.18016/ksutarimdoga.vi.701708. (PMID: 10.18016/ksutarimdoga.vi.701708)
Berg B, Erhagen B, Johansson M, Vesterdal L, Faituri M, Sanborn P, Nilsson M (2013) Manganese dynamics in decomposing needle and leaf litter A synthesis. Can J for Res 43:1127–1136. https://doi.org/10.1139/cjfr-2013-009. (PMID: 10.1139/cjfr-2013-009)
Bugni N, Antunes L, Guerra J, Correia M (2021) Caracterização e uso de gongocomposto proveniente de resíduos de poda arbórea na produção de mudas de rúcula. Rev Bras Agropecu Sustent 11(1):151–160. https://doi.org/10.21206/rbas.v11i1.12072. (PMID: 10.21206/rbas.v11i1.12072)
Cao X, Reichel R, Wissel H, Kummer S, Brüggemann N (2022) High carbon amendments increase nitrogen retention in soil after slurry application—an incuba0tion study with silty loam soil. J Soil Sci Plant Nutr 22:1277–1289. https://doi.org/10.1007/s42729-021-00730-7. (PMID: 10.1007/s42729-021-00730-7)
Carter C, Zhong F, Zhu J (2012) Advances in Chinese agriculture and its global implications. Appl Econ Perspect Pol 34:1–36. https://doi.org/10.1093/aepp/ppr047. (PMID: 10.1093/aepp/ppr047)
Chen Y, Schnitzer M (1976) Scanning electron microscopy of a humic acid and of a fulvic acid and its metal and clay complexes. Soil Sci Soc Am J 40:682–686. https://doi.org/10.2136/sssaj1976.03615995004000050024x. (PMID: 10.2136/sssaj1976.03615995004000050024x)
Costa NR (2021) Carbono lábil e nitrogênio mineralizável por incubação anaeróbia em área de produção de milho variando plantas de cobertura e doses de nitrogênio. Faculdade de Ciências Agrárias e Veterinárias, Jaboticabal. Universidade Estadual Paulista –UNESP. 31p. (Masters dissertation). https://repositorio.unesp.br/handle/11449/202722 . Accessed 21 Mar 2023.
Das D, Deka H (2021) Vermicomposting of harvested waste biomass of potato crop employing Eisenia fetida: changes in nutrient profile and assessment of the maturity of the end products. Environ Sci Pollut Res 28:35717–35727. https://doi.org/10.1007/s11356-021-13214-z. (PMID: 10.1007/s11356-021-13214-z)
de Carneiro WJO et al (2013) Mineralização de nitrogênio em latossolos adubados com resíduos orgânicos. Rev Bras Ciênc Solo Viçosa MG 37(3):715–725. (PMID: 10.1590/S0100-06832013000300018)
Erdenebileg E, Ye X, Wang C, Huang Z, Huang G, Liu G, Cornelissen JHC (2018) Positive and negative effects of UV irradiance explain interaction of litter position and UV exposure on litter decomposition and nutrient dynamics in a semi-arid dune ecosystem. Soil Biol Biochem 124:245–254. https://doi.org/10.1016/j.soilbio.2018.06.013. (PMID: 10.1016/j.soilbio.2018.06.013)
Fan F, Yu B, Wang B, George TS, Yin H, Xu D, Li D, Song A (2019) Microbial mechanisms of the contrast residue decomposition and priming effect in soils with different organic and chemical fertilization histories. Soil Biol Biochem 135:213–221. https://doi.org/10.1016/j.soilbio.2019.05.001. (PMID: 10.1016/j.soilbio.2019.05.001)
Fernandes BCC, Mendes KF, Dias Júnior AF, Caldeira VPS, Teófilo TMS, Silva TS, Mendonça V, Souza MF, Valadão DS (2020) Impact of pyrolysis temperature on the properties of eucalyptus wood-derived biochar. Materials 13(24):5841. https://doi.org/10.3390/ma13245841. (PMID: 10.3390/ma13245841)
Flores-Sánchez D, Pastor A, Rossing WAH, Kropff MJ, Lantinga EA (2016) Decomposition, N contribution and soil organic matter balances of crop residues and vermicompost in maize-based cropping systems in southwest Mexico. J Soil Sci Plant Nutr 16(3):801–817. https://doi.org/10.4067/S0718-95162016005000057. (PMID: 10.4067/S0718-95162016005000057)
Freitas M, Araújo C, Silva D (2012) Decomposição e liberação de nutrientes de estercos em função da profundidade e do tempo de incorporação. Rev Semiárido de Visu 2(1):150–161. (PMID: 10.31416/rsdv.v2i1.188)
Giongo V, Monteiro A, Mendes S, Cunha T (2011) Decomposição e liberação de nutrientes de coquetéis vegetais para utilização no Semiárido brasileiro. Rev Ciênc Agron 42(3):611–618. https://doi.org/10.1590/S1806-66902011000300006. (PMID: 10.1590/S1806-66902011000300006)
Guilayn F, Benbrahim M, Rouez M, Crest D, Patureau M, Jimenez J (2020) Humic-like substances extracted from different digestates: first trials of lettuce biostimulation in hydroponic culture. Waste Manag 104:239–245. https://doi.org/10.1016/j.wasman.2020.01.025. (PMID: 10.1016/j.wasman.2020.01.025)
Hishinuma T, Ichi AJ, Osono T, Takeda H (2017) Litter quality control of decomposition of leaves, twigs, and sapwood by the white-rot fungus Trametes versicolor. Eur J Soil Biol 80:1–8. https://doi.org/10.1016/j.ejsobi.2017.03.002. (PMID: 10.1016/j.ejsobi.2017.03.002)
Hobbie SE (2005) Contrasting effects of substrate and fertilizer nitrogen on the early stages of litter decomposition. Ecosystems 8(6):644–656. https://doi.org/10.1007/s10021-003-0110-7. (PMID: 10.1007/s10021-003-0110-7)
Hu J, Wu J, Qu X (2018) Decomposition characteristics of organic materials and their effects on labile and recalcitrant organic carbon fractions in a semi-arid soil under plastic mulch and drip irrigation. J Arid Land 10:115–128. https://doi.org/10.1007/s40333-017-0035-1. (PMID: 10.1007/s40333-017-0035-1)
Keeler B, Hobbie SE, Kellogg LE (2009) Effects of long-term nitrogen addition on microbial enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter decomposition. Ecosystems 12(1):1–15. https://doi.org/10.1007/s10021-008-9199-z. (PMID: 10.1007/s10021-008-9199-z)
Keiluweit M, Nico P, Harmon ME, Mao J, Pett-Ridge J, Kleber M (2015) Long-term litter decomposition controlled by manganese redox cycling. Proc Natl Acad Sci USA 112(38):E5253–E5260. https://doi.org/10.1073/pnas.1508945112. (PMID: 10.1073/pnas.1508945112)
Koul B, Yakoo M, Shah MP (2022) Agricultural waste management strategies for environmental sustainability. Environ Res 206:112285. https://doi.org/10.1016/j.envres.2021.112285. (PMID: 10.1016/j.envres.2021.112285)
Lima FV (2017) Adubação nitrogenada e orgânica em videira: características químicas do solo, componentes produtivos e decomposição de resíduos foliares e esterco bovino. Programa de Pós-graduação em Manejo de Solo e Água. Universidade Federal Rural do Semi-Árido. 88p. (Doctor's thesis). https://repositorio.ufersa.edu.br/handle/prefix/897 . Accessed 18 March 2023.
Maciel MDA, Troian A, Oliveira SV (2022) Brasil do agro, país da fome: pensando estratégias para o desenvolvimento sustentável. Espacio Abierto: Cuaderno Venezolano de Sociología 31(3):23–41. http://ve.scielo.org/scielo.php?pid=S1315-00062022000300023&script=sci&#95;arttext . Accessed 21 March 2023.
Makkar C, Singh J, Parkash C, Singh S, Vig AP, Dhaliwal SS (2023) Vermicompost acts as bio-modulator for plants under stress and non-stress conditions. Environ Dev Sustain 25:2006–2057. https://doi.org/10.1007/s10668-022-02132-w. (PMID: 10.1007/s10668-022-02132-w)
Mishra SK, Gangwar B, Patel M, Mishra YK, Sahu MMP (2023) Effect of organic nutrient management on mustard (Brassica juncea L.) in semi-arid region. J Pharm Innov 12:76–79.
Oloniruha JA, Ogundare SK, Olajide K (2021) Growth and yield of Sesame (Sesamum indicum) as influenced by plant population density and organo-mineral fertilizer rates. Agro-Science 20(1):15–21. https://doi.org/10.4314/as.v20i1.3. (PMID: 10.4314/as.v20i1.3)
Ozyazici G, Turan N (2021) Effect of vermicompost application on mineral nutrient composition of grains of buckwheat (Fagopyrum esculentum M.). Sustentabilidade 13(11):6004. https://doi.org/10.3390/su13116004. (PMID: 10.3390/su13116004)
Paul EA, Clark FE (1996) Dynamics of residue decomposition and soil organic matter turnover. In: Paul EA, Clark FE (eds) Soil Biol Biochem. Academic, San Diego, pp 158–179.
Pei G, Liu J, Peng B, Gao D, Wang C, Dai W, Jiang P, Bai E (2019) Nitrogen, lignin, C/N as important regulators of gross nitrogen release and immobilization during litter decomposition in a temperate forest ecosystem. For Ecol Manag 440:61–69. https://doi.org/10.1016/j.foreco.2019.03.001. (PMID: 10.1016/j.foreco.2019.03.001)
Peng Y, Li YJ, Song SY, Chen YQ, Chen GT, Tu LH (2022) Nitrogen addition slows litter decomposition accompanied by accelerated manganese release: a five-year experiment in a subtropical evergreen broadleaf forest. Soil Biol Biochem 165:108511. https://doi.org/10.1016/j.soilbio.2021.108511. (PMID: 10.1016/j.soilbio.2021.108511)
Pérez-Marin AM, Sarmento MIA, Vendruscolo J (2018) Decomposition of bovine esterco and Gliricide sepium biomass in a Regolytic Neosolo. Revista Verde de Agroecologia e Desenvolvimento Sustentável 13(4):419–426. https://doi.org/10.18378/rvads.v13i4.5739. (PMID: 10.18378/rvads.v13i4.5739)
Poornima S, Dadi M, Subash S, Manikandan S, Karthik V, Deena SR, Balachandar R, Kumaran SKN, Subbaiya R (2024) Review on advances in toxic pollutants remediation by solid waste composting and vermicomposting. Sci Afr e02100. https://doi.org/10.1016/j.sciaf.2024.e02100 .
Potrich DC, Marchetti ME, Potrich DC, Ensinas SC, Serra AP, Silva EF, Souza NH (2014) Decomposição de resíduos culturais de cana-de-açúcar submetidos a diferentes doses de nitrogênio. Semin Cienc Agrar 35(4):1751–1760. https://doi.org/10.5433/1679-0359.2014v35n4p1751. (PMID: 10.5433/1679-0359.2014v35n4p1751)
Quadar J, Chowdhary AB, Dutta R, Angmo D, Rashid F, Singh S, Singh J, Vig AP (2022) Characterization of vermicompost of coconut husk mixed with cattle dung: physicochemical properties. SEM. and FT-IR analysis. Environ Sci Pollut Res 29:87790–87801. https://doi.org/10.1007/s11356-022-21899-z. (PMID: 10.1007/s11356-022-21899-z)
Ribeiro JN, Ribeiro AVFN, Silva AR, Pereira MG, Oliveira JP, Tomaz AT, Vitoria B (2021) Vermicompost for indigo blue and Congo red removal. Water Resour Prot 13(6):419–434. https://doi.org/10.4236/jwarp.2021.136025. (PMID: 10.4236/jwarp.2021.136025)
Ribeiro Junior JI, Melo ALP (2009) Guia prático para utilização do SAEG (Sistema para Análises Estatísticas). Universidade Federal de Viçosa, Viçosa, MG, p 287.
Rodrigues JP, Costa DFA, Gavilán GDC, Cavalheiro GS, Martins LP, Alves NP, Osorio Filho BD (2019) Atividade biológica e decomposição de resíduos orgânicos em área de lavoura sobre Argissolo Vermelho Distrófico. Revista Eletrônica Científica da UERGS 5(1):13–17. https://doi.org/10.21674/2448-0479.51.13-17. (PMID: 10.21674/2448-0479.51.13-17)
Sarlaki E, Paghaleh AS, Kianmehr MH, Vakilian KA (2021) Valorization of lignite wastes into humic acids: process optimization, energy efficiency and structural features analysis. Renew Energ 163:105–122. https://doi.org/10.1016/j.renene.2020.08.096. (PMID: 10.1016/j.renene.2020.08.096)
Shong C, Liu D, Yang G, Song Y, Mao R (2011) Effect of nitrogen addition on decompositiom of calamagrostis agustifolia litters from freshwater marshers of Northeast China. Ecol Eng 37(10):1578–1582. https://doi.org/10.1016/j.ecoleng.2011.03.036. (PMID: 10.1016/j.ecoleng.2011.03.036)
Silva VB, Silva AP, Dias BO, Araujo JL, Santos D, Franco RP (2014) Decomposição e liberação de n, p e k de esterco bovino e de cama de frango isolados ou misturados. Rev Bras Ciênc Solo 38(5):1537–1546. https://doi.org/10.1590/S0100-06832014000500019. (PMID: 10.1590/S0100-06832014000500019)
Silva LF, Silva EF, Morais FMS, Portela JC, Oliveira FHT, Freitas DF, Ferreira EA, Gurgel MT, Lima RB, Vansconcelos AA, Antunes LF (2023) Potential of vermicomposting with mixtures of animal manure and vegetable leaves in the development of Eisenia foetida, microbial biomass, and enzymatic activity under semi-arid conditions. J Environ Manag 330:e117169. https://doi.org/10.1016/j.jenvman.2022.117169. (PMID: 10.1016/j.jenvman.2022.117169)
Singhania RR, Patel AK, Pandey A (2017) 10-Biotechnology for agricultural waste recycling. Wong JW-C, Tyagi RD, Pandey A (Eds.), Current developments in biotechnology and bioengineering, Elsevier, India, pp. 223–240. https://doi.org/10.1016/B978-0-444-63664-5.00010-1.
Song C, Lv Y, Qin X, Guo C, Cui J, Steve-Harold Kaghembega W (2021) Optimization of catalytic wet oxidating fulvic acid with zero-valent copper chitosan activated carbon ball as the catalyst. Sci Rep 11:13998. https://doi.org/10.1038/s41598-021-92789-6. (PMID: 10.1038/s41598-021-92789-6)
Statsoft Inc (2010) Statistic (data analysis software system) version 9.0. https://www.statsoft.com . Accessed 29 Jan 2024.
Sudene. Superintendência do Desenvolvimento do Nordeste. Delimitação do Semiárido (2021) Relatório Final. Disponível em: https://www.gov.br/sudene/pt-br/centrais-de-conteudo/02semiaridorelatorionv.pdf . Accessed 29 Jan 2024.
Sun XF, Huang J, Wang M, Guo HX (2009) Responses of litter decomposition to biodiversity manipulation in the Inner Mongolia grassland of China. Biodivers Sci 17:397–405. https://doi.org/10.3724/SP.J.1003.2009.09082. (PMID: 10.3724/SP.J.1003.2009.09082)
Talbot JM, Yelle DJ, Nowick J, Treseder KK (2012) Litter decay rates are determined by lignin chemistry. Biogeochemistry 108:279–295. https://doi.org/10.1007/s10533-011-9599-6. (PMID: 10.1007/s10533-011-9599-6)
Teixeira MB, Loss A, Pereira MG, Pimentel C (2011) Decomposição e liberação de nutrientes da parte aérea de plantas de milheto e sorgo. Rev Bras Ciênc Solo 35(3):867–876. https://doi.org/10.1590/S0100-06832011000300021. (PMID: 10.1590/S0100-06832011000300021)
Teixeira PC, Donagema GK, Fontana A, Teixeira WG (2017) Manual de Métodos de análise de Solo, 3rd edn. Embrapa, Brasília-DF.
Thomas RJ, Asakawa NM (1993) Decomposition of leaf litter from tropical forage grasses and legumes. Soil Biol Biochem 25(10):1351–1361. https://doi.org/10.1016/0038-0717(93)90050-L. (PMID: 10.1016/0038-0717(93)90050-L)
Wang Y, Li FY, Song X, Wang X, Suri G, Baoyin T (2020) Changes in litter decomposition rate of dominant plants in a semi-arid steppe across different land-use types: soil moisture, not home-field advantage, plays a dominant role. Agric Ecosyst Environ 303:107–119. https://doi.org/10.1016/j.agee.2020.107119. (PMID: 10.1016/j.agee.2020.107119)
Wichrowska D, Szczepanek M (2020) Possibility of limiting mineral fertilization in potato cultivation by using bio-fertilizer and its influence on protein content in potato tubers. Agriculture 10(10):442. https://doi.org/10.3390/agriculture10100442. (PMID: 10.3390/agriculture10100442)
Yeomans JC, Bremner JM (1988) A rapid and precise method for routine determination of organic carbon in soil. Commun Soil Sci Plant Anal 19(13):1467–1476. https://doi.org/10.1080/00103628809368027. (PMID: 10.1080/00103628809368027)
Yermilov A, Kamenev R, Turchin V, Kameneva V (2021) Application of organomineral fertilizers to winter wheat in the Rostov Region. KnE Life Sci 6(3):686–692. https://doi.org/10.18502/kls.v0i0.900. (PMID: 10.18502/kls.v0i0.900)
Zhang W, Yuan S, Ning H, Lou Y, Wang S (2015) Predicting soil fauna effect on plant litter decomposition by using boosted regression trees. Soil Biol Biochem 82:81–86. https://doi.org/10.1016/j.soilbio.2014.12.016. (PMID: 10.1016/j.soilbio.2014.12.016)
Zhang Y, Liu W, Hu X, Zhang A, Ma L, Shi Y, Gong G (2019) Extraction and functional group characterization of fulvic acid from hami lignite. ChemistrySelect 4:1448–1455. https://doi.org/10.1002/slct.201803291. (PMID: 10.1002/slct.201803291)
Zhou S, Yan G, Hu J, Liu X, Zou X, Tie L, Yuan R, Yang Y, Xiao L, Cui X, Tu L, Lai J, Zhao A, Huang C (2021) The responses of leaf litter calcium, magnesium, and manganese dynamics to simulated nitrogen deposition and reduced precipitation vary with different decomposition stages. Forests 12(11):1473. https://doi.org/10.3390/f12111473. (PMID: 10.3390/f12111473)
Zhu Y, Merbold L, Leitner S, Pelster DE, Okoma SA, Ngetich F, Onyango AA, Pellikka P, Butterbach-Bahl K (2020) The effects of climate on decomposition of cattle, sheep and goat manure in Kenyan tropical pastures. Plant Soil 451(1–2):325–343. https://doi.org/10.1007/s11104-020-04528-x. (PMID: 10.1007/s11104-020-04528-x)
Zsófia M, Tabi A, Csutora M (2012) Modifying the yield factor based on more efficient use of fertilizer-the environmental impacts of intensive and extensive agricultural practices. Ecol Indic 16:58–66. https://doi.org/10.1016/j.ecolind.2011.06.034. (PMID: 10.1016/j.ecolind.2011.06.034)
معلومات مُعتمدة: 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: Diplopoda; Earthworm; Mineralization; Nutrients; Scanning electron microscopy
المشرفين على المادة: 0 (Fertilizers)
N762921K75 (Nitrogen)
0 (Soil)
0 (Manure)
تواريخ الأحداث: Date Created: 20240501 Date Completed: 20240530 Latest Revision: 20240530
رمز التحديث: 20240530
DOI: 10.1007/s11356-024-33446-z
PMID: 38691289
قاعدة البيانات: MEDLINE
الوصف
تدمد:1614-7499
DOI:10.1007/s11356-024-33446-z