دورية أكاديمية

Unveiling antibiofilm potential: proteins from Priestia sp. targeting Staphylococcus aureus biofilm formation.

التفاصيل البيبلوغرافية
العنوان: Unveiling antibiofilm potential: proteins from Priestia sp. targeting Staphylococcus aureus biofilm formation.
المؤلفون: Ribeiro NS; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., da Rosa DF; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Xavier MA; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Dos Reis SV; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Beys-da-Silva WO; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Santi L; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil., Bizarro CV; Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil., Dalberto PF; Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil., Basso LA; Instituto Nacional de Ciência e Tecnologia em Tuberculose (INCT-TB), Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), and Programa de Pós-Graduação em Biologia Celular e Molecular, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A TECNOPUC, Av. Ipiranga 6681, Partenon, Porto Alegre, 90616-900, Brazil., Macedo AJ; Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. alexandre.macedo@ufrgs.br.; Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil. alexandre.macedo@ufrgs.br.
المصدر: Antonie van Leeuwenhoek [Antonie Van Leeuwenhoek] 2024 May 13; Vol. 117 (1), pp. 78. Date of Electronic Publication: 2024 May 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Netherlands NLM ID: 0372625 Publication Model: Electronic Cited Medium: Internet ISSN: 1572-9699 (Electronic) Linking ISSN: 00036072 NLM ISO Abbreviation: Antonie Van Leeuwenhoek Subsets: MEDLINE
أسماء مطبوعة: Publication: 2004- : Berlin : Springer
Original Publication: Wageningen, Netherland [etc.] Veenman [etc.]
مواضيع طبية MeSH: Biofilms*/drug effects , Biofilms*/growth & development , Staphylococcus aureus*/drug effects , Staphylococcus aureus*/physiology , Bacterial Proteins*/genetics , Bacterial Proteins*/metabolism , Anti-Bacterial Agents*/pharmacology, Animals ; Microbial Sensitivity Tests ; Brazil ; Porifera/microbiology
مستخلص: Staphylococcus aureus is the etiologic agent of many nosocomial infections, and its biofilm is frequently isolated from medical devices. Moreover, the dissemination of multidrug-resistant (MDR) strains from this pathogen, such as methicillin-resistant S. aureus (MRSA) strains, is a worldwide public health issue. The inhibition of biofilm formation can be used as a strategy to weaken bacterial resistance. Taking that into account, we analysed the ability of marine sponge-associated bacteria to produce antibiofilm molecules, and we found that marine Priestia sp., isolated from marine sponge Scopalina sp. collected on the Brazilian coast, secretes proteins that impair biofilm development from S. aureus. Partially purified proteins (PPP) secreted after 24 hours of bacterial growth promoted a 92% biofilm mass reduction and 4.0 µg/dL was the minimum concentration to significantly inhibit biofilm formation. This reduction was visually confirmed by light microscopy and Scanning Electron Microscopy (SEM). Furthermore, biochemical assays showed that the antibiofilm activity of PPP was reduced by ethylenediaminetetraacetic acid (EDTA) and 1,10 phenanthroline (PHEN), while it was stimulated by zinc ions, suggesting an active metallopeptidase in PPP. This result agrees with mass spectrometry (MS) identification, which indicated the presence of a metallopeptidase from the M28 family. Additionally, whole-genome sequencing analysis of Priestia sp. shows that gene ywad, a metallopeptidase-encoding gene, was present. Therefore, the results presented herein indicate that PPP secreted by the marine Priestia sp. can be explored as a potential antibiofilm agent and help to treat chronic infections.
(© 2024. The Author(s), under exclusive licence to Springer Nature Switzerland AG.)
References: Abdhul K, Ganesh M, Shanmughapriya S, Vanithamani S, Kanagavel M, Anbarasu K, Natarajaseenivasan K (2015) Bacteriocinogenic potential of a probiotic strain Bacillus coagulans [BDU3] from Ngari. Int J Biol Macromol 79:800–6. https://doi.org/10.1016/j.ijbiomac.2015.06.005. (PMID: 10.1016/j.ijbiomac.2015.06.00526054664)
Anand TP, Bhat AW, Shouche YS, Roy U, Siddharth J, Sarma SP (2006) Antimicrobial activity of marine bacteria associated with sponges from the waters off the coast of South East India. Microbiol Res 161(3):252–62. https://doi.org/10.1016/j.micres.2005.09.002. (PMID: 10.1016/j.micres.2005.09.00216765842)
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M, Meyer F, Olsen GJ, Olson R, Osterman AL, Overbeek RA, McNeil LK, Paarmann D, Paczian T, Parrello B, Pusch GD, Reich C, Stevens R, Vassieva O, Vonstein V, Wilke A, Zagnitko O (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. https://doi.org/10.1186/1471-2164-9-75. (PMID: 10.1186/1471-2164-9-75)
Badoei-Dalfard A, Karami Z, Ravan H (2015) Purification and characterization of a thermo- and organic solvent-tolerant alkaline protease from Bacillus sp. JER02. Prep Biochem Biotechnol 45(2):128–43. https://doi.org/10.1080/10826068.2014.907176. (PMID: 10.1080/10826068.2014.90717624845261)
Beys-da-Silva WO, Santi L, Berger M, Calzolari D, Passos DO, Guimarães JA, Moresco JJ, Yates JR (2014) Secretome of the biocontrol agent Metarhizium anisopliae induced by the cuticle of the cotton pest Dysdercus peruvianus reveals new insights into infection. J Proteome Res 13(5):2282–96. https://doi.org/10.1021/pr401204y. (PMID: 10.1021/pr401204y247020584012838)
Bhatnagar I, Kim SK (2010) Immense essence of excellence: marine microbial bioactive compounds. Mar Drugs 8(10):2673–701. https://doi.org/10.3390/md8102673. (PMID: 10.3390/md8102673211164142993000)
Bibi F, Yasir M, Al-Sofyani A, Naseer MI, Azhar EI (2020) Antimicrobial activity of bacteria from marine sponge. Saudi J Biol Sci 27(4):1139–1147. https://doi.org/10.1016/j.sjbs.2020.02.002. (PMID: 10.1016/j.sjbs.2020.02.002322561767105658)
Blackman LD, Qu Y, Cass P, Locock KES (2021) Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 50(3):1587–1616. https://doi.org/10.1039/d0cs00986e. (PMID: 10.1039/d0cs00986e33403373)
Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, Weber T (2021) antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res 49(W1):W29–W35. https://doi.org/10.1093/nar/gkab335. (PMID: 10.1093/nar/gkab335339787558262755)
Borges A, Simões M (2019) Quorum Sensing Inhibition by Marine Bacteria. Mar Drugs 17(7). https://doi.org/10.3390/md17070427.
Butt MA (2022) Thin-Film Coating Methods: A Successful Marriage of High-Quality and Cost-Effectiveness—A Brief Exploration. Coatings 12(8):1115. https://doi.org/10.3390/coatings12081115. (PMID: 10.3390/coatings12081115)
Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T (2009) trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25(15):1972–3. https://doi.org/10.1093/bioinformatics/btp348. (PMID: 10.1093/bioinformatics/btp348195059452712344)
Carvalho PC, Lima DB, Leprevost FV, Santos MD, Fischer JS, Aquino PF, Moresco JJ, Yates JR, Barbosa VC (2016) Integrated analysis of shotgun proteomic data with PatternLab for proteomics 4.0. Nat Protoc 11(1):102–17. https://doi.org/10.1038/nprot.2015.133. (PMID: 10.1038/nprot.2015.13326658470)
Ceresa C, Rinaldi M, Chiono V, Carmagnola I, Allegrone G, Fracchia L (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Antonie Van Leeuwenhoek 109(10):1375–88. https://doi.org/10.1007/s10482-016-0736-z. (PMID: 10.1007/s10482-016-0736-z27444239)
Chen J, Zhao L, Fu G, Zhou W, Sun Y, Zheng P, Sun J, Zhang D (2016) A novel strategy for protein production using non-classical secretion pathway in Bacillus subtilis. Microb Cell Fact 15:69. https://doi.org/10.1186/s12934-016-0469-8. (PMID: 10.1186/s12934-016-0469-8271257804850722)
Chopra L, Singh G, Kumar Jena K, Sahoo DK (2015) Sonorensin: A new bacteriocin with potential of an anti-biofilm agent and a food biopreservative. Sci Rep 5:13412. https://doi.org/10.1038/srep13412. (PMID: 10.1038/srep13412262927864544038)
Clinical and Laboratory Standards Institute (CLSI) (2017) Performance Standards for Antimicrobial Disk Susceptibility Tests, 12th edn. Clinical and Laboratory Standards Institute, Wayne, PA.
Costa GA, Rossatto FCP, Medeiros AW, Correa APF, Brandelli A, Frazzon APG, Motta ASD (2018) Evaluation antibacterial and antibiofilm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. An Acad Bras Cienc 90(1):73–84. https://doi.org/10.1590/0001-3765201820160131. (PMID: 10.1590/0001-376520182016013129424388)
Cui Zhanfeng (2005) Protein separation using ultrafiltration — an example of multi-scale complex systems. China Particuology 3(6):343–348. https://doi.org/10.1016/S1672-2515(07)60213-9. (PMID: 10.1016/S1672-2515(07)60213-9)
Dat TTH, Cuc NTK, Cuong PV, Smidt H, Sipkema D (2021) Diversity and Antimicrobial Activity of Vietnamese Sponge-Associated Bacteria. Mar Drugs 19(7). https://doi.org/10.3390/md19070353.
Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2(2):114–22. https://doi.org/10.1038/nrd1008. (PMID: 10.1038/nrd100812563302)
de Carvalho CC, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8(3):705–27. https://doi.org/10.3390/md8030705. (PMID: 10.3390/md8030705204111222857360)
Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7(2):277–81. https://doi.org/10.3201/eid0702.010226. (PMID: 10.3201/eid0702.010226112947232631701)
Duong-Ly KC, Gabelli SB (2014) Salting out of proteins using ammonium sulfate precipitation. Methods Enzymol 541:85–94. https://doi.org/10.1016/B978-0-12-420119-4.00007-0. (PMID: 10.1016/B978-0-12-420119-4.00007-024674064)
Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2014) Effect of proteases against biofilms of Staphylococcus aureus and Staphylococcus epidermidis. Lett Appl Microbiol 59(5):507–13. https://doi.org/10.1111/lam.12305. (PMID: 10.1111/lam.1230525041576)
Erickson HP (2009) Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51. https://doi.org/10.1007/s12575-009-9008-x. (PMID: 10.1007/s12575-009-9008-x194959103055910)
Ferrareze PAG, Correa APFC, Brandelli A (2016) Purification and characterization of a keratinolytic protease produced by probiotic Bacillus subtilis. Biocatal Agric Biotechnol 7:102–109. https://doi.org/10.1016/j.bcab.2016.05.009. (PMID: 10.1016/j.bcab.2016.05.009)
Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL (2019) Recent Advances in Anti-virulence Therapeutic Strategies With a Focus on Dismantling Bacterial Membrane Microdomains, Toxin Neutralization, Quorum-Sensing Interference and Biofilm Inhibition. Front Cell Infect Microbiol 9:74. https://doi.org/10.3389/fcimb.2019.00074. (PMID: 10.3389/fcimb.2019.00074310014856454102)
Fundoiano-Hershcovitz Y, Rabinovitch L, Shulami S, Reiland V, Shoham G, Shoham Y (2005) The ywad gene from Bacillus subtilis encodes a double-zinc aminopeptidase. FEMS Microbiol Lett 243(1):157–63. https://doi.org/10.1016/j.femsle.2004.12.001. (PMID: 10.1016/j.femsle.2004.12.00115668014)
Gao X, Liu Z, Cui W, Zhou L, Tian Y, Zhou Z (2014) Enhanced thermal stability and hydrolytic ability of Bacillus subtilis aminopeptidase by removing the thermal sensitive domain in the non-catalytic region. PLoS One 9(3):e92357. https://doi.org/10.1371/journal.pone.0092357. (PMID: 10.1371/journal.pone.0092357246330103954873)
Granato MQ, Massapust PA, Rozental S, Alviano CS, dos Santos AL, Kneipp LF (2015) 1,10-phenanthroline inhibits the metallopeptidase secreted by Phialophora verrucosa and modulates its growth, morphology and differentiation. Mycopathologia 179(3–4):231–42. https://doi.org/10.1007/s11046-014-9832-7. (PMID: 10.1007/s11046-014-9832-725502596)
Gupta RS, Patel S, Saini N, Chen S (2020) Robust demarcation of 17 distinct Bacillus species clades, proposed as novel Bacillaceae genera, by hylogenomics and comparative genomic analyses: description of Robertmurraya kyonggiensis sp. nov. and proposal for an emended genus Bacillus limiting it only to the members of the Subtilis and Cereus clades of species. Int J Syst Evol Microbiol 70(11):5753–5798. https://doi.org/10.1099/ijsem.0.004475. (PMID: 10.1099/ijsem.0.00447533112222)
Hall-Stoodley L, Stoodley P, Kathju S, Høiby N, Moser C, Costerton JW, Moter A, Bjarnsholt T (2012) Towards diagnostic guidelines for biofilm-associated infections. FEMS Immunol Med Microbiol 65(2):127–45. https://doi.org/10.1111/j.1574-695X.2012.00968.x. (PMID: 10.1111/j.1574-695X.2012.00968.x22469292)
Hecht KA, Wytiaz VA, Ast T, Schuldiner M, Brodsky JL (2013) Characterization of an M28 metalloprotease family member residing in the yeast vacuole. FEMS Yeast Res 13(5):471–84. https://doi.org/10.1111/1567-1364.12050. (PMID: 10.1111/1567-1364.1205023679341)
Hickok NJ (2018) What are Biofilms?. Spine (Phila Pa 1976) 43(7):S7-S8. https://doi.org/10.1097/BRS.0000000000002548.
Høiby N (2014) A personal history of research on microbial biofilms and biofilm infections. Pathog Dis 70(3):205–11. https://doi.org/10.1111/2049-632X.12165. (PMID: 10.1111/2049-632X.1216524585728)
Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30(4):772–80. https://doi.org/10.1093/molbev/mst010. (PMID: 10.1093/molbev/mst010233296903603318)
Kiesewalter HT, Lozano-Andrade CN, Wibowo M, Strube ML, Maróti G, Snyder D, Jørgensen TS, Larsen TO, Cooper VS, Weber T, Kovács ÁT (2021) Genomic and Chemical Diversity of Bacillus subtilis Secondary Metabolites against Plant Pathogenic Fungi. mSystems 6(1). https://doi.org/10.1128/mSystems.00770-20.
Kong C, Chee CF, Richter K, Thomas N, Abd Rahman N, Nathan S (2018) Suppression of Staphylococcus aureus biofilm formation and virulence by a benzimidazole derivative, UM-C162. Sci Rep 8(1):2758. https://doi.org/10.1038/s41598-018-21141-2. (PMID: 10.1038/s41598-018-21141-2294268735807447)
Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740–755. https://doi.org/10.1038/nrmicro.2017.99. (PMID: 10.1038/nrmicro.2017.99289447705685531)
Kunst F, Ogasawara N, Moszer I, Albertini AM, Alloni G, Azevedo V, Bertero MG, Bessières P, Bolotin A, Borchert S, Borriss R, Boursier L, Brans A, Braun M, Brignell SC, Bron S, Brouillet S, Bruschi CV, Caldwell B, Capuano V, Carter NM, Choi SK, Cordani JJ, Connerton IF, Cummings NJ, Daniel RA, Denziot F, Devine KM, Düsterhöft A, Ehrlich SD, Emmerson PT, Entian KD, Errington J, Fabret C, Ferrari E, Foulger D, Fritz C, Fujita M, Fujita Y, Fuma S, Galizzi A, Galleron N, Ghim SY, Glaser P, Goffeau A, Golightly EJ, Grandi G, Guiseppi G, Guy BJ, Haga K, Haiech J, Harwood CR, Hènaut A, Hilbert H, Holsappel S, Hosono S, Hullo MF, Itaya M, Jones L, Joris B, Karamata D, Kasahara Y, Klaerr-Blanchard M, Klein C, Kobayashi Y, Koetter P, Koningstein G, Krogh S, Kumano M, Kurita K, Lapidus A, Lardinois S, Lauber J, Lazarevic V, Lee SM, Levine A, Liu H, Masuda S, Mauël C, Médigue C, Medina N, Mellado RP, Mizuno M, Moestl D, Nakai S, Noback M, Noone D, O’Reilly M, Ogawa K, Ogiwara A, Oudega B, Park SH, Parro V, Pohl TM, Portelle D, Porwollik S, Prescott AM, Presecan E, Pujic P, Purnelle B, Rapoport G, Rey M, Reynolds S, Rieger M, Rivolta C, Rocha E, Roche B, Rose M, Sadaie Y, Sato T, Scanlan E, Schleich S, Schroeter R, Scoffone F, Sekiguchi J, Sekowska A, Seror SJ, Serror P, Shin BS, Soldo B, Sorokin A, Tacconi E, Takagi T, Takahashi H, Takemaru K, Takeuchi M, Tamakoshi A, Tanaka T, Terpstra P, Togoni A, Tosato V, Uchiyama S, Vandebol M, Vannier F, Vassarotti A, Viari A, Wambutt R, Wedler H, Weitzenegger T, Winters P, Wipat A, Yamamoto H, Yamane K, Yasumoto K, Yata K, Yoshida K, Yoshikawa HF, Zumstein E, Yoshikawa H, Danchin A (1997) The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature 390(6657):249–56. https://doi.org/10.1038/36786. (PMID: 10.1038/367869384377)
Lemke S, Vilcinskas A (2020) European Medicinal Leeches-New Roles in Modern Medicine. Biomedicines 8(5). https://doi.org/10.3390/biomedicines8050099.
Lemoine F, Correia D, Lefort V, Doppelt-Azeroual O, Mareuil F, Cohen-Boulakia S, Gascuel O (2019) NGPhylogeny.fr: new generation phylogenetic services for non-specialists. Nucleic Acids Res 47(W1):W260–W265. https://doi.org/10.1093/nar/gkz303. (PMID: 10.1093/nar/gkz303310283996602494)
Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:178. https://doi.org/10.3389/fcimb.2014.00178. (PMID: 10.3389/fcimb.2014.00178255665134275032)
Liu Y, Fu J, Wang L, Zhao Z, Wang H, Han S, Sun X, Pan C (2022) Isolation, identification, and whole-genome sequencing of high-yield protease bacteria from Daqu of ZhangGong Laojiu. PLoS One 17(4):e0264677. https://doi.org/10.1371/journal.pone.0264677. (PMID: 10.1371/journal.pone.0264677354722049041807)
Loges LA, Silva DB, Paulino GVB, Landell MF, Macedo AJ (2020) Polyketides from marine-derived Aspergillus welwitschiae inhibit Staphylococcus aureus virulence factors and potentiate vancomycin antibacterial activity in vivo. Microb Pathog 143:104066. https://doi.org/10.1016/j.micpath.2020.104066. (PMID: 10.1016/j.micpath.2020.10406632068159)
Macedo AJ, Abraham WR (2009) Can infectious biofilm be controlled by blocking bacterial communication? Med Chem 5(6):517–28. (PMID: 10.2174/15734060979017051519534686)
Macià MD, Rojo-Molinero E, Oliver A (2014) Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 20(10):981–90. https://doi.org/10.1111/1469-0691.12651. (PMID: 10.1111/1469-0691.1265124766583)
Nandan A, Nampoothiri KM (2020) Therapeutic and biotechnological applications of substrate specific microbial aminopeptidases. Appl Microbiol Biotechnol 104(12):5243–5257. https://doi.org/10.1007/s00253-020-10641-9. (PMID: 10.1007/s00253-020-10641-9323421447186005)
Papa R, Artini M, Cellini A, Tilotta M, Galano E, Pucci P, Amoresano A, Selan L (2013) A new anti-infective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microb Pathog 63:44–53. https://doi.org/10.1016/j.micpath.2013.05.003. (PMID: 10.1016/j.micpath.2013.05.00323811076)
Parastan R, Kargar M, Solhjoo K, Kafilzadeh F (2020) A synergistic association between adhesion-related genes and multidrug resistance patterns of Staphylococcus aureus isolates from different patients and healthy individuals. J Glob Antimicrob Resist 22:379–385. https://doi.org/10.1016/j.jgar.2020.02.025. (PMID: 10.1016/j.jgar.2020.02.02532169685)
Potter SC, Luciani A, Eddy SR, Park Y, Lopez R, Finn RD (2018) HMMER web server: (2018) update. Nucleic Acids Res 46(W1):W200–W204. https://doi.org/10.1093/nar/gky448. (PMID: 10.1093/nar/gky448299058716030962)
Ramachandran R, Chalasani AG, Lal R, Roy U (2014) A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 121. Sci World J 2014:968487 https://doi.org/10.1155/2014/968487.
Reis SVD, Ribeiro NS, Rocha DA, Fortes IS, Trentin DDS, Andrade SF, Macedo AJ (2020) Antibacterial and antibiofilm activities of a disubstituted quinazoline compound against Staphylococcus aureus and Staphylococcus epidermidis. Chem Biol Drug Des 96(6):1372–1379. https://doi.org/10.1111/cbdd.13745. (PMID: 10.1111/cbdd.1374532542979)
Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554. https://doi.org/10.1080/21505594.2017.1313372. (PMID: 10.1080/21505594.2017.131337228362216)
Sayem SM, Manzo E, Ciavatta L, Tramice A, Cordone A, Zanfardino A, De Felice M, Varcamonti M (2011) Anti-biofilm activity of an exopolysaccharide from a sponge-associated strain of Bacillus licheniformis. Microb Cell Fact 10:74. https://doi.org/10.1186/1475-2859-10-74. (PMID: 10.1186/1475-2859-10-74219518593196911)
Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1(1):16–22. https://doi.org/10.1038/nprot.2006.4. (PMID: 10.1038/nprot.2006.417406207)
Schratter P (2004) Purification and concentration by ultrafiltration. Methods Mol Biol 244:101–16. https://doi.org/10.1385/1-59259-655-x:101. (PMID: 10.1385/1-59259-655-x:10114970548)
Schulze A, Mitterer F, Pombo JP, Schild S (2021) Biofilms by bacterial human pathogens: Clinical relevance - development, composition and regulation - therapeutical strategies. Microb Cell 8(2):28-56 https://doi.org/10.15698/mic2021.02.741.
Seemann T (2014) Prokka: rapid prokaryotic genome annotation. Bioinformatics 30(14):2068–9. https://doi.org/10.1093/bioinformatics/btu153. (PMID: 10.1093/bioinformatics/btu15324642063)
Shukla SK, Rao TS (2017) Staphylococcus aureus biofilm removal by targeting biofilm-associated extracellular proteins. Indian J Med Res 146(Supplement):S1–S8. https://doi.org/10.4103/ijmr.IJMR_410_15. (PMID: 10.4103/ijmr.IJMR_410_15292051895735565)
Silva LN, Zimmer KR, Macedo AJ, Trentin DS (2016) Plant Natural Products Targeting Bacterial Virulence Factors. Chem Rev 116(16):9162–236. https://doi.org/10.1021/acs.chemrev.6b00184. (PMID: 10.1021/acs.chemrev.6b0018427437994)
Thomas TR, Kavlekar DP, LokaBharathi PA (2010) Marine drugs from sponge-microbe association–a review. Mar Drugs 8(4):1417–68. https://doi.org/10.3390/md8041417. (PMID: 10.3390/md8041417204799842866492)
Trentin DS, Gorziza DF, Abraham WR, Antunes AL, Lerner C, Mothes B, Termignoni C, Macedo AJ (2011) Antibiofilm activity of Cobetia marina filtrate upon Staphylococcus epidermidis catheter-related isolates. Braz J Microbiol 42(4):1329–33. https://doi.org/10.1590/S1517-838220110004000013. (PMID: 10.1590/S1517-838220110004000013240317603768739)
Venkatesan J, Anil S, Kim SK, Shim MS (2017) Marine Fish Proteins and Peptides for Cosmeceuticals: A Review. Mar Drugs 15(5). https://doi.org/10.3390/md15050143.
Wang Y, Zhao P, Zhou Y, Hu X, Xiong H (2023) From bitter to delicious: properties and uses of microbial aminopeptidases. World J Microbiol Biotechnol 39(3):72. https://doi.org/10.1007/s11274-022-03501-3. (PMID: 10.1007/s11274-022-03501-336625962)
Wick RR, Judd LM, Gorrie CL, Holt KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput Biol 13(6):e1005595. https://doi.org/10.1371/journal.pcbi.1005595. (PMID: 10.1371/journal.pcbi.1005595285948275481147)
Xia L, Miao Y, Cao A, Liu Y, Liu Z, Sun X, Xue Y, Xu Z, Xun W, Shen Q, Zhang N, Zhang R (2022) Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus. Nat Commun 13(1):1023. https://doi.org/10.1038/s41467-022-28668-z. (PMID: 10.1038/s41467-022-28668-z351974808866423)
Yin W, Wang Y, Liu L, He J (2019) Biofilms: The Microbial "Protective Clothing" in Extreme Environments. Int J Mol Sci 20(14). https://doi.org/10.3390/ijms20143423.
Yu P, Wang X, Huang X, Ren Q, Yan T (2019) Purification and characterization of a propanol-tolerant neutral protease from. Prep Biochem Biotechnol 49(7):718–726. https://doi.org/10.1080/10826068.2019.1605526. (PMID: 10.1080/10826068.2019.160552631050583)
Zhao T, Zhang Y, Wu H, Wang D, Chen Y, Zhu MJ, Ma LZ (2018) Extracellular aminopeptidase modulates biofilm development of Pseudomonas aeruginosa by affecting matrix exopolysaccharide and bacterial cell death. Environ Microbiol Rep 10(5):583–593. https://doi.org/10.1111/1758-2229.12682. (PMID: 10.1111/1758-2229.1268230047246)
فهرسة مساهمة: Keywords: Antibiofilm; Antivirulence therapy; Marine molecules; Marine sponge-associated bacteria; Metalloprotease
المشرفين على المادة: 0 (Bacterial Proteins)
0 (Anti-Bacterial Agents)
تواريخ الأحداث: Date Created: 20240513 Date Completed: 20240513 Latest Revision: 20240513
رمز التحديث: 20240514
DOI: 10.1007/s10482-024-01977-7
PMID: 38740670
قاعدة البيانات: MEDLINE
الوصف
تدمد:1572-9699
DOI:10.1007/s10482-024-01977-7