دورية أكاديمية

Impact of transcription factors KLF1 and GATA1 on red blood cell antigen expression: a review.

التفاصيل البيبلوغرافية
العنوان: Impact of transcription factors KLF1 and GATA1 on red blood cell antigen expression: a review.
المؤلفون: Lopez GH; 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia.; 2School of Health, University of the Sunshine Coast, Sippy Downs, Queensland, Australia., Sarri ME; 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia., Flower RL; 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia.; 3Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia., Hyland CA; 1Research and Development, Australian Red Cross Lifeblood, Kelvin Grove, Queensland, Australia.; 3Faculty of Health, Queensland University of Technology, Kelvin Grove, Queensland, Australia.
المصدر: Immunohematology [Immunohematology] 2024 May 13; Vol. 40 (1), pp. 1-9. Date of Electronic Publication: 2024 May 13 (Print Publication: 2024).
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: American Red Cross Country of Publication: United States NLM ID: 8806387 Publication Model: eCollection Cited Medium: Print ISSN: 0894-203X (Print) Linking ISSN: 0894203X NLM ISO Abbreviation: Immunohematology Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Washington, D.C.] : American Red Cross, [1984-
مواضيع طبية MeSH: Kruppel-Like Transcription Factors*/genetics , GATA1 Transcription Factor*/genetics , Erythrocytes*/metabolism , Erythrocytes*/immunology , Blood Group Antigens*/genetics , Blood Group Antigens*/immunology, Humans ; Lutheran Blood-Group System/genetics ; Gene Expression Regulation ; Erythropoiesis/genetics
مستخلص: KLF transcription factor 1 (KLF1) and GATA binding protein 1 (GATA1) are transcription factors (TFs) that initiate and regulate transcription of the genes involved in erythropoiesis. These TFs possess DNA-binding domains that recognize specific nucleotide sequences in genes, to which they bind and regulate transcription. Variants in the genes that encode either KLF1 or GATA1 can result in a range of hematologic phenotypes-from benign to severe forms of thrombocytopenia and anemia; they can also weaken the expression of blood group antigens. The Lutheran (LU) blood group system is susceptible to TF gene variations, particularly KLF1 variants. Individuals heterozygous for KLF1 gene variants show reduced Lutheran antigens on red blood cells that are not usually detected by routine hemagglutination methods. This reduced antigen expression is referred to as the In(Lu) phenotype. For accurate blood typing, it is important to distinguish between the In(Lu) phenotype, which has very weak antigen expression, and the true Lu null phenotype, which has no antigen expression. The International Society of Blood Transfusion blood group allele database registers KLF1 and GATA1 variants associated with modified Lutheran expression. Here, we review KLF1 and recent novel gene variants defined through investigating blood group phenotype and genotype discrepancies or, for one report, investigating cases with unexplained chronic anemia. In addition, we include a review of the GATA1 TF, including a case report describing the second GATA1 variant associated with a serologic Lu(a-b-) phenotype. Finally, we review both past and recent reports on variations in the DNA sequence motifs on the blood group genes that disrupt the binding of the GATA1 TF and either remove or reduce erythroid antigen expression. This review highlights the diversity and complexity of the transcription process itself and the need to consider these factors as an added component for accurate blood group phenotyping.
(© 2024 Genghis H. Lopez et al., published by Sciendo.)
References: 1. Singleton BK, Frayne J, Anstee DJ. Blood group phenotypes resulting from mutations in erythroid transcription factors. Curr Opin Hematol 2012;19:486–93.
2. Chen H, Pugh BF. What do transcription factors interact with? J Mol Biol 2021;433:166883.
3. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood 2022;139:2450–9.
4. Perkins A, Xu X, Higgs DR, et al. Krüppeling erythropoiesis: an unexpected broad spectrum of human red blood cell disorders due to KLF1 variants. Blood 2016;127:1856–62.
5. Barbarani G, Fugazza C, Strouboulis J, Ronchi AE. The pleiotropic effects of GATA1 and KLF1 in physiological erythropoiesis and in dyserythropoietic disorders. Front Physiol 2019;10:91.
6. Ling T, Crispino JD. GATA1 mutations in red cell disorders. IUBMB Life 2020;72:106–18.
7. Eernstman J, Veldhuisen B, Ligthart P, von Lindern M, van der Schoot CE, van den Akker E. Novel variants in Krueppel like factor 1 that cause persistence of fetal hemoglobin in In(Lu) individuals. Sci Rep 2021;11:18557.
8. Fraser NS, Knauth CM, Moussa A, et al. Genetic variants within the erythroid transcription factor, KLF1, and reduction of the expression of Lutheran and other blood group antigens: review of the In(Lu) phenotype. Transfus Med Rev 2019;33:111–7.
9. International Society of Blood Transfusion (ISBT). Red cell immunogenetics and blood group terminology. Available from http://www.isbtweb.org/working-parties/red-cell-immunogenetics-and-blood-group-terminology/. Accessed 2023 December.
10. Shimizu R, Yamamoto M. Recent progress in analyses of GATA1 in hematopoietic disorders: a mini-review. Front Hematol 2023;2.
11. Borg J, Patrinos GP, Felice AE, Philipsen S. Erythroid phenotypes associated with KLF1 mutations. Haematologica 2011;96:635–8.
12. Ferreira R, Ohneda K, Yamamoto M, Philipsen S. GATA1 function, a paradigm for transcription factors in hematopoiesis. Mol Cell Biol 2005;25:1215–27.
13. UniProt. Available from https://www.uniprot.org. Accessed 2023 December.
14. HUGO Gene Nomenclature Committee. Available from https://www.genenames.org/. Accessed 2023 December.
15. Ensembl. Available from https://www.ensembl.org. Accessed 2023 December.
16. National Center for Biotechnology Information. Available from https://www.ncbi.nlm.nih.gov. Accessed 2023 December.
17. Norton LJ, Hallal S, Stout ES, et al. Direct competition between DNA binding factors highlights the role of Krüppel-like factor 1 in the erythroid/megakaryocyte switch. Sci Rep 2017;7:3137.
18. Tallack MR, Magor GW, Dartigues B, et al. Novel roles for KLF1 in erythropoiesis revealed by mRNA-seq. Genome Res 2012;22:2385–98.
19. Magor GW, Tallack MR, Gillinder KR, et al. KLF1 -null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015;125:2405–17.
20. Singleton BK, Burton NM, Green C, Brady RL, Anstee DJ. Mutations in EKLF/KLF1 form the molecular basis of the rare blood group In(Lu) phenotype. Blood 2008;112:2082–8.
21. Westman JS, Stenfelt L, Vidovic K, et al. Allele-selective RUNX1 binding regulates P1 blood group status by trans-criptional control of A4GALT . Blood 2018;131:1611–6.
22. Singleton BK, Lau W, Fairweather VS, et al. Mutations in the second zinc finger of human EKLF reduce promoter affinity but give rise to benign and disease phenotypes. Blood 2011;118:3137–45.
23. Caria CA, Faà V, Ristaldi MS. Krüppel-like factor 1: a pivotal gene regulator in erythropoiesis. Cells 2022;11.
24. Rouillard AD, Gundersen GW, Fernandez NF, et al. The harmonizome: a collection of processed datasets gathered to serve and mine knowledge about genes and proteins. Database 2016;2016:baw100.
25. Gallienne AE, Dréau HM, Schuh A, Old JM, Henderson S. Ten novel mutations in the erythroid transcription factor KLF1 gene associated with increased fetal hemoglobin levels in adults. Haematologica 2012;97:340–3.
26. Liu D, Zhang X, Yu L, et al. KLF1 mutations are relatively more common in a thalassemia endemic region and ameliorate the severity of β-thalassemia. Blood 2014;124:803–11.
27. Bhalla K, Chugh M, Mehrotra S, et al. Host ICAMs play a role in cell invasion by Mycobacterium tuberculosis and Plasmodium falciparum . Nature Commun 2015;6:6049.
28. Cowman AF, Tonkin CJ, Tham W-H, Duraisingh MT. The molecular basis of erythrocyte invasion by malaria parasites. Cell Host Microbe 2017;22:232–45.
29. Viprakasit V, Ekwattanakit S, Riolueang S, et al. Mutations in Kruppel-like factor 1 cause transfusion-dependent hemolytic anemia and persistence of embryonic globin gene expression. Blood 2014;123:1586–95.
30. Paccapelo C, Frison S, Truglio F, et al. Resolution of Lutheran typing discrepancies due to an In(Lu) phenotype. Vox Sang 2017;112(Suppl 1):228.
31. Henny C, Graber J, Stettler J, Lejon Crottet S, Hustinx H, Niederhauser C. A novel KLF1 allele leading to an In(Lu) phenotype. Vox Sang 2017;112(Suppl 1):228.
32. Maurer JL, Kavitsky V, Facey DA, Nance SJ, Keller J, Keller MA. Molecular characterization of Lu(a–b–) rare donors identifies two novel KLF1 alleles (abstract). Transfusion 2021;61(Suppl 3):55A.
33. Floch A, Vege S, Burgos A, et al. A new deletion in the KLF1 gene resulting in an In(Lu) phenotype (abstract). Transfusion 2021;61(Suppl 3):118A–119A.
34. Freson K, Wijgaerts A, Van Geet C. GATA1 gene variants associated with thrombocytopenia and anemia. Platelets 2017;28:731–4.
35. Ludwig LS, Lareau CA, Bao EL, et al. Congenital anemia reveals distinct targeting mechanisms for master transcription factor GATA1. Blood 2022;139:2534–46.
36. Jurk K, Adenaeuer A, Sollfrank S, et al. Novel GATA1 variant causing a bleeding phenotype associated with combined platelet α-/δ-storage pool deficiency and mild dyserythropoiesis modified by a SLC4A1 variant. Cells 2022;11:3071.
37. Takasaki K, Kacena MA, Raskind WH, Weiss MJ, Chou ST. GATA1 -related cytopenia. Available from https://www.ncbi.nlm.nih.gov/books/NBK1364/. Accessed 2023 December.
38. Norman PC, Tippett P, Beal RW. An Lu(a–b–) phenotype caused by an X-linked recessive gene. Vox Sang 1986;51: 49–52.
39. Singleton BK, Roxby DJ, Stirling JW, et al. A novel GATA1 mutation (Stop414Arg) in a family with the rare X-linked blood group Lu(a–b–) phenotype and mild macrothrombocytic thrombocytopenia. Br J Haematol 2013;161:139–42.
40. International Society for Blood Transfusion. Names for (ISBT_102) GATA1 alleles. Available from https://www.isbtweb.org/resource/gata1.html. Accessed 25 March 2024.
41. Sano R, Nakajima T, Takahashi K, et al. Expression of ABO blood-group genes is dependent upon an erythroid cell-specific regulatory element that is deleted in persons with the B(m) phenotype. Blood 2012;119:5301–10.
42. Möller M, Lee YQ, Vidovic K, et al. Disruption of a GATA1-binding motif upstream of XG/PBDX abolishes Xg(a) expression and resolves the Xg blood group system. Blood 2018;132:334–8.
43. El Nemer W, Rahuel C, Colin Y, Gane P, Cartron JP, Le Van Kim C. Organization of the human LU gene and molecular basis of the Lu a /Lu b blood group polymorphism. Blood 1997;89: 4608–16.
44. Wu PC, Lee YQ, Möller M, Storry JR, Olsson ML. Elucidation of the low-expressing erythroid CR1 phenotype by bioinformatic mining of the GATA1-driven blood-group regulome. Nature Commun 2023;14:5001.
45. Fennell K, Hoffman R, Yoshida K, et al. Effect on gene expression of three allelic variants in GATA motifs of ABO , RHD , and RHCE regulatory elements. Transfusion 2017;57:2804–8.
46. Tournamille C, Colin Y, Cartron JP, Le Van Kim C. Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy-negative individuals. Nat Genet 1995;10:224–8.
47. Peiper SC, Wang ZX, Neote K, et al. The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor. J Exp Med 1995;181:1311–7.
48. Iwamoto S, Li J, Omi T, Ikemoto S, Kajii E. Identification of a novel exon and spliced form of Duffy mRNA that is the predominant transcript in both erythroid and postcapillary venule endothelium. Blood 1996;87:378–85.
49. Yeh CC, Chang CJ, Twu YC, et al. The molecular genetic background leading to the formation of the human erythroid-specific Xg(a)/CD99 blood groups. Blood Adv 2018;2:1854–64.
50. Rowe JA, Moulds JM, Newbold CI, Miller LH. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 1997;388:292–5.
51. Moulds JM, Zimmerman PA, Doumbo OK, et al. Molecular identification of Knops blood group polymorphisms found in long homologous region D of complement receptor 1. Blood 2001;97:2879–85.
52. McGowan E, Wu P, Lee Y, Ghosh S, Storry J, Olsson M. Disruption of a KLF motif in intron 1 of RHCE*c alleles alters recruitment of transcription factors and causes C/c-related changes of RH gene and protein expression. Vox Sang 2023;118(Suppl 1):24.
فهرسة مساهمة: Keywords: GATA1 gene; In(Lu) phenotype; KLF1 gene; XS2 phenotype; blood group phenotype; transcription factors
المشرفين على المادة: 0 (Kruppel-Like Transcription Factors)
0 (GATA1 Transcription Factor)
0 (erythroid Kruppel-like factor)
0 (GATA1 protein, human)
0 (Blood Group Antigens)
0 (Lutheran Blood-Group System)
تواريخ الأحداث: Date Created: 20240513 Date Completed: 20240513 Latest Revision: 20240523
رمز التحديث: 20240524
DOI: 10.2478/immunohematology-2024-002
PMID: 38739025
قاعدة البيانات: MEDLINE