دورية أكاديمية

Integrative species delimitation and five new species of lynx spiders (Araneae, Oxyopidae) in Taiwan.

التفاصيل البيبلوغرافية
العنوان: Integrative species delimitation and five new species of lynx spiders (Araneae, Oxyopidae) in Taiwan.
المؤلفون: Lo YY; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.; Wild Animals Division, Biodiversity Research Institute, Nantou, Taiwan., Cheng RC; Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan.; Research Center for Global Change Biology, National Chung Hsing University, Taichung, Taiwan., Lin CP; Department of Life Science, National Taiwan Normal University, Taipei, Taiwan.
المصدر: PloS one [PLoS One] 2024 May 09; Vol. 19 (5), pp. e0301776. Date of Electronic Publication: 2024 May 09 (Print Publication: 2024).
نوع المنشور: Journal Article; Research Support, Non-U.S. Gov't
اللغة: English
بيانات الدورية: Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
أسماء مطبوعة: Original Publication: San Francisco, CA : Public Library of Science
مواضيع طبية MeSH: Spiders*/classification , Spiders*/genetics , Spiders*/anatomy & histology , Phylogeny*, Animals ; Taiwan ; Male ; Female ; Species Specificity
مستخلص: An accurate assessment of species diversity is a cornerstone of biology and conservation. The lynx spiders (Araneae: Oxyopidae) represent one of the most diverse and widespread cursorial spider groups, however their species richness in Asia is highly underestimated. In this study, we revised species diversity with extensive taxon sampling in Taiwan and explored species boundaries based on morphological traits and genetic data using a two-step approach of molecular species delimitation. Firstly, we employed a single COI dataset and applied two genetic distance-based methods: ABGD and ASAP, and two topology-based methods: GMYC and bPTP. Secondly, we further analyzed the lineages that were not consistently delimited, and incorporated H3 to the dataset for a coalescent-based analysis using BPP. A total of eight morphological species were recognized, including five new species, Hamataliwa cordivulva sp. nov., Hamat. leporauris sp. nov., Tapponia auriola sp. nov., T. parva sp. nov. and T. rarobulbus sp. nov., and three newly recorded species, Hamadruas hieroglyphica (Thorell, 1887), Hamat. foveata Tang & Li, 2012 and Peucetia latikae Tikader, 1970. All eight morphological species exhibited reciprocally monophyletic lineages. The results of molecular-based delimitation analyses suggested a variety of species hypotheses that did not fully correspond to the eight morphological species. We found that Hamat. cordivulva sp. nov. and Hamat. foveata showed shallow genetic differentiation in the COI, but they were unequivocally distinguishable according to their genitalia. In contrast, T. parva sp. nov. represented a deep divergent lineage, while differences of genitalia were not detected. This study highlights the need to comprehensively employ multiple evidence and methods to delineate species boundaries and the values of diagnostic morphological characters for taxonomic studies in lynx spiders.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Lo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
References: PLoS One. 2012;7(6):e40122. (PMID: 22761951)
Bioinformatics. 2019 Feb 1;35(3):526-528. (PMID: 30016406)
Zootaxa. 2021 Feb 11;4927(1):zootaxa.4927.1.4. (PMID: 33756720)
Sci Rep. 2018 Sep 24;8(1):14256. (PMID: 30250036)
Mol Ecol Resour. 2012 May;12(3):562-5. (PMID: 22243808)
Proc Biol Sci. 2000 Apr 7;267(1444):631-6. (PMID: 10821606)
PLoS One. 2013 Nov 11;8(11):e77882. (PMID: 24244283)
Mol Ecol. 2016 Dec;25(23):5959-5974. (PMID: 27748559)
Proc Natl Acad Sci U S A. 2017 Feb 14;114(7):1607-1612. (PMID: 28137871)
Syst Biol. 2022 Aug 10;71(5):1233-1243. (PMID: 34672346)
Mol Ecol. 2012 Apr;21(8):1864-77. (PMID: 21883587)
Syst Biol. 2018 Sep 1;67(5):901-904. (PMID: 29718447)
Zootaxa. 2021 Aug 31;5027(2):151-159. (PMID: 34811237)
Mol Phylogenet Evol. 2020 Oct;151:106900. (PMID: 32599078)
Mol Biol Evol. 2013 Apr;30(4):772-80. (PMID: 23329690)
Sci Rep. 2019 Oct 1;9(1):14033. (PMID: 31575965)
Mol Ecol. 2013 Sep;22(17):4369-83. (PMID: 23855767)
Mol Phylogenet Evol. 2019 Jul;136:227-240. (PMID: 30953780)
Mol Ecol Resour. 2015 Mar;15(2):268-77. (PMID: 25042335)
Syst Biol. 2009 Aug;58(4):439-42; discussion 442-4. (PMID: 20525596)
Mol Phylogenet Evol. 2017 Feb;107:48-55. (PMID: 27637992)
Ecol Evol. 2022 May 19;12(5):e8942. (PMID: 35600695)
Cladistics. 2022 Apr;38(2):264-275. (PMID: 34487362)
Syst Biol. 2014 Jul;63(4):639-44. (PMID: 24682413)
PLoS Biol. 2005 Dec;3(12):e422. (PMID: 16336051)
Mol Phylogenet Evol. 2012 Jan;62(1):485-95. (PMID: 22079550)
Front Zool. 2010 May 25;7:16. (PMID: 20500846)
Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):2987-96. (PMID: 18522916)
Zookeys. 2021 Feb 02;1013:1-665. (PMID: 34512087)
PLoS Comput Biol. 2014 Apr 10;10(4):e1003537. (PMID: 24722319)
BMC Evol Biol. 2007 Nov 08;7:214. (PMID: 17996036)
Cladistics. 2017 Dec;33(6):574-616. (PMID: 34724759)
Zookeys. 2021 Dec 17;1078:107-134. (PMID: 35068955)
Mol Ecol. 2017 Jun;26(11):3028-3036. (PMID: 28281309)
Trends Ecol Evol. 2012 Sep;27(9):480-8. (PMID: 22633974)
Syst Biol. 2006 Aug;55(4):595-609. (PMID: 16967577)
Mol Phylogenet Evol. 2023 Jul;184:107798. (PMID: 37094612)
Front Zool. 2007 Mar 07;4:8. (PMID: 17343734)
Ecol Evol. 2021 Apr 04;11(10):5669-5681. (PMID: 34026038)
Syst Biol. 2012 May;61(3):539-42. (PMID: 22357727)
Mol Ecol Resour. 2011 Nov;11(6):956-67. (PMID: 21635698)
Syst Biol. 2007 Dec;56(6):879-86. (PMID: 18027281)
Mol Biol Evol. 2020 May 1;37(5):1530-1534. (PMID: 32011700)
Bioinformatics. 2010 Feb 1;26(3):419-20. (PMID: 20080509)
Bioinformatics. 2013 Nov 15;29(22):2869-76. (PMID: 23990417)
Syst Biol. 2013 Sep;62(5):707-24. (PMID: 23681854)
PLoS Biol. 2004 Oct;2(10):e354. (PMID: 15486587)
PLoS One. 2008;3(6):e2490. (PMID: 22423312)
Mol Ecol Resour. 2021 Jul;21(5):1475-1489. (PMID: 33565247)
Ecol Evol. 2020 Jun 28;10(14):6890-6896. (PMID: 32760499)
BMC Evol Biol. 2019 Jun 6;19(1):114. (PMID: 31170905)
Syst Biol. 2018 Sep 1;67(5):830-846. (PMID: 29462495)
Mol Biol Evol. 2018 Oct 1;35(10):2585-2593. (PMID: 30053098)
BMC Evol Biol. 2019 Apr 25;19(1):95. (PMID: 31023232)
Syst Biol. 2014 Jul;63(4):534-42. (PMID: 24627183)
PLoS Biol. 2004 Oct;2(10):e312. (PMID: 15455034)
Front Genet. 2019 Feb 11;10:11. (PMID: 30804976)
Brief Bioinform. 2019 Jul 19;20(4):1160-1166. (PMID: 28968734)
Mitochondrial DNA A DNA Mapp Seq Anal. 2016 Jul;27(4):2574-84. (PMID: 26004249)
Mol Phylogenet Evol. 2014 Feb;71:79-93. (PMID: 24280211)
PLoS One. 2016 Sep 28;11(9):e0162325. (PMID: 27680019)
Mol Mar Biol Biotechnol. 1994 Oct;3(5):294-9. (PMID: 7881515)
PLoS One. 2016 Dec 19;11(12):e0167203. (PMID: 27992537)
Mol Ecol Resour. 2021 Feb;21(2):609-620. (PMID: 33058550)
Nat Methods. 2017 Jun;14(6):587-589. (PMID: 28481363)
Syst Biol. 2017 Jul 1;66(4):644-656. (PMID: 27798406)
Trends Ecol Evol. 2023 Dec;38(12):1143-1153. (PMID: 37684131)
Insects. 2022 Mar 05;13(3):. (PMID: 35323559)
BMC Evol Biol. 2012 Oct 02;12:196. (PMID: 23031350)
Sci Rep. 2017 Nov 23;7(1):16124. (PMID: 29170403)
Sci Rep. 2020 Apr 10;10(1):6208. (PMID: 32277166)
Syst Biol. 2018 Mar 01;67(2):269-284. (PMID: 28945903)
تواريخ الأحداث: Date Created: 20240509 Date Completed: 20240509 Latest Revision: 20240512
رمز التحديث: 20240512
مُعرف محوري في PubMed: PMC11081396
DOI: 10.1371/journal.pone.0301776
PMID: 38722906
قاعدة البيانات: MEDLINE
الوصف
تدمد:1932-6203
DOI:10.1371/journal.pone.0301776