دورية أكاديمية

Influence of molecular descriptors of plant volatilomics on fumigant action against the three major stored product beetle pests.

التفاصيل البيبلوغرافية
العنوان: Influence of molecular descriptors of plant volatilomics on fumigant action against the three major stored product beetle pests.
المؤلفون: Lokesh M; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India., Sreekrishnakumar AK; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India., Sahu U; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India., Vendan SE; Food Protectants and Infestation Control Department, CSIR-Central Food Technological Research Institute, Mysore, 570 020, Karnataka, India. ezilvendan@cftri.res.in.; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. ezilvendan@cftri.res.in.
المصدر: Environmental science and pollution research international [Environ Sci Pollut Res Int] 2024 May; Vol. 31 (24), pp. 35455-35469. Date of Electronic Publication: 2024 May 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9441769 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1614-7499 (Electronic) Linking ISSN: 09441344 NLM ISO Abbreviation: Environ Sci Pollut Res Int Subsets: MEDLINE
أسماء مطبوعة: Publication: <2013->: Berlin : Springer
Original Publication: Landsberg, Germany : Ecomed
مواضيع طبية MeSH: Coleoptera*/drug effects , Fumigation* , Oils, Volatile*/chemistry , Oils, Volatile*/pharmacology, Animals ; Quantitative Structure-Activity Relationship ; Insecticides/chemistry ; Insecticides/pharmacology ; Tribolium/drug effects
مستخلص: Plant volatilomics such as essential oils (EOs) and volatile phytochemicals (PCs) are known as potential natural sources for the development of biofumigants as an alternative to conventional fumigant pesticides. This present work was aimed to evaluate the fumigant toxic effect of five selected EOs (cinnamon, garlic, lemon, orange, and peppermint) and PCs (citronellol, limonene, linalool, piperitone, and terpineol) against the Callosobruchus maculatus, Sitophilus oryzae, and Tribolium castaneum adults. Furthermore, for the estimation of the relationship between molecular descriptors and fumigant toxicity of plant volatiles, quantitative structural activity relationship (QSAR) models were developed using principal component analysis and multiple linear regression. Amongst the tested EOs, garlic EO was found to be the most toxic fumigant. The PCs toxicity analysis revealed that terpineol, limonene, linalool, and piperitone as potential fumigants to C. maculatus (< 20 µL/L air of LC 50 ), limonene and piperitone as potential fumigants to T. castaneum (14.35 and 154.11 µL/L air of LC 50 , respectively), and linalool and piperitone as potential fumigants to S. oryzae (192.27 and 69.10 µL/L air of LC 50 , respectively). QSAR analysis demonstrated the role of various molecular descriptors of EOs and PCs on the fumigant toxicity in insect pest species. In specific, dipole and Randic index influence the toxicity in C. maculatus, molecular weight and maximal projection area influence the toxicity in S. oryzae, and boiling point and Dreiding energy influence the toxicity in T. castaneum. The present findings may provide insight of a new strategy to select effective EOs and/or PCs against stored product insect pests.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abbott WS (1925) The value of the dry substitutes for liquid lime. J Eco Entomol 18:265–267. (PMID: 10.1093/jee/18.2.265a)
Abdalla MI, Abdelbagi AO, Hammad AMA, Laing MD (2017) Use of volatile oils of garlic to control the cowpea weevil Callosobruchus maculatus (Bruchidae: Coleoptera). S Afr J Plant Soil 34(3):185–190. https://doi.org/10.1080/02571862.2016.1225232. (PMID: 10.1080/02571862.2016.1225232)
Abdelgaleil SAM, Badawy MEI, Mohamed MIE, Mohamed S (2012) Chemical composition and fumigant toxicity of essential oils isolated from Egyptian plants against stored product insects Sitophilus oryzae (L.) and Tribolium castaneum (Herbst). In: Navarro S, Banks HJ, Jayas DS, Bell CH, Noyes RT, Ferizli AG, Emekci M, Isikber AA, Alagusundaram K (eds) Proceedings of 9 th International Conference on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Turkey. 15-19 October 2012. ARBER Professional Congress Services, Turkey, pp 50–57.
Bincy K, Remesh AV, Prabhakar PR, Vivek Babu CS (2023) Chemical composition and insecticidal activity of Ocimum basilicum (Lamiaceae) essential oil and its major constituent, estragole against Sitophilus oryzae (Coleoptera: Curculionidae). J Plant Dis Prot 130(3):529–541. https://doi.org/10.1007/s41348-022-00695-4. (PMID: 10.1007/s41348-022-00695-4)
Bond EJ, Monro HAU, Buckland CT (1967) The influence of oxygen on the toxicity of fumigants to Sitophilus granarius (L). J Stored Prod Res 3(4):289–294. https://doi.org/10.1016/0022-474X(67)90032-X. (PMID: 10.1016/0022-474X(67)90032-X)
Bossou AD, Ahoussi E, Ruysbergh E, Adams A, Smagghe G, De Kimpe N, Avlessi F, Sohounhloue DCK, Mangelinckx S (2015) Characterization of volatile compounds from three Cymbopogon species and Eucalyptus citriodora from Benin and their insecticidal activities against Tribolium castaneum. Ind Crops Prod 76:306–317. https://doi.org/10.1016/j.indcrop.2015.06.031. (PMID: 10.1016/j.indcrop.2015.06.031)
Brari J, Kumar V (2020) Insecticidal potential of two monoterpenes against Tribolium Castaneum (Herbst.) and Sitophilus oryzae (L.) major stored product insect pests. Int J Pharm Biol Arch 11(4):175–181.
Brari J, Thakur DR (2015) Insecticidal efficacy of essential oil from Cinnamomum zeylanicum Blume and its two major constituents against Callosobruchus maculatus (F.) and Sitophilus oryzae (L.). J Agric Technol 11(6):1323–1336.
Central Insecticide Board and Registration Committee (CIBRC) (2022) Insecticides / Pesticides Registered under section 9(3) of the Insecticides Act, 1968 for use in the Country. http://ppqs.gov.in/sites/default/files/molecules&#95;registered&#95;under&#95;section-93&#95;as&#95;on&#95;01.07.2022.pdf . Accessed on 22 September 2022.
Chaubey MK (2016) Fumigant and contact toxicity of Allium sativum (Alliaceae) essential oil against Sitophilus oryzae L. (Coleoptera: Dryophthoridae). Entomol Appl Sci Lett 3(2):43–48.
Chen J, Jiang QD, Chai YP, Zhang H, Peng P, Yang XX (2016) Natural terpenes as penetration enhancers for transdermal drug delivery. Molecules 21(12):1709. https://doi.org/10.3390/molecules21121709. (PMID: 10.3390/molecules21121709)
Chowdhury P (2021) In silico investigation of phytoconstituents from Indian medicinal herb ‘Tinospora cordifolia (giloy)’ against SARS-CoV-2 (COVID-19) by molecular dynamics approach. J Biomol Struct Dyn 39(17):6792–6809. https://doi.org/10.1080/07391102.2020.1803968. (PMID: 10.1080/07391102.2020.1803968)
Comelli NC, Romero OE, Diez PA, Marinho CF, Schliserman P, Carrizo A, Ortiz EV, Duchowicz PR (2018) QSAR Study of biologically active essential oils against beetles infesting the walnut in Catamarca, Argentina. J Agric Food Chem 66(48):12855–12865. https://doi.org/10.1021/acs.jafc.8b04161. (PMID: 10.1021/acs.jafc.8b04161)
Davoudi A, Shayesteh N, Shirdel D, Hosseinzadeh A (2013) Effect of diethyl maleate on toxicity of linalool against two stored product insects in laboratory condition. Afr J Biotechnol 10(48):9918–9921. https://doi.org/10.5897/ajb11.1039. (PMID: 10.5897/ajb11.1039)
de Andrade Rodrigues RMB, da Silva Fontes L, de Carvalho Brito R, Barbosa DRES, das Graças Lopes Citó AM, do Carmo IS, de Jesus Sousa EM, Silva GN (2022) A sustainable approach in the management of Callosobruchus maculatus: essential oil of Protium heptaphyllum and its major compound d-limonene as biopesticides. J Plant Dis Prot 129(4):831–841. https://doi.org/10.1007/s41348-022-00617-4. (PMID: 10.1007/s41348-022-00617-4)
Eddy NO (2020) Theoretical chemistry study on the toxicity of some polychlorobiphenyl (PCB) compounds using molecular descriptors. Sci Afr 10:e00587. https://doi.org/10.1016/j.sciaf.2020.e00587. (PMID: 10.1016/j.sciaf.2020.e00587)
El Nagar TFK, Fattah HMA, Khaled AS, Aly SA (2012) Efficiency of peppermint oil fumigant on controlling Callosobruchus maculatus F. infesting cowpea seeds. Life Sci J 9(2):337–383.
Eljazi JS, Bachrouch O, Salem N, Msaada K, Aouini J, Hammami M, Boushih E, Abderraba M, Limam F, Jemaa JMB (2018) Chemical composition and insecticidal activity of essential oil from coriander fruit against Tribolium castaenum, Sitophilus oryzae, and Lasioderma serricorne. Int J Food Prop 20(3):S2833–S2845. https://doi.org/10.1080/10942912.2017.1381112. (PMID: 10.1080/10942912.2017.1381112)
El-Sabrout AM, Salem MZ, Bin-Jumah M, Allam AA (2019) Toxicological activity of some plant essential oils against Tribolium castaneum and Culex pipiens larvae. Processes 7(12):933. https://doi.org/10.3390/pr7120933. (PMID: 10.3390/pr7120933)
Enan EE (2005) Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch Insect Biochem Physiol 59(3):161–171. https://doi.org/10.1002/arch.20076. (PMID: 10.1002/arch.20076)
Finney DJ (1971) Probit analysis. The University Press, Cambridge.
Gallucci MN, Carezzano ME, Oliva MM, Demo MS, Pizzolitto RP, Zunino MP, Zygadlo JA, Dambolena JS (2014) In vitro activity of natural phenolic compounds against fluconazole-resistant Candida species: a quantitative structure–activity relationship analysis. J Appl Microbiol 116(4):795–804. https://doi.org/10.1111/jam.12432. (PMID: 10.1111/jam.12432)
Gehring PJ, Nolan RJ, Watanabe PG, Schumann AM (1991) Solvents, fumigants and related compounds. In: Hayes WJ, Laws ER (eds) Handbook of Pesticide Toxicology, vol 2. Academic Press San Diego, California, pp 668–671.
Ghasemi G, Arshadi S, Rashtehroodi AN, Nirouei M, Shariati S, Rastgoo Z (2013) QSAR investigation on quinolizidinyl derivatives in Alzheimer’s disease. J Computational Med 312728. https://doi.org/10.1155/2013/312728.
Hammoudan I, Matchi S, Bakhouch M, Belaidi S, Chtita S (2021) QSAR modelling of peptidomimetic derivatives towards HKU4-CoV 3CLpro inhibitors against MERS-CoV. Chemistry 3(1):391–401. https://doi.org/10.3390/chemistry3010029. (PMID: 10.3390/chemistry3010029)
Hikal WM, Baeshen RS, Ahl HAHS (2017) Botanical insecticide as simple extractives for pest control. Cogent Biol 3:1404274. https://doi.org/10.1080/23312025.2017.1404274. (PMID: 10.1080/23312025.2017.1404274)
Homayouni A, Azizi A, Keshtiban AK, Amini A, Eslami A (2015) Date canning: a new approach for the long time preservation of date. J Food Sci Technol 52(4):1872–1880. https://doi.org/10.1007/2Fs13197-014-1291-0. (PMID: 10.1007/2Fs13197-014-1291-0)
Ibrahim SS, Sahu U, Karthik P, Vendan SE (2023) Eugenol nanoemulsion as bio-fumigant: enhanced insecticidal activity against the rice weevil, Sitophilus oryzae adults. J Food Sci Technol 60(4):1435–1445. https://doi.org/10.1007/s13197-023-05690-7. (PMID: 10.1007/s13197-023-05690-7)
Isman MB, Grieneisen ML (2014) Botanical insecticide research: many publications, limited useful data. Trends Plant Sci 19(3):140–145. https://doi.org/10.1016/j.tplants.2013.11.005. (PMID: 10.1016/j.tplants.2013.11.005)
Jayaram CS, Chauhan N, Dolma SK, Reddy SE (2022) Chemical composition and insecticidal activities of essential oils against the pulse beetle. Molecules 27(2):568. https://doi.org/10.3390/2Fmolecules27020568. (PMID: 10.3390/2Fmolecules27020568)
Jiang Z, Kempinski C, Chappell J (2016) Extraction and analysis of terpenes/terpenoids. Curr Protoc Plant Biol 1(2):345–358. https://doi.org/10.1002/cppb.20024. (PMID: 10.1002/cppb.20024)
Karabörklü S, Ayvaz A (2023) A comprehensive review of effective essential oil components in stored-product pest management. J Plant Dis Prot 130:449–481. (PMID: 10.1007/s41348-023-00712-0)
Kathirvelu C, Maline AS, Raja BAG, Kavitha T (2020) Effect of fumigation on Rhyzopertha dominica F. and Tribolium castaneum H. in stored products using essential oils. Ann Agri-Bio Res 25(2):258–262.
Ketoh GK, Koumaglo HK, Glitho IA, Huignard J (2006) Comparative effects of Cymbopogon schoenanthus essential oil and piperitone on Callosobruchus maculatus development. Fitoterapia 77:506–510. https://doi.org/10.1016/j.fitote.2006.05.031. (PMID: 10.1016/j.fitote.2006.05.031)
Lashgari A, Mashayekhi S, Javadzadeh M, Marzban R (2014) Effect of Mentha piperita and Cuminum cyminum essential oil on Tribolium castaneum and Sitophilus oryzae. Arch Phytopathol Plant Prot 47(3):324–329. https://doi.org/10.1080/03235408.2013.809230. (PMID: 10.1080/03235408.2013.809230)
Lee EJ, Kim JR, Choi DR, Ahn YJ (2008) Toxicity of cassia and cinnamon oil compounds and cinnamaldehyde-related compounds to Sitophilus oryzae (Coleoptera: Curculionidae). J Econ Entomol 101(6):1960–1966. https://doi.org/10.1603/0022-0493-101.6.1960. (PMID: 10.1603/0022-0493-101.6.1960)
Liang JY, Guo SS, Zhang WJ, Geng ZF, Deng ZW, Du SS, Zhang J (2018) Fumigant and repellent activities of essential oil extracted from Artemisia dubia and its main compounds against two stored product pests. Nat Prod Res 32(10):1234–1238. https://doi.org/10.1080/14786419.2017.1331227. (PMID: 10.1080/14786419.2017.1331227)
Liang J, Ning A, Lu P, An Y, Wang Z, Zhang J, He C, Wang Y (2021) Biological activities and synergistic effects of Elsholtzia stauntoni essential oil from flowers and leaves and their major constituents against Tribolium castaneum. Eur Food Res Technol 247:2609–2619. https://doi.org/10.1007/s00217-021-03829-4. (PMID: 10.1007/s00217-021-03829-4)
Lokesh M, Panneerselvam A, Gawali PP, Sreekrishnakumar AK, Sahu U, Vendan SE (2023) Profiling of semiochemicals from three stored product beetles by headspace solid-phase microextraction coupled with gas chromatography–mass spectrometry. Nat Prod Res 1–7. https://doi.org/10.1080/14786419.2023.2200945.
Lorestani FA, Khashaveh A, Lorestani RA (2013) Fumigant toxicity of essential oil from Tanacetum balsamita L. (Compositae) against adults and eggs of Callosobruchus maculatus F. (Coleoptera: Bruchidae). Arch Phytopathol Plant Prot 46(17):2080–2086. https://doi.org/10.1080/03235408.2013.785112. (PMID: 10.1080/03235408.2013.785112)
Mackled MI, El-Hefny M, Bin-Jumah M, Wahba TF (2019) Assessment of the toxicity of natural oils from from Mentha piperita, Pinus roxburghii, and Rosa spp. against three stored product insects. Processes 7(11):861. https://doi.org/10.3390/pr7110861. (PMID: 10.3390/pr7110861)
Manivannan S (2015) Toxicity of phosphine on the developmental stages of rust-red flour beetle, Tribolium castaneum Herbst over a range of concentrations and exposures. J Food Sci Technol 52:6810–6815. https://doi.org/10.1007/s13197-015-1799-y. (PMID: 10.1007/s13197-015-1799-y)
Moravvej G, Abbar S (2008) Fumigant toxicity of Citrus oils against cowpea seed beetle Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Pak J Biol Sci 11(1):48–54. https://doi.org/10.3923/pjbs.2008.48.54. (PMID: 10.3923/pjbs.2008.48.54)
Nath NS, Bhattacharya I, Tuck AG, Schlipalius DI, Ebert PR (2011) Mechanisms of phosphine toxicity. J Toxicol: 494168. https://doi.org/10.1155/2F2011/2F494168.
Navarro S, Navarro H (2016) Current global challenges to the use of fumigants. In: Navarro S, Jayas DS, Alagusundaram K (eds) Proceedings of the 10 th International Conference on Controlled Atmosphere and Fumigation in Stored Products, New Delhi, India. 6-11 November 2016. CAF Permanent Committee Secretariat, Winnipeg, Canada, pp 126–133.
Nayak MK, Daglish GJ, Phillips TW, Ebert PR (2020) Resistance to the fumigant phosphine and its management in insect pests of stored products: a global perspective. Annu Rev Entomol 65:333–350. https://doi.org/10.1146/annurev-ento-011019-025047. (PMID: 10.1146/annurev-ento-011019-025047)
Oboh G, Ademosun AO, Olumuyiwa TA, Olasehinde TA, Ademiluyi AO, Adeyemo AC (2017) Insecticidal activity of essential oil from orange peels (Citrus sinensis) against Tribolium confusum, Callosobruchus maculatus and Sitophilus oryzae and its inhibitory effects on acetylcholinesterase and Na+/K+-ATPase activities. Phytoparasitica 45(4):501–508. https://doi.org/10.1007/s12600-017-0620-z. (PMID: 10.1007/s12600-017-0620-z)
Oladipupo SO, Hu XP, Appel AG (2022) Essential oils in urban insect management - a review. J Econ Entomol 115(5):1375–1408. https://doi.org/10.1093/jee/toac083. (PMID: 10.1093/jee/toac083)
Priestley CM, Burgess IF, Williamson EM (2006) Lethality of essential oil constituents towards the human louse, Pediculus humanus, and its eggs. Fitoterapia 77(4):303–309. https://doi.org/10.1016/j.fitote.2006.04.005. (PMID: 10.1016/j.fitote.2006.04.005)
Pumnuan J, Insung A (2016) Fumigant toxicity of plant essential oils in controlling thrips, Frankliniella schultzei (Thysanoptera: Thripidae) and mealybug, Pseudococcus jackbeardsleyi (Hemiptera: Pseudococcidae). J Entomol Res 40(1):1–10. https://doi.org/10.5958/0974-4576.2016.00001.3. (PMID: 10.5958/0974-4576.2016.00001.3)
Rajendran S (2002) Postharvest pest losses. In: Pimentel D (ed) Encyclopedia of Pest Management. Marcel Dekker Inc, New York, pp 654–656.
Rajendran S, Sriranjini V (2008) Plant products as fumigants for stored-product insect control. J Stored Prod Res 44(2):126–135. https://doi.org/10.1016/j.jspr.2007.08.003. (PMID: 10.1016/j.jspr.2007.08.003)
Ramadan GRM, Maille JM, Phillips TW (2022) Sorption and desorption dynamics of ethyl formate and propylene oxide as fumigants in durable agricultural commodities. J Stored Prod Res 99:102007. https://doi.org/10.1016/j.jspr.2022.102007. (PMID: 10.1016/j.jspr.2022.102007)
Rees DP (2004) Insects of stored products. CSIRO Publishing, Collingwood, Victoria, Australia. https://doi.org/10.1071/9780643101128. (PMID: 10.1071/9780643101128)
Reyes EI, Farias ES, Silva EM, Filomeno CA, Plata MA, Picanço MC, Barbosa LC (2019) Eucalyptus resinifera essential oils have fumigant and repellent action against Hypothenemus hampei. Crop Prot 116:49–55. https://doi.org/10.1016/j.cropro.2018.09.018. (PMID: 10.1016/j.cropro.2018.09.018)
Rodríguez A, Beato M, Usseglio VL, Camina J, Zygadlo JA, Dambolena JS, Zunino MP (2022) Phenolic compounds as controllers of Sitophilus zeamais: a look at the structure-activity relationship. J Stored Prod Res 99:102038. https://doi.org/10.1016/j.jspr.2022.102038. (PMID: 10.1016/j.jspr.2022.102038)
Sahu U, Ibrahim SS, Ezhil Vendan S (2021a) Persistence and ingestion characteristics of phytochemical volatiles as bio-fumigants in Sitophilus oryzae adults. Ecotoxicol Environ Saf 210:111877. https://doi.org/10.1016/j.ecoenv.2020.111877. (PMID: 10.1016/j.ecoenv.2020.111877)
Sahu U, Sreevathsan S, Mudliar SN, Vendan SE (2021b) Fumigant toxicity of garlic essential oil with the combined effect of ozone gas and determination of phytochemical residues from the treated rice weevil Sitophilus oryzae and wheat grains. In: Jayas DS, Jian F (eds) Proceedings of the 11 th International Conference on Controlled Atmosphere and Fumigation in Stored Products (CAF2020), Winnipeg, Canada, 23-27 August 2021. CAF Permanent Committee Secretariat, Winnipeg, Canada, pp 261–268.
Sayed S, Soliman MM, Al-Otaibi S, Hassan MM, Elarrnaouty SA, Abozeid SM, El-Shehawi AM (2022) Toxicity, deterrent and repellent activities of four essential oils on Aphis punicae (Hemiptera: Aphididae). Plants 11(3):463. https://doi.org/10.3390/plants11030463. (PMID: 10.3390/plants11030463)
Smissaert HR, Jansen AAM (1984) On the variation of toxic effects over species, its cause, and analysis by “structure-selectivity relations.” Ecotoxicol Environ Saf 8(3):294–302. https://doi.org/10.1016/0147-6513(84)90034-4. (PMID: 10.1016/0147-6513(84)90034-4)
Tripathi AK, Prajapati V, Khanuja SPS, Kumar S (2003) Effect of d-limonene on three stored-product beetles. J Econ Entomol 96(3):990–995. https://doi.org/10.1093/jee/96.3.990. (PMID: 10.1093/jee/96.3.990)
Vendan SE, Manivannan S, Sunny AM, Murugesan R (2017) Phytochemical residue profiles in rice grains fumigated with essential oils for the control of rice weevil. PLoS One 12(10):1–17. https://doi.org/10.1371/journal.pone.0186020. (PMID: 10.1371/journal.pone.0186020)
Wang Y, Zhang LT, Feng YX, Zhang D, Guo SS, Pang X, Geng ZF, Xi C, Du SS (2019) Comparative evaluation of the chemical composition and bioactivities of essential oils from four spice plants (Lauraceae) against stored-product insects. Ind Crops Prod 140:111640. https://doi.org/10.1016/j.indcrop.2019.111640. (PMID: 10.1016/j.indcrop.2019.111640)
Yang FL, Zhu F, Lei CL (2010) Garlic essential oil and its major component as fumigants for controlling Tribolium castaneum (Herbst) in chambers filled with stored grain. J Pest Sci 83(3):311–317. https://doi.org/10.1007/s10340-010-0300-y. (PMID: 10.1007/s10340-010-0300-y)
Zaio YP, Gatti G, Ponce AA, Saavedra Larralde NA, Martinez MJ, Zunino MP, Zygadlo JA (2018) Cinnamaldehyde and related phenylpropanoids, natural repellents, and insecticides against Sitophilus zeamais (Motsch.). A chemical structure-bioactivity relationship. J Sci Food Agric 98(15):5822–5831. https://doi.org/10.1002/jsfa.9132. (PMID: 10.1002/jsfa.9132)
Zimmermann RC, de Carvalho Aragao CE, de Araújo PJP, Benatto A, Chaaban A, Martins CEN, do Amaral W, Cipriano RR, Zawadneak MA (2021) Insecticide activity and toxicity of essential oils against two stored-product insects. Crop Prot 144:105575. https://doi.org/10.1016/j.cropro.2021.105575. (PMID: 10.1016/j.cropro.2021.105575)
معلومات مُعتمدة: MLP300 Council of Scientific and Industrial Research, India
فهرسة مساهمة: Keywords: Essential oils; Fumigant toxicity; Molecular descriptors; Phytochemicals; QSAR; Stored product insect pests
المشرفين على المادة: 0 (Oils, Volatile)
0 (Insecticides)
تواريخ الأحداث: Date Created: 20240510 Date Completed: 20240529 Latest Revision: 20240529
رمز التحديث: 20240529
DOI: 10.1007/s11356-024-33483-8
PMID: 38730215
قاعدة البيانات: MEDLINE