دورية أكاديمية

Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet.

التفاصيل البيبلوغرافية
العنوان: Modulation of multiple sclerosis risk and pathogenesis by the gut microbiota: Complex interactions between host genetics, bacterial metabolism, and diet.
المؤلفون: Montgomery TL; Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA., Peipert D; Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA., Krementsov DN; Department of Biomedical and Health Sciences, University of Vermont, Burlington, Vermont, USA.
المصدر: Immunological reviews [Immunol Rev] 2024 May 08. Date of Electronic Publication: 2024 May 08.
Publication Model: Ahead of Print
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Blackwell Country of Publication: England NLM ID: 7702118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-065X (Electronic) Linking ISSN: 01052896 NLM ISO Abbreviation: Immunol Rev Subsets: MEDLINE
أسماء مطبوعة: Publication: <2002-> : Oxford : Blackwell
Original Publication: Copenhagen, Munksgaard.
مستخلص: Multiple sclerosis (MS) is an autoimmune disease of the central nervous system, affecting nearly 2 million people worldwide. The etiology of MS is multifactorial: Approximately 30% of the MS risk is genetic, which implies that the remaining ~70% is environmental, with a number of factors proposed. One recently implicated risk factor for MS is the composition of the gut microbiome. Numerous case-control studies have identified changes in gut microbiota composition of people with MS (pwMS) compared with healthy control individuals, and more recent studies in animal models have begun to identify the causative microbes and underlying mechanisms. Here, we review some of these mechanisms, with a specific focus on the role of host genetic variation, dietary inputs, and gut microbial metabolism, with a particular emphasis on short-chain fatty acid and tryptophan metabolism. We put forward a model where, in an individual genetically susceptible to MS, the gut microbiota and diet can synergize as potent environmental modifiers of disease risk and possibly progression, with diet-dependent gut microbial metabolites serving as a key mechanism. We also propose that specific microbial taxa may have divergent effects in individuals carrying distinct variants of MS risk alleles or other polymorphisms, as a consequence of host gene-by-gut microbiota interactions. Finally, we also propose that the effects of specific microbial taxa, especially those that exert their effects through metabolites, are highly dependent on the host dietary intake. What emerges is a complex multifaceted interaction that has been challenging to disentangle in human studies, contributing to the divergence of findings across heterogeneous cohorts with differing geography, dietary preferences, and genetics. Nonetheless, this provides a complex and individualized, yet tractable, model of how the gut microbiota regulate susceptibility to MS, and potentially progression of this disease. Thus, we conclude that prophylactic or therapeutic modulation of the gut microbiome to prevent or treat MS will require a careful and personalized consideration of host genetics, baseline gut microbiota composition, and dietary inputs.
(© 2024 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.)
References: Ascherio A, Munger KL. Epidemiology of multiple sclerosis: from risk factors to prevention – an update. Semin Neurol. 2016;36(2):103‐114.
Walton C, King R, Rechtman L, et al. Rising prevalence of multiple sclerosis worldwide: insights from the Atlas of MS, third edition. Mult Scler J. 2020;26(14):1816‐1821.
Goodin DS. The genetic and environmental bases of complex human‐disease: extending the utility of twin‐studies. PLoS One. 2012;7(12):e47875.
Frohman EM, Racke MK, Raine CS. Multiple sclerosis – the plaque and its pathogenesis. N Engl J Med. 2006;354(9):942‐955.
Ebers GC. Environmental factors and multiple sclerosis. Lancet Neurol. 2008;7(3):268‐277.
Disanto G, Morahan JM, Ramagopalan SV. Multiple sclerosis: risk factors and their interactions. CNS Neurol Disord Drug Targets. 2012;11(5):545‐555.
Beecham AH, Patsopoulos NA, Xifara DK, et al. Analysis of immune‐related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat Genet. 2013;45(11):1353‐1360.
Baranzini SE, Oksenberg JR. The genetics of multiple sclerosis: from 0 to 200 in 50 years. Trends Genet. 2017;33(12):960‐970.
Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ. 2018;361:k2179.
Thursby E, Juge N. Introduction to the human gut microbiota. Biochem J. 2017;474(11):1823‐1836.
Turnbaugh PJ, Ley RE, Hamady M, Fraser‐Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804‐810.
Chassaing B, Kumar M, Baker MT, Singh V, Vijay‐Kumar M. Mammalian gut immunity. Biom J. 2014;37(5):246‐258.
Rowland I, Gibson G, Heinken A, et al. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1‐24.
Wikoff WR, Anfora AT, Liu J, et al. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci USA. 2009;106(10):3698‐3703.
Parker A, Fonseca S, Carding SR. Gut microbes and metabolites as modulators of blood‐brain barrier integrity and brain health. Gut Microbes. 2020;11(2):135‐157.
Kurilshikov A, Medina‐Gomez C, Bacigalupe R, et al. Large‐scale association analyses identify host factors influencing human gut microbiome composition. Nat Genet. 2021;53(2):156‐165.
Robertson NP, Fraser M, Deans J, Clayton D, Walker N, Compston DA. Age‐adjusted recurrence risks for relatives of patients with multiple sclerosis. Brain. 1996;119(Pt 2):449‐455.
Willer CJ, Dyment DA, Risch NJ, Sadovnick AD, Ebers GC. Twin concordance and sibling recurrence rates in multiple sclerosis. Proc Natl Acad Sci USA. 2003;100(22):12877‐12882.
Hollenbach JA, Oksenberg JR. The immunogenetics of multiple sclerosis: a comprehensive review. J Autoimmun. 2015;64:13‐25.
Olerup O, Hillert J. HLA class II‐associated genetic susceptibility in multiple sclerosis: a critical evaluation. Tissue Antigens. 1991;38(1):1‐15.
Cerosaletti K, Schneider A, Schwedhelm K, et al. Multiple autoimmune‐associated variants confer decreased IL‐2R signaling in CD4+ CD25(hi) T cells of type 1 diabetic and multiple sclerosis patients. PLoS One. 2013;8(12):e83811.
Weber F, Fontaine B, Cournu‐Rebeix I, et al. IL2RA and IL7RA genes confer susceptibility for multiple sclerosis in two independent European populations. Genes Immun. 2008;9(3):259‐263.
Hoe E, McKay F, Schibeci S, Heard R, Stewart G, Booth D. Interleukin 7 receptor alpha chain haplotypes vary in their influence on multiple sclerosis susceptibility and response to interferon beta. J Interferon Cytokine Res. 2010;30(5):291‐298.
Mero IL, Lorentzen AR, Ban M, et al. A rare variant of the TYK2 gene is confirmed to be associated with multiple sclerosis. Eur J Hum Genet. 2010;18(4):502‐504.
Watford WT, O'Shea JJ. Human tyk2 kinase deficiency: another primary immunodeficiency syndrome. Immunity. 2006;25(5):695‐697.
Gorman JA, Hundhausen C, Kinsman M, et al. The TYK2‐P1104A autoimmune protective variant limits coordinate signals required to generate specialized T cell subsets. Front Immunol. 2019;10:44.
Boisson‐Dupuis S, Ramirez‐Alejo N, Li Z, et al. Tuberculosis and impaired IL‐23‐dependent IFN‐γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 2018;3(30):eaau8714.
De Jager PL, Baecher‐Allan C, Maier LM, et al. The role of the CD58 locus in multiple sclerosis. Proc Natl Acad Sci USA. 2009;106(13):5264‐5269.
De Jager PL, Jia X, Wang J, et al. Meta‐analysis of genome scans and replication identify CD6, IRF8 and TNFRSF1A as new multiple sclerosis susceptibility loci. Nat Genet. 2009;41(7):776‐782.
Consortium IMSG, Patsopoulos NA, Baranzini SE, et al. Multiple sclerosis genomic map implicates peripheral immune cells and microglia in susceptibility. Science. 2019;365(6460):eaav7188.
Miyake S, Kim S, Suda W, et al. Dysbiosis in the gut microbiota of patients with multiple sclerosis, with a striking depletion of species belonging to clostridia XIVa and IV clusters. PLoS One. 2015;10(9):e0137429.
Cosorich I, Dalla‐Costa G, Sorini C, et al. High frequency of intestinal T(H)17 cells correlates with microbiota alterations and disease activity in multiple sclerosis. Sci Adv. 2017;3(7):e1700492.
Cantarel BL, Waubant E, Chehoud C, et al. Gut microbiota in multiple sclerosis: possible influence of immunomodulators. J Investig Med. 2015;63(5):729‐734.
Cekanaviciute E, Pröbstel A‐K, Thomann A, et al. Multiple sclerosis‐associated changes in the composition and immune functions of spore‐forming bacteria. mSystems. 2018;3(6):e00083‐18.
Castillo‐Álvarez F, Pérez‐Matute P, Oteo JA, Marzo‐Sola ME. The influence of interferon β‐1b on gut microbiota composition in patients with multiple sclerosis. Neurología (Engl Ed). 2021;36(7):495‐503.
Swidsinski A, Dörffel Y, Loening‐Baucke V, et al. Reduced mass and diversity of the colonic microbiome in patients with multiple sclerosis and their improvement with ketogenic diet. Front Microbiol. 2017;8:1141.
Cox LM, Maghzi AH, Liu S, et al. Gut microbiome in progressive multiple sclerosis. Ann Neurol. 2021;89(6):1195‐1211.
Chen J, Chia N, Kalari KR, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls. Sci Rep. 2016;6:28484.
Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.
Zhou X, Baumann R, Gao X, et al. Gut microbiome of multiple sclerosis patients and paired household healthy controls reveal associations with disease risk and course. Cell. 2022;185(19):3467‐3486.e3416.
Cekanaviciute E, Yoo BB, Runia TF, et al. Gut bacteria from multiple sclerosis patients modulate human T cells and exacerbate symptoms in mouse models. Proc Natl Acad Sci USA. 2017;114(40):10713‐10718.
Berer K, Gerdes LA, Cekanaviciute E, et al. Gut microbiota from multiple sclerosis patients enables spontaneous autoimmune encephalomyelitis in mice. Proc Natl Acad Sci USA. 2017;114(40):10719‐10724.
Tankou SK, Regev K, Healy BC, et al. A probiotic modulates the microbiome and immunity in multiple sclerosis. Ann Neurol. 2018;83(6):1147‐1161.
Ventura RE, Iizumi T, Battaglia T, et al. Gut microbiome of treatment‐naive MS patients of different ethnicities early in disease course. Sci Rep. 2019;9(1):16396.
Dunalska A, Saramak K, Szejko N. The role of gut microbiome in the pathogenesis of multiple sclerosis and related disorders. Cells. 2023;12(13):1760.
Branton WG, Lu JQ, Surette MG, et al. Brain microbiota disruption within inflammatory demyelinating lesions in multiple sclerosis. Sci Rep. 2016;6:37344.
Tremlett H, Fadrosh DW, Faruqi AA, et al. Gut microbiota in early pediatric multiple sclerosis: a case‐control study. Eur J Neurol. 2016;23:1308‐1321.
Galluzzo P, Capri FC, Vecchioni L, et al. Comparison of the intestinal microbiome of Italian patients with multiple sclerosis and their household relatives. Life. 2021;11(7):620.
Zahoor I, Rui B, Khan J, Datta I, Giri S. An emerging potential of metabolomics in multiple sclerosis: a comprehensive overview. Cell Mol Life Sci. 2021;78(7):3181‐3203.
Xia Z, White CC, Owen EK, et al. Genes and environment in multiple sclerosis project: a platform to investigate multiple sclerosis risk. Ann Neurol. 2016;79(2):178‐189.
Xia Z, Steele SU, Bakshi A, et al. Assessment of early evidence of multiple sclerosis in a prospective study of asymptomatic high‐risk family members. JAMA Neurol. 2017;74(3):293‐300.
Montgomery TL, Wang Q, Mirza A, et al. Identification of commensal gut microbiota signatures as predictors of clinical severity and disease progression in multiple sclerosis. medRxiv. 2023. doi:10.1101/2023.06.26.23291875.
Devolder L, Pauwels A, Van Remoortel A, et al. Gut microbiome composition is associated with long‐term disability worsening in multiple sclerosis. Gut Microbes. 2023;15(1):2180316.
Thirion F, Sellebjerg F, Fan Y, et al. The gut microbiota in multiple sclerosis varies with disease activity. Genome Med. 2023;15(1):1.
Niess JH, Leithäuser F, Adler G, Reimann J. Commensal gut flora drives the expansion of proinflammatory CD4 T cells in the colonic lamina propria under normal and inflammatory conditions. J Immunol. 2008;180(1):559‐568.
Berer K, Mues M, Koutrolos M, et al. Commensal microbiota and myelin autoantigen cooperate to trigger autoimmune demyelination. Nature. 2011;479(7374):538‐541.
Lee YK, Menezes JS, Umesaki Y, Mazmanian SK. Proinflammatory T‐cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2011;108(Suppl 1):4615‐4622.
Ochoa‐Repáraz J, Mielcarz DW, Ditrio LE, et al. Role of gut commensal microflora in the development of experimental autoimmune encephalomyelitis. J Immunol. 2009;183(10):6041‐6050.
Miyauchi E, Kim S‐W, Suda W, et al. Gut microorganisms act together to exacerbate inflammation in spinal cords. Nature. 2020;585(7823):102‐106.
He B, Hoang TK, Tian X, et al. Lactobacillus reuteri reduces the severity of experimental autoimmune encephalomyelitis in mice by modulating gut microbiota. Front Immunol. 2019;10:385.
Johanson DM, Goertz JE, Marin IA, Costello J, Overall CC, Gaultier A. Experimental autoimmune encephalomyelitis is associated with changes of the microbiota composition in the gastrointestinal tract. Sci Rep. 2020;10(1):15183.
Tankou SK, Regev K, Healy BC, et al. Investigation of probiotics in multiple sclerosis. Mult Scler. 2018;24(1):58‐63.
Rahimlou M, Hosseini SA, Majdinasab N, Haghighizadeh MH, Husain D. Effects of long‐term administration of multi‐strain probiotic on circulating levels of BDNF, NGF, IL‐6 and mental health in patients with multiple sclerosis: a randomized, double‐blind, placebo‐controlled trial. Nutr Neurosci. 2020;25:411‐422.
Asghari KM, Dolatkhah N, Ayromlou H, Mirnasiri F, Dadfar T, Hashemian M. The effect of probiotic supplementation on the clinical and para‐clinical findings of multiple sclerosis: a randomized clinical trial. Sci Rep. 2023;13(1):18577.
Blais LL, Montgomery TL, Amiel E, Deming PB, Krementsov DN. Probiotic and commensal gut microbial therapies in multiple sclerosis and its animal models: a comprehensive review. Gut Microbes. 2021;13(1):1943289.
Kouchaki E, Tamtaji OR, Salami M, et al. Clinical and metabolic response to probiotic supplementation in patients with multiple sclerosis: a randomized, double‐blind, placebo‐controlled trial. Clin Nutr. 2017;36(5):1245‐1249.
Salami M, Kouchaki E, Asemi Z, Tamtaji OR. How probiotic bacteria influence the motor and mental behaviors as well as immunological and oxidative biomarkers in multiple sclerosis? A double blind clinical trial. J Funct Foods. 2019;52:8‐13.
Tamtaji OR, Kouchaki E, Salami M, et al. The effects of probiotic supplementation on gene expression related to inflammation, insulin, and lipids in patients with multiple sclerosis: a randomized, double‐blind, placebo‐controlled trial. J Am Coll Nutr. 2017;36(8):660‐665.
Expression of concern. J Am Nutr Assoc. 2022;41(1):125.
Bonder MJ, Kurilshikov A, Tigchelaar EF, et al. The effect of host genetics on the gut microbiome. Nat Genet. 2016;48(11):1407‐1412.
Wang J, Thingholm LB, Skieceviciene J, et al. Genome‐wide association analysis identifies variation in vitamin D receptor and other host factors influencing the gut microbiota. Nat Genet. 2016;48(11):1396‐1406.
Turpin W, Espin‐Garcia O, Xu W, et al. Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet. 2016;48(11):1413‐1417.
Kurilshikov A, Wijmenga C, Fu J, Zhernakova A. Host genetics and gut microbiome: challenges and perspectives. Trends Immunol. 2017;38(9):633‐647.
Dzierozynski L, Queen J, Sears CL. Subtle, persistent shaping of the gut microbiome by host genes: a critical determinant of host biology. Cell Host Microbe. 2023;31(10):1569‐1573.
Wang J, Kurilshikov A, Radjabzadeh D, et al. Meta‐analysis of human genome‐microbiome association studies: the MiBioGen consortium initiative. Microbiome. 2018;6(1):101.
Goodrich JK, Davenport ER, Beaumont M, et al. Genetic determinants of the gut microbiome in UK twins. Cell Host Microbe. 2016;19(5):731‐743.
Xie H, Guo R, Zhong H, et al. Shotgun metagenomics of 250 adult twins reveals genetic and environmental impacts on the gut microbiome. Cell Syst. 2016;3(6):572‐584.e573.
Manica A, Prugnolle F, Balloux F. Geography is a better determinant of human genetic differentiation than ethnicity. Hum Genet. 2005;118(3–4):366‐371.
Novembre J, Di Rienzo A. Spatial patterns of variation due to natural selection in humans. Nat Rev Genet. 2009;10(11):745‐755.
Elsayed NS, Valenzuela RK, Kitchner T, et al. Genetic risk score in multiple sclerosis is associated with unique gut microbiome. Sci Rep. 2023;13(1):16269.
Shahi SK, Ali S, Jaime CM, Guseva NV, Mangalam AK. HLA class II polymorphisms modulate gut microbiota and experimental autoimmune encephalomyelitis phenotype. Immunohorizons. 2021;5(8):627‐646.
Zivadinov R, Uxa L, Bratina A, et al. HLA‐DRB1*1501, ‐DQB1*0301, ‐DQB1*0302, ‐DQB1*0602, and ‐DQB1*0603 alleles are associated with more severe disease outcome on MRI in patients with multiple sclerosis. Int Rev Neurobiol. 2007;79:521‐535.
Dyment DA, Herrera BM, Cader MZ, et al. Complex interactions among MHC haplotypes in multiple sclerosis: susceptibility and resistance. Hum Mol Genet. 2005;14(14):2019‐2026.
Amirzargar A, Mytilineos J, Yousefipour A, et al. HLA class II (DRB1, DQA1 and DQB1) associated genetic susceptibility in Iranian multiple sclerosis (MS) patients. Eur J Immunogenet. 1998;25(4):297‐301.
Marrosu M, Muntoni F, Murru M, et al. HLA‐DQB1 genotype in Sardinian multiple sclerosis: evidence for a key role of DQB1* 0201 and* 0302 alleles. Neurology. 1992;42(4):883‐886.
Gregorová S, Divina P, Storchova R, et al. Mouse consomic strains: exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies. Genome Res. 2008;18(3):509‐515.
Gregorova S, Forejt J. PWD/Ph and PWK/Ph inbred mouse strains of Mus m. musculus subspecies – a valuable resource of phenotypic variations and genomic polymorphisms. Folia Biol. 2000;46(1):31‐41.
Montgomery TL, Kunstner A, Kennedy JJ, et al. Interactions between host genetics and gut microbiota determine susceptibility to CNS autoimmunity. Proc Natl Acad Sci USA. 2020;117(44):27516‐27527.
Bearoff F, Del Rio R, Case LK, et al. Natural genetic variation profoundly regulates gene expression in immune cells and dictates susceptibility to CNS autoimmunity. Genes Immun. 2016;17(7):386‐395.
Cox LM, Weiner HL. The microbiome requires a genetically susceptible host to induce central nervous system autoimmunity. Proc Natl Acad Sci USA. 2020;117(45):27764‐27766.
Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D‐J, Bakker BM. The role of short‐chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325‐2340.
Macfarlane S, Macfarlane GT. Regulation of short‐chain fatty acid production. Proc Nutr Soc. 2003;62(1):67‐72.
Barcenilla A, Pryde SE, Martin JC, et al. Phylogenetic relationships of butyrate‐producing bacteria from the human gut. Appl Environ Microbiol. 2000;66(4):1654‐1661.
Louis P, Young P, Holtrop G, Flint HJ. Diversity of human colonic butyrate‐producing bacteria revealed by analysis of the butyryl‐CoA: acetate CoA‐transferase gene. Environ Microbiol. 2010;12(2):304‐314.
Fettig NM, Osborne LC. Direct and indirect effects of microbiota‐derived metabolites on neuroinflammation in multiple sclerosis. Microbes Infect. 2021;23(6):104814.
Reichardt N, Duncan SH, Young P, et al. Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J. 2014;8(6):1323‐1335.
Vital M, Howe AC, Tiedje JM. Revealing the bacterial butyrate synthesis pathways by analyzing (meta) genomic data. mBio. 2014;5(2):e00889.
Duscha A, Gisevius B, Hirschberg S, et al. Propionic acid shapes the multiple sclerosis disease course by an immunomodulatory mechanism. Cell. 2020;180(6):1067‐1080.e1016.
Dalile B, Van Oudenhove L, Vervliet B, Verbeke K. The role of short‐chain fatty acids in microbiota–gut–brain communication. Nat Rev Gastroenterol Hepatol. 2019;16(8):461‐478.
Vijay N, Morris ME. Role of monocarboxylate transporters in drug delivery to the brain. Curr Pharm Des. 2014;20(10):1487‐1498.
Park J, Kim M, Kang SG, et al. Short‐chain fatty acids induce both effector and regulatory T cells by suppression of histone deacetylases and regulation of the mTOR‐S6K pathway. Mucosal Immunol. 2015;8(1):80‐93.
Arpaia N, Campbell C, Fan X, et al. Metabolites produced by commensal bacteria promote peripheral regulatory T‐cell generation. Nature. 2013;504(7480):451‐455.
Luu M, Pautz S, Kohl V, et al. The short‐chain fatty acid pentanoate suppresses autoimmunity by modulating the metabolic‐epigenetic crosstalk in lymphocytes. Nat Commun. 2019;10(1):760.
Schilderink R, Verseijden C, de Jonge WJ. Dietary inhibitors of histone deacetylases in intestinal immunity and homeostasis. Front Immunol. 2013;4:226.
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe‐derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504(7480):446‐450.
Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci USA. 2014;111(6):2247‐2252.
Singh N, Thangaraju M, Prasad PD, et al. Blockade of dendritic cell development by bacterial fermentation products butyrate and propionate through a transporter (Slc5a8)‐dependent inhibition of histone deacetylases. J Biol Chem. 2010;285(36):27601‐27608.
Pierre K, Pellerin L. Monocarboxylate transporters in the central nervous system: distribution, regulation and function. J Neurochem. 2005;94(1):1‐14.
Hanu R, McKenna M, O'Neill A, Resneck WG, Bloch RJ. Monocarboxylic acid transporters, MCT1 and MCT2, in cortical astrocytes in vitro and in vivo. Am J Physiol Cell Physiol. 2000;278(5):C921‐C930.
Nijland PG, Michailidou I, Witte ME, et al. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia. 2014;62(7):1125‐1141.
Martin PM, Gopal E, Ananth S, et al. Identity of SMCT1 (SLC5A8) as a neuron‐specific Na+−coupled transporter for active uptake of l‐lactate and ketone bodies in the brain. J Neurochem. 2006;98(1):279‐288.
Hoyles L, Snelling T, Umlai U‐K, et al. Microbiome–host systems interactions: protective effects of propionate upon the blood–brain barrier. Microbiome. 2018;6(1):55.
Erny D, Hrabě de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 2015;18(7):965‐977.
Cummings JH, Pomare E, Branch W, Naylor C, MacFarlane G. Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut. 1987;28(10):1221‐1227.
Bergman EN. Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev. 1990;70(2):567‐590.
Cong J, Zhou P, Zhang R. Intestinal microbiota‐derived short chain fatty acids in host health and disease. Nutrients. 2022;14(9):1977.
Braniste V, Al‐Asmakh M, Kowal C, et al. The gut microbiota influences blood‐brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.
Park J, Wang Q, Wu Q, Mao‐Draayer Y, Kim CH. Bidirectional regulatory potentials of short‐chain fatty acids and their G‐protein‐coupled receptors in autoimmune neuroinflammation. Sci Rep. 2019;9(1):8837.
Haghikia A, Jörg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity. 2015;43(4):817‐829.
Mizuno M, Noto D, Kaga N, Chiba A, Miyake S. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models. PLoS One. 2017;12(2):e0173032.
Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation. 2019;16(1):165.
Chevalier AC, Rosenberger TA. Increasing acetyl‐CoA metabolism attenuates injury and alters spinal cord lipid content in mice subjected to experimental autoimmune encephalomyelitis. J Neurochem. 2017;141(5):721‐737.
Olsson A, Gustavsen S, Nguyen TD, et al. Serum short‐chain fatty acids and associations with inflammation in newly diagnosed patients with multiple sclerosis and healthy controls. Front Immunol. 2021;12:661493.
Saresella M, Marventano I, Barone M, et al. Alterations in circulating fatty acid are associated with gut microbiota dysbiosis and inflammation in multiple sclerosis. Front Immunol. 2020;11:1390.
Takewaki D, Suda W, Sato W, et al. Alterations of the gut ecological and functional microenvironment in different stages of multiple sclerosis. Proc Natl Acad Sci USA. 2020;117(36):22402‐22412.
Zeng Q, Junli G, Liu X, et al. Gut dysbiosis and lack of short chain fatty acids in a Chinese cohort of patients with multiple sclerosis. Neurochem Int. 2019;129:104468.
Moles L, Delgado S, Gorostidi‐Aicua M, et al. Microbial dysbiosis and lack of SCFA production in a Spanish cohort of patients with multiple sclerosis. Front Immunol. 2022;13:960761.
Pérez‐Cobas AE, Artacho A, Knecht H, et al. Differential effects of antibiotic therapy on the structure and function of human gut microbiota. PLoS One. 2013;8(11):e80201.
Kałużna‐Czaplińska J, Gątarek P, Chirumbolo S, Chartrand MS, Bjørklund G. How important is tryptophan in human health? Crit Rev Food Sci Nutr. 2019;59(1):72‐88.
Mu C, Yang Y, Yu K, et al. Alteration of metabolomic markers of amino‐acid metabolism in piglets with in‐feed antibiotics. Amino Acids. 2017;49(4):771‐781.
Yu M, Mu C, Yang Y, et al. Increases in circulating amino acids with in‐feed antibiotics correlated with gene expression of intestinal amino acid transporters in piglets. Amino Acids. 2017;49(9):1587‐1599.
Le Floc'h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011;41(5):1195‐1205.
O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain‐gut‐microbiome axis. Behav Brain Res. 2015;277:32‐48.
Agus A, Planchais J, Sokol H. Gut microbiota regulation of tryptophan metabolism in health and disease. Cell Host Microbe. 2018;23(6):716‐724.
Cervenka I, Agudelo LZ, Ruas JL. Kynurenines: tryptophan's metabolites in exercise, inflammation, and mental health. Science. 2017;357(6349):eaaf9794.
Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Kynurenine pathway metabolism and the microbiota‐gut‐brain axis. Neuropharmacology. 2017;112(Pt B):399‐412.
Savitz J, Drevets WC, Wurfel BE, et al. Reduction of kynurenic acid to quinolinic acid ratio in both the depressed and remitted phases of major depressive disorder. Brain Behav Immun. 2015;46:55‐59.
Liu H, Ding L, Zhang H, et al. The metabolic factor kynurenic acid of kynurenine pathway predicts major depressive disorder. Front Psych. 2018;9:552.
Mawe GM, Hoffman JM. Serotonin signalling in the gut – functions, dysfunctions and therapeutic targets. Nat Rev Gastroenterol Hepatol. 2013;10(8):473‐486.
Williams BB, Van Benschoten AH, Cimermancic P, et al. Discovery and characterization of gut microbiota decarboxylases that can produce the neurotransmitter tryptamine. Cell Host Microbe. 2014;16(4):495‐503.
Smith EA, Macfarlane GT. Enumeration of human colonic bacteria producing phenolic and indolic compounds: effects of pH, carbohydrate availability and retention time on dissimilatory aromatic amino acid metabolism. J Appl Bacteriol. 1996;81(3):288‐302.
Lee J‐H, Lee J. Indole as an intercellular signal in microbial communities. FEMS Microbiol Rev. 2010;34(4):426‐444.
Roager HM, Licht TR. Microbial tryptophan catabolites in health and disease. Nat Commun. 2018;9(1):3294.
Aragozzini F, Ferrari A, Pacini N, Gualandris R. Indole‐3‐lactic acid as a tryptophan metabolite produced by Bifidobacterium spp. Appl Environ Microbiol. 1979;38(3):544‐546.
Cervantes‐Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells. Science. 2017;357(6353):806‐810.
Wlodarska M, Luo C, Kolde R, et al. Indoleacrylic acid produced by commensal Peptostreptococcus species suppresses inflammation. Cell Host Microbe. 2017;22(1):25‐37.e26.
Yano JM, Yu K, Donaldson GP, et al. Indigenous bacteria from the gut microbiota regulate host serotonin biosynthesis. Cell. 2015;161(2):264‐276.
Mandić AD, Woting A, Jaenicke T, et al. Clostridium ramosum regulates enterochromaffin cell development and serotonin release. Sci Rep. 2019;9(1):1177.
Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586‐597.
Yang F, Wu S‐C, Ling Z‐X, et al. Altered plasma metabolic profiles in Chinese patients with multiple sclerosis. Front Immunol. 2021;12:792711.
Fitzgerald KC, Smith MD, Kim S, et al. Multi‐omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep Med. 2021;2(10):100424.
Széles L, Keresztes G, Töröcsik D, et al. 1,25‐dihydroxyvitamin D3 is an autonomous regulator of the transcriptional changes leading to a tolerogenic dendritic cell phenotype. J Immunol. 2009;182(4):2074‐2083.
Levi I, Gurevich M, Perlman G, et al. Potential role of indolelactate and butyrate in multiple sclerosis revealed by integrated microbiome‐metabolome analysis. Cell Rep Med. 2021;2(4):100246.
Gaetani L, Boscaro F, Pieraccini G, et al. Host and microbial tryptophan metabolic profiling in multiple sclerosis. Front Immunol. 2020;11:157.
Židó M, Kačer D, Valeš K, Svobodová Z, Zimová D, Štětkárová I. Metabolomics of cerebrospinal fluid in multiple sclerosis compared with healthy controls: a pilot study. Front Neurol. 2022;13:874121.
Herman S, Åkerfeldt T, Spjuth O, Burman J, Kultima K. Biochemical differences in cerebrospinal fluid between secondary progressive and relapsing–remitting multiple sclerosis. Cells. 2019;8(2):84.
Hartai Z, Klivenyi P, Janaky T, Penke B, Dux L, Vecsei L. Kynurenine metabolism in multiple sclerosis. Acta Neurol Scand. 2005;112(2):93‐96.
Rejdak K, Bartosik‐Psujek H, Dobosz B, et al. Decreased level of kynurenic acid in cerebrospinal fluid of relapsing‐onset multiple sclerosis patients. Neurosci Lett. 2002;331(1):63‐65.
Ntranos A, Park H‐J, Wentling M, et al. Bacterial neurotoxic metabolites in multiple sclerosis cerebrospinal fluid and plasma. Brain. 2021;145:569‐583.
Nourbakhsh B, Bhargava P, Tremlett H, Hart J, Graves J, Waubant E. Altered tryptophan metabolism is associated with pediatric multiple sclerosis risk and course. Ann Clin Transl Neurol. 2018;5(10):1211‐1221.
Sonner JK, Keil M, Falk‐Paulsen M, et al. Dietary tryptophan links encephalogenicity of autoreactive T cells with gut microbial ecology. Nat Commun. 2019;10(1):4877.
Montgomery TL, Eckstrom K, Lile KH, et al. Lactobacillus reuteri tryptophan metabolism promotes host susceptibility to CNS autoimmunity. Microbiome. 2022;10(1):198.
Merchak AR, Cahill HJ, Brown LC, et al. The activity of the aryl hydrocarbon receptor in T cells tunes the gut microenvironment to sustain autoimmunity and neuroinflammation. PLoS Biol. 2023;21(2):e3002000.
Rothhammer V, Borucki DM, Kenison JE, et al. Detection of aryl hydrocarbon receptor agonists in human samples. Sci Rep. 2018;8(1):4970.
Dopkins N, Becker W, Miranda K, Walla M, Nagarkatti P, Nagarkatti M. Tryptamine attenuates experimental multiple sclerosis through activation of aryl hydrocarbon receptor. Front Pharmacol. 2021;11:619265.
Rouse M, Singh NP, Nagarkatti PS, Nagarkatti M. Indoles mitigate the development of experimental autoimmune encephalomyelitis by induction of reciprocal differentiation of regulatory T cells and Th17 cells. Br J Pharmacol. 2013;169(6):1305‐1321.
Alexander M, Upadhyay V, Rock R, et al. A diet‐dependent host metabolite shapes the gut microbiota to protect from autoimmunity. bioRxiv. 2023. doi:10.1101/2023.11.02.565382.
Choi S‐C, Brown J, Gong M, et al. Gut microbiota dysbiosis and altered tryptophan catabolism contribute to autoimmunity in lupus‐susceptible mice. Sci Transl Med. 2020;12(551):eaax2220.
Seymour BJ, Trent B, Allen B, et al. Microbiota‐dependent indole production is required for the development of collagen‐induced arthritis. bioRxiv. 2023. doi:10.1101/2023.10.13.561693.
Brown J, Robusto B, Morel L. Intestinal dysbiosis and tryptophan metabolism in autoimmunity. Front Immunol. 2020;11:1741.
Seymour BJ, Allen BE, Kuhn KA. Microbial mechanisms of rheumatoid arthritis pathogenesis. Curr Rheumatol Rep. 2024;26:124‐132.
Long LL, Svenson KL, Mourino AJ, et al. Shared and distinctive features of the gut microbiome of C57BL/6 mice from different vendors and production sites, and in response to a new vivarium. Lab Anim. 2021;50(7):185‐195.
Bell JM, John AM. Amino acid requirements of growing mice: arginine, lysine, tryptophan and phenylalanine. J Nutr. 1981;111(3):525‐530.
Brown J, Abboud G, Ma L, et al. Microbiota‐mediated skewing of tryptophan catabolism modulates CD4(+) T cells in lupus‐prone mice. iScience. 2022;25(5):104241.
Li Y, Innocentin S, Withers DR, et al. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell. 2011;147(3):629‐640.
Jensen SN, Cady NM, Shahi SK, et al. Isoflavone diet ameliorates experimental autoimmune encephalomyelitis through modulation of gut bacteria depleted in patients with multiple sclerosis. Sci Adv. 2021;7(28):eabd4595.
Ghimire S, Cady NM, Lehman P, et al. Dietary isoflavones alter gut microbiota and lipopolysaccharide biosynthesis to reduce inflammation. Gut Microbes. 2022;14(1):2127446.
Messina M. A brief historical overview of the past two decades of soy and isoflavone research. J Nutr. 2010;140(7):1350S‐1354S.
Staley C, Weingarden AR, Khoruts A, Sadowsky MJ. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47‐64.
Wahlström A, Sayin SI, Marschall HU, Bäckhed F. Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab. 2016;24(1):41‐50.
Mangalam A, Poisson L, Nemutlu E, et al. Profile of circulatory metabolites in a relapsing‐remitting animal model of multiple sclerosis using global metabolomics. J Clin Cell Immunol. 2013;4(3):1000150.
Bhargava P, Smith MD, Mische L, et al. Bile acid metabolism is altered in multiple sclerosis and supplementation ameliorates neuroinflammation. J Clin Invest. 2020;130(7):3467‐3482.
Lewis ND, Patnaude LA, Pelletier J, et al. A GPBAR1 (TGR5) small molecule agonist shows specific inhibitory effects on myeloid cell activation in vitro and reduces experimental autoimmune encephalitis (EAE) in vivo. PLoS One. 2014;9(6):e100883.
Ladakis DC, Harrison KL, Smith MD, et al. Bile acid metabolites predict multiple sclerosis progression and supplementation is safe in progressive disease. medRxiv. 2024. doi:10.1101/2024.01.17.24301393.
Diestel A, Aktas O, Hackel D, et al. Activation of microglial poly(ADP‐ribose)‐polymerase‐1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med. 2003;198(11):1729‐1740.
Teunissen CE, Dijkstra CD, Polman CH, Hoogervorst EL, von Bergmann K, Lütjohann D. Decreased levels of the brain specific 24S‐hydroxycholesterol and cholesterol precursors in serum of multiple sclerosis patients. Neurosci Lett. 2003;347(3):159‐162.
Mueller AM, Pedré X, Stempfl T, et al. Novel role for SLPI in MOG‐induced EAE revealed by spinal cord expression analysis. J Neuroinflammation. 2008;5:20.
Lauer K. Diet and multiple sclerosis. Neurology. 1997;49(2 Suppl 2):S55‐S61.
Zhang SM, Willett WC, Hernán MA, Olek MJ, Ascherio A. Dietary fat in relation to risk of multiple sclerosis among two large cohorts of women. Am J Epidemiol. 2000;152(11):1056‐1064.
Timmermans S, Bogie JFJ, Vanmierlo T, et al. High fat diet exacerbates neuroinflammation in an animal model of multiple sclerosis by activation of the renin angiotensin system. J Neuroimmune Pharmacol. 2014;9(2):209‐217.
Suzuki Y, Ruiz‐Ortega M, Lorenzo O, Ruperez M, Esteban V, Egido J. Inflammation and angiotensin II. Int J Biochem Cell Biol. 2003;35(6):881‐900.
Platten M, Youssef S, Hur EM, et al. Blocking angiotensin‐converting enzyme induces potent regulatory T cells and modulates TH1‐ and TH17‐mediated autoimmunity. Proc Natl Acad Sci USA. 2009;106(35):14948‐14953.
Muthukumar A, Sun D, Zaman K, Barnes JL, Haile D, Fernandes G. Age associated alterations in costimulatory and adhesion molecule expression in lupus‐prone mice are attenuated by food restriction with n‐6 and n‐3 fatty acids. J Clin Immunol. 2004;24(5):471‐480.
Matsuzaki J, Kuwamura M, Yamaji R, Inui H, Nakano Y. Inflammatory responses to lipopolysaccharide are suppressed in 40% energy‐restricted mice. J Nutr. 2001;131(8):2139‐2144.
Kubo C, Gajar A, Johnson BC, Good RA. The effects of dietary restriction on immune function and development of autoimmune disease in BXSB mice. Proc Natl Acad Sci USA. 1992;89(7):3145‐3149.
Cignarella F, Cantoni C, Ghezzi L, et al. Intermittent fasting confers protection in CNS autoimmunity by altering the gut microbiota. Cell Metab. 2018;27(6):1222‐1235.e1226.
Piccio L, Stark JL, Cross AH. Chronic calorie restriction attenuates experimental autoimmune encephalomyelitis. J Leukoc Biol. 2008;84(4):940‐948.
Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin‐degrading bacterium. Int J Syst Evol Microbiol. 2004;54(5):1469‐1476.
Lin X, Singh A, Shan X, et al. Akkermansia muciniphila‐mediated degradation of host mucin expands the tryptophan utilizer Alistipes and exacerbates autoimmunity by promoting Th17 immune responses. SSRN Electron J. 2022. doi:10.2139/ssrn.4065073.
Zhang L, Ji Q, Chen Q, et al. Akkermansia muciniphila inhibits tryptophan metabolism via the AhR/β‐catenin signaling pathway to counter the progression of colorectal cancer. Int J Biol Sci. 2023;19(14):4393‐4410.
Yin J, Song Y, Hu Y, et al. Dose‐dependent beneficial effects of tryptophan and its derived metabolites on Akkermansia in vitro: a preliminary prospective study. Microorganisms. 2021;9(7):1511.
Steimle A, Neumann M, Grant ET, et al. Gut microbiome‐based prediction of autoimmune neuroinflammation. bioRxiv. 2023. doi:10.1101/2023.04.14.536901.
Konstanti P, Ligthart K, Fryganas C, et al. Physiology of γ‐aminobutyric acid production by Akkermansia muciniphila. Appl Environ Microbiol. 2024;90(1):e0112123.
Lasemi R, Kundi M, Moghadam NB, Moshammer H, Hainfellner JA. Vitamin K2 in multiple sclerosis patients. Wien Klin Wochenschr. 2018;130(9–10):307‐313.
Cantoni C, Lin Q, Dorsett Y, et al. Alterations of host‐gut microbiome interactions in multiple sclerosis. EBioMedicine. 2022;76:103798.
Spain RI, Piccio L, Langer‐Gould AM. The role of diet in multiple sclerosis. Neurology. 2023;100(4):167‐168.
Adaptive platform trials: definition, design, conduct and reporting considerations. Nat Rev Drug Discov. 2019;18(10):797‐807.
Diener C, Gibbons SM. Metagenomic estimation of dietary intake from human stool. bioRxiv. 2024. doi:10.1101/2024.02.02.578701.
Al KF, Craven LJ, Gibbons S, et al. Fecal microbiota transplantation is safe and tolerable in patients with multiple sclerosis: a pilot randomized controlled trial. Mult Scler J Exp Transl Clin. 2022;8(2):20552173221086662.
Borody T, Leis S, Campbell J, Torres M, Nowak A. Fecal microbiota transplantation (FMT) in multiple sclerosis (MS): 942. Am J Gastroenterol. 2011;106:S352.
Makkawi S, Camara‐Lemarroy C, Metz L. Fecal microbiota transplantation associated with 10 years of stability in a patient with SPMS. Neurol Neuroimmunol Neuroinflamm. 2018;5(4):e459.
Rohlke F, Stollman N. Fecal microbiota transplantation in relapsing Clostridium difficile infection. Therap Adv Gastroenterol. 2012;5(6):403‐420.
Zhang Y, Saint Fleur A, Feng H. The development of live biotherapeutics against Clostridioides difficile infection towards reconstituting gut microbiota. Gut Microbes. 2022;14(1):2052698.
Collins J, Auchtung JM. Control of Clostridium difficile infection by defined microbial communities. Microbiol Spectr. 2017;5(5):10.1128.
Louie T, Golan Y, Khanna S, et al. VE303, a defined bacterial consortium, for prevention of recurrent Clostridioides difficile infection: a randomized clinical trial. JAMA. 2023;329(16):1356‐1366.
Han S, Lu Y, Xie J, et al. Probiotic gastrointestinal transit and colonization after oral administration: a long journey. Front Cell Infect Microbiol. 2021;11:609722.
Jimenez M, Langer R, Traverso G. Microbial therapeutics: new opportunities for drug delivery. J Exp Med. 2019;216(5):1005‐1009.
Zmora N, Zilberman‐Schapira G, Suez J, et al. Personalized gut mucosal colonization resistance to empiric probiotics is associated with unique host and microbiome features. Cell. 2018;174(6):1388‐1405.e1321.
Suez J, Zmora N, Zilberman‐Schapira G, et al. Post‐antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174(6):1406‐1423.e1416.
Wolter M, Grant ET, Boudaud M, et al. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021;18(12):885‐902.
Swanson KS, Gibson GR, Hutkins R, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat Rev Gastroenterol Hepatol. 2020;17(11):687‐701.
Ma J, Lyu Y, Liu X, et al. Engineered probiotics. Microb Cell Fact. 2022;21(1):72.
Sanmarco LM, Rone JM, Polonio CM, et al. Engineered probiotics limit CNS autoimmunity by stabilizing HIF‐1α in dendritic cells. bioRxiv. 2023. doi:10.1101/2023.03.17.532101.
معلومات مُعتمدة: F31NS120381 United States NS NINDS NIH HHS; R01NS097596 United States NS NINDS NIH HHS; T32AI055402-16A1 United States NS NINDS NIH HHS; P30GM118228-05S3 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: SCFA; diet; genetics; microbiome; multiple sclerosis; tryptophan
تواريخ الأحداث: Date Created: 20240508 Latest Revision: 20240508
رمز التحديث: 20240508
DOI: 10.1111/imr.13343
PMID: 38717158
قاعدة البيانات: MEDLINE