دورية أكاديمية

Mitochondrial transfer mediates endothelial cell engraftment through mitophagy.

التفاصيل البيبلوغرافية
العنوان: Mitochondrial transfer mediates endothelial cell engraftment through mitophagy.
المؤلفون: Lin RZ; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.; Department of Surgery, Harvard Medical School, Boston, MA, USA., Im GB; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.; Department of Surgery, Harvard Medical School, Boston, MA, USA., Luo AC; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA., Zhu Y; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.; Department of Surgery, Harvard Medical School, Boston, MA, USA., Hong X; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA.; Department of Surgery, Harvard Medical School, Boston, MA, USA., Neumeyer J; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA., Tang HW; Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA., Perrimon N; Department of Genetics, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA., Melero-Martin JM; Department of Cardiac Surgery, Boston Children's Hospital, Boston, MA, USA. juan.meleromartin@childrens.harvard.edu.; Department of Surgery, Harvard Medical School, Boston, MA, USA. juan.meleromartin@childrens.harvard.edu.; Harvard Stem Cell Institute, Cambridge, MA, USA. juan.meleromartin@childrens.harvard.edu.
المصدر: Nature [Nature] 2024 May; Vol. 629 (8012), pp. 660-668. Date of Electronic Publication: 2024 May 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Endothelial Cells*/cytology , Endothelial Cells*/metabolism , Endothelial Cells*/transplantation , Ischemia*/metabolism , Ischemia*/therapy , Mitochondria*/metabolism , Mitochondria*/transplantation , Mitophagy* , Cell- and Tissue-Based Therapy*/methods, Animals ; Humans ; Male ; Mice ; Autophagosomes/metabolism ; Energy Metabolism ; Human Umbilical Vein Endothelial Cells/metabolism ; Mesenchymal Stem Cells/cytology ; Mesenchymal Stem Cells/metabolism ; Mice, Nude ; Protein Kinases/deficiency ; Protein Kinases/metabolism ; Ubiquitin-Protein Ligases/deficiency ; Ubiquitin-Protein Ligases/metabolism
مستخلص: Ischaemic diseases such as critical limb ischaemia and myocardial infarction affect millions of people worldwide 1 . Transplanting endothelial cells (ECs) is a promising therapy in vascular medicine, but engrafting ECs typically necessitates co-transplanting perivascular supporting cells such as mesenchymal stromal cells (MSCs), which makes clinical implementation complicated 2,3 . The mechanisms that enable MSCs to facilitate EC engraftment remain elusive. Here we show that, under cellular stress, MSCs transfer mitochondria to ECs through tunnelling nanotubes, and that blocking this transfer impairs EC engraftment. We devised a strategy to artificially transplant mitochondria, transiently enhancing EC bioenergetics and enabling them to form functional vessels in ischaemic tissues without the support of MSCs. Notably, exogenous mitochondria did not integrate into the endogenous EC mitochondrial pool, but triggered mitophagy after internalization. Transplanted mitochondria co-localized with autophagosomes, and ablation of the PINK1-Parkin pathway negated the enhanced engraftment ability of ECs. Our findings reveal a mechanism that underlies the effects of mitochondrial transfer between mesenchymal and endothelial cells, and offer potential for a new approach for vascular cell therapy.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
التعليقات: Comment in: Nat Rev Cardiol. 2024 Jul;21(7):439. doi: 10.1038/s41569-024-01041-x. (PMID: 38773356)
References: Nowbar, A. N., Gitto, M., Howard, J. P., Francis, D. P. & Al-Lamee, R. Mortality from ischemic heart disease. Circ. Cardiovasc. Qual. Outcomes 12, e005375 (2019). (PMID: 10.1161/CIRCOUTCOMES.118.005375311639806613716)
Loffredo, F. & Lee, R. T. Therapeutic vasculogenesis. Circ. Res. 103, 128–130 (2008). (PMID: 10.1161/CIRCRESAHA.108.180604186358292720099)
Melero-Martin, J. M. et al. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 103, 194–202 (2008). (PMID: 10.1161/CIRCRESAHA.108.178590185565752746761)
Beckman, J. A., Schneider, P. A. & Conte, M. S. Advances in revascularization for peripheral artery disease: revascularization in PAD. Circ. Res. 128, 1885–1912 (2021). (PMID: 10.1161/CIRCRESAHA.121.31826134110904)
Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of angiogenesis. Nature 473, 298 (2011). (PMID: 10.1038/nature10144215938624049445)
Cooke, J. P. & Losordo, D. W. Modulating the vascular response to limb ischemia. Circ. Res. 116, 1561–1578 (2015). (PMID: 10.1161/CIRCRESAHA.115.303565259087294869986)
Wang, K., Lin, R.-Z. & Melero-Martin, J. M. Bioengineering human vascular networks: trends and directions in endothelial and perivascular cell sources. Cell. Mol. Life Sci. 76, 421–439 (2019). (PMID: 10.1007/s00018-018-2939-030315324)
Islam, M. N. et al. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18, 759 (2012). (PMID: 10.1038/nm.2736225044853727429)
Hayakawa, K. et al. Transfer of mitochondria from astrocytes to neurons after stroke. Nature 535, 551 (2016). (PMID: 10.1038/nature18928274661274968589)
Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003). (PMID: 10.1038/nm0603-68512778167)
Andrae, J., Gallini, R. & Betsholtz, C. Role of platelet-derived growth factors in physiology and medicine. Gene Dev. 22, 1276–1312 (2008). (PMID: 10.1101/gad.1653708184832172732412)
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H.-H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004). (PMID: 10.1126/science.109313314963329)
Zhang, Y. et al. iPSC-MSCs with high intrinsic MIRO1 and sensitivity to TNF-α yield efficacious mitochondrial transfer to rescue anthracycline-induced cardiomyopathy. Stem Cell Rep. 7, 749–763 (2016). (PMID: 10.1016/j.stemcr.2016.08.009)
Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11, 1427–1432 (2009). (PMID: 10.1038/ncb199019935652)
Kitani, T., Kami, D., Matoba, S. & Gojo, S. Internalization of isolated functional mitochondria: involvement of macropinocytosis. J. Cell. Mol. Med. 18, 1694–1703 (2014). (PMID: 10.1111/jcmm.12316249123694190914)
Youle, R. J. & Narendra, D. P. Mechanisms of mitophagy. Nat. Rev. Mol. Cell Biol. 12, 9–14 (2011). (PMID: 10.1038/nrm3028211790584780047)
Jin, S. M. & Youle, R. J. PINK1- and Parkin-mediated mitophagy at a glance. J. Cell Sci. 125, 795–799 (2012). (PMID: 10.1242/jcs.093849224480353656616)
Liu, K. et al. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia–reperfusion model via tunneling nanotube like structure-mediated mitochondrial transfer. Microvasc. Res. 92, 10–18 (2014). (PMID: 10.1016/j.mvr.2014.01.00824486322)
Liang, X. et al. Direct administration of mesenchymal stem cell‐derived mitochondria improves cardiac function after infarction via ameliorating endothelial senescence. Bioeng. Transl. Med. 8, e10365 (2023). (PMID: 10.1002/btm2.1036536684073)
Borcherding, N. et al. Dietary lipids inhibit mitochondria transfer to macrophages to divert adipocyte-derived mitochondria into the blood. Cell Metab. 34, 1499–1513 (2022). (PMID: 10.1016/j.cmet.2022.08.010360707569547954)
Kami, D. & Gojo, S. From cell entry to engraftment of exogenous mitochondria. Int. J. Mol. Sci. 21, 4995 (2020). (PMID: 10.3390/ijms21144995326798027404190)
Elliott, R. L., Jiang, X. P. & Head, J. F. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res. Treat. 136, 347–354 (2012). (PMID: 10.1007/s10549-012-2283-223080556)
Chang, J.-C. et al. Allogeneic/xenogeneic transplantation of peptide-labeled mitochondria in Parkinson’s disease: restoration of mitochondria functions and attenuation of 6-hydroxydopamine–induced neurotoxicity. Transl. Res. 170, 40–56 (2016). (PMID: 10.1016/j.trsl.2015.12.00326730494)
Kaza, A. K. et al. Myocardial rescue with autologous mitochondrial transplantation in a porcine model of ischemia/reperfusion. J. Thorac. Cardiovasc. Surg. 153, 934–943 (2017). (PMID: 10.1016/j.jtcvs.2016.10.07727938904)
Emani, S. M., Piekarski, B. L., Harrild, D., Del Nido, P. J. & McCully, J. D. Autologous mitochondrial transplantation for dysfunction after ischemia-reperfusion injury. J. Thorac. Cardiovasc. Surg. 154, 286–289 (2017). (PMID: 10.1016/j.jtcvs.2017.02.01828283239)
Bertero, E., Maack, C. & O’Rourke, B. Mitochondrial transplantation in humans: “magical” cure or cause for concern? J. Clin. Invest. 128, 5191–5194 (2018). (PMID: 10.1172/JCI124944303715086264628)
Lightowlers, R. N., Chrzanowska‐Lightowlers, Z. M. & Russell, O. M. Mitochondrial transplantation—a possible therapeutic for mitochondrial dysfunction? EMBO Rep. 21, e50964 (2020). (PMID: 10.15252/embr.202050964328521367507022)
Ashrafi, G. & Schwarz, T. L. The pathways of mitophagy for quality control and clearance of mitochondria. Cell Death Differ. 20, 31–42 (2013). (PMID: 10.1038/cdd.2012.8122743996)
Moreau, K., Luo, S. & Rubinsztein, D. C. Cytoprotective roles for autophagy. Curr. Opin. Cell Biol. 22, 206–211 (2010). (PMID: 10.1016/j.ceb.2009.12.002200453042860226)
Gao, Y. et al. Role of Parkin-mediated mitophagy in the protective effect of polydatin in sepsis-induced acute kidney injury. J. Transl. Med. 18, 114 (2020). (PMID: 10.1186/s12967-020-02283-2321318507055075)
Livingston, M. J. et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys. Autophagy 15, 2142–2162 (2019). (PMID: 10.1080/15548627.2019.1615822310663246844514)
Sun, Z. et al. MSC-derived extracellular vesicles activate mitophagy to alleviate renal ischemia/reperfusion injury via the miR-223-3p/NLRP3 axis. Stem Cells Int. 2022, 6852661 (2022). (PMID: 10.1155/2022/6852661356461249142309)
Mahrouf-Yorgov, M. et al. Mesenchymal stem cells sense mitochondria released from damaged cells as danger signals to activate their rescue properties. Cell Death Differ. 24, 1224–1238 (2017). (PMID: 10.1038/cdd.2017.51285248595520168)
Zhu, W. et al. Mesenchymal stem cells ameliorate hyperglycemia-induced endothelial injury through modulation of mitophagy. Cell Death Dis. 9, 837 (2018). (PMID: 10.1038/s41419-018-0861-x300827986078996)
Kim, M. J., Hwang, J. W., Yun, C.-K., Lee, Y. & Choi, Y.-S. Delivery of exogenous mitochondria via centrifugation enhances cellular metabolic function. Sci. Rep. 8, 3330 (2018). (PMID: 10.1038/s41598-018-21539-y294638095820364)
Melero-Martin, J. M. et al. In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761–4768 (2007). (PMID: 10.1182/blood-2006-12-06247117327403)
Lin, R.-Z. et al. Human endothelial colony-forming cells serve as trophic mediators for mesenchymal stem cell engraftment via paracrine signaling. Proc. Natl Acad. Sci. USA 111, 10137–10142 (2014). (PMID: 10.1073/pnas.1405388111249821744104912)
معلومات مُعتمدة: R01 AR080086 United States AR NIAMS NIH HHS; R01 HL128452 United States HL NHLBI NIH HHS; R01 HL152133 United States HL NHLBI NIH HHS
المشرفين على المادة: EC 2.3.2.27 (parkin protein)
EC 2.7.- (Protein Kinases)
EC 2.7.11.1 (PTEN-induced putative kinase)
EC 2.3.2.27 (Ubiquitin-Protein Ligases)
تواريخ الأحداث: Date Created: 20240501 Date Completed: 20240515 Latest Revision: 20240621
رمز التحديث: 20240621
DOI: 10.1038/s41586-024-07340-0
PMID: 38693258
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07340-0