دورية أكاديمية

The ion channel TRPM8 is a direct target of the immunosuppressant rapamycin in primary sensory neurons.

التفاصيل البيبلوغرافية
العنوان: The ion channel TRPM8 is a direct target of the immunosuppressant rapamycin in primary sensory neurons.
المؤلفون: Arcas JM; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Oudaha K; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., González A; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Fernández-Trillo J; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Peralta FA; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Castro-Marsal J; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Poyraz S; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Taberner F; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Sala S; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., de la Peña E; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Gomis A; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain., Viana F; Instituto de Neurociencias, Universidad Miguel Hernández-CSIC, San Juan de Alicante, Spain.
المصدر: British journal of pharmacology [Br J Pharmacol] 2024 Sep; Vol. 181 (17), pp. 3192-3214. Date of Electronic Publication: 2024 May 13.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 7502536 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-5381 (Electronic) Linking ISSN: 00071188 NLM ISO Abbreviation: Br J Pharmacol Subsets: MEDLINE
أسماء مطبوعة: Publication: London : Wiley
Original Publication: London, Macmillian Journals Ltd.
مواضيع طبية MeSH: TRPM Cation Channels*/antagonists & inhibitors , TRPM Cation Channels*/metabolism , Sirolimus*/pharmacology , Sensory Receptor Cells*/drug effects , Sensory Receptor Cells*/metabolism , Immunosuppressive Agents*/pharmacology , Mice, Knockout*, Animals ; Humans ; HEK293 Cells ; Rats ; Mice ; Male ; Mice, Inbred C57BL ; Cells, Cultured ; Calcium/metabolism ; Ganglia, Spinal/drug effects ; Ganglia, Spinal/metabolism ; Cold Temperature
مستخلص: Background and Purpose: The mechanistic target of rapamycin (mTOR) signalling pathway is a key regulator of cell growth and metabolism. Its deregulation is implicated in several diseases. The macrolide rapamycin, a specific inhibitor of mTOR, has immunosuppressive, anti-inflammatory and antiproliferative properties. Recently, we identified tacrolimus, another macrolide immunosuppressant, as a novel activator of TRPM8 ion channels, involved in cold temperature sensing, thermoregulation, tearing and cold pain. We hypothesized that rapamycin may also have agonist activity on TRPM8 channels.
Experimental Approach: Using calcium imaging and electrophysiology in transfected HEK293 cells and wildtype or Trpm8 KO mouse DRG neurons, we characterized rapamycin's effects on TRPM8 channels. We also examined the effects of rapamycin on tearing in mice.
Key Results: Micromolar concentrations of rapamycin activated rat and mouse TRPM8 channels directly and potentiated cold-evoked responses, effects also observed in human TRPM8 channels. In cultured mouse DRG neurons, rapamycin increased intracellular calcium levels almost exclusively in cold-sensitive neurons. Responses were markedly decreased in Trpm8 KO mice or by TRPM8 channel antagonists. Cutaneous cold thermoreceptor endings were also activated by rapamycin. Topical application of rapamycin to the eye surface evokes tearing in mice by a TRPM8-dependent mechanism.
Conclusion and Implications: These results identify TRPM8 cationic channels in sensory neurons as novel molecular targets of the immunosuppressant rapamycin. These findings may help explain some of its therapeutic effects after topical application to the skin and the eye surface. Moreover, rapamycin could be used as an experimental tool in the clinic to explore cold thermoreceptors.
(© 2024 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of British Pharmacological Society.)
References: Alexander, S. P. H., Fabbro, D., Kelly, E., Mathie, A. A., Peters, J. A., Veale, E. L., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Annett, S., Boison, D., Burns, K. E., Dessauer, C., Gertsch, J., Helsby, N. A., Izzo, A. A., Ostrom, R., Papapetropoulos, A., … Wong, S. S. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Enzymes. British Journal of Pharmacology, 180, S289–S373. https://doi.org/10.1111/bph.16181.
Alexander, S. P. H., Mathie, A. A., Peters, J. A., Veale, E. L., Striessnig, J., Kelly, E., Armstrong, J. F., Faccenda, E., Harding, S. D., Davies, J. A., Aldrich, R. W., Attali, B., Baggetta, A. M., Becirovic, E., Biel, M., Bill, R. M., Caceres, A. I., Catterall, W. A., Conner, A. C., … Zhu, M. (2023). The Concise Guide to PHARMACOLOGY 2023/24: Ion channels. British Journal of Pharmacology, 180(Suppl 2), S145–S222. https://doi.org/10.1111/bph.16178.
Almaraz, L., Manenschijn, J. A., de la Pena, E., & Viana, F. (2014). Trpm8. Handbook of Experimental Pharmacology, 222, 547–579. https://doi.org/10.1007/978-3-642-54215-2_22.
Arcas, J. M., González, A., Gers‐Barlag, K., González‐González, O., Bech, F., Demirkhanyan, L., Zakharian, E., Belmonte, C., Gomis, A., & Viana, F. (2019). The immunosuppressant macrolide tacrolimus activates cold‐sensing TRPM8 channels. The Journal of Neuroscience, 39(6), 949–969. https://doi.org/10.1523/JNEUROSCI.1726-18.2018.
Asuthkar, S., Demirkhanyan, L., Sun, X., Elustondo, P. A., Krishnan, V., Baskaran, P., Velpula, K. K., Thyagarajan, B., Pavlov, E. V., & Zakharian, E. (2015). The TRPM8 protein is a testosterone receptor: II. Functional evidence for an ionotropic effect of testosterone on TRPM8. The Journal of Biological Chemistry, 290(5), 2670–2688. https://doi.org/10.1074/jbc.M114.610873.
Bandell, M., Dubin, A. E., Petrus, M. J., Orth, A., Mathur, J., Hwang, S. W., & Patapoutian, A. (2006). High‐throughput random mutagenesis screen reveals TRPM8 residues specifically required for activation by menthol. Nature Neuroscience, 9(4), 493–500. https://doi.org/10.1038/nn1665.
Benjamin, D., Colombi, M., Moroni, C., & Hall, M. N. (2011). Rapamycin passes the torch: A new generation of mTOR inhibitors. Nature Reviews. Drug Discovery, 10(11), 868–880. https://doi.org/10.1038/nrd3531.
Bidaux, G., Borowiec, A. S., Dubois, C., Delcourt, P., Schulz, C., Vanden Abeele, F., Lepage, G., Desruelles, E., Bokhobza, A., Dewailly, E., Slomianny, C., Roudbaraki, M., Héliot, L., Bonnal, J. L., Mauroy, B., Mariot, P., Lemonnier, L., & Prevarskaya, N. (2016). Targeting of short TRPM8 isoforms induces 4TM‐TRPM8‐dependent apoptosis in prostate cancer cells. Oncotarget, 7(20), 29063–29080. https://doi.org/10.18632/oncotarget.8666.
Bidaux, G., Borowiec, A. S., Gordienko, D., Beck, B., Shapovalov, G. G., Lemonnier, L., Flourakis, M., Vandenberghe, M., Slomianny, C., Dewailly, E., Delcourt, P., Desruelles, E., Ritaine, A., Polakowska, R., Lesage, J., Chami, M., Skryma, R., & Prevarskaya, N. (2015). Epidermal TRPM8 channel isoform controls the balance between keratinocyte proliferation and differentiation in a cold‐dependent manner. Proceedings of the National Academy of Sciences of the United States of America, 112(26), E3345–E3354. https://doi.org/10.1073/pnas.1423357112.
Bitto, A., Ito, T. K., Pineda, V. V., LeTexier, N. J., Huang, H. Z., Sutlief, E., Tung, H., Vizzini, N., Chen, B., Smith, K., Meza, D., Yajima, M., Beyer, R. P., Kerr, K. F., Davis, D. J., Gillespie, C. H., Snyder, J. M., Treuting, P. M., & Kaeberlein, M. (2016). Transient rapamycin treatment can increase lifespan and healthspan in middle‐aged mice. eLife, 5, e16351. https://doi.org/10.7554/eLife.16351.
Brauchi, S., Orio, P., & Latorre, R. (2004). Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8. Proceedings of the National Academy of Sciences of the United States of America, 101(43), 15494–15499. https://doi.org/10.1073/pnas.0406773101.
Brillantes, A. B., Ondrias, K., Scott, A., Kobrinsky, E., Ondriašová, E., Moschella, M. C., Jayaraman, T., Landers, M., Ehrlich, B. E., & Marks, A. R. (1994). Stabilization of calcium release channel (ryanodine receptor) function by FK506‐binding protein. Cell, 77(4), 513–523. https://doi.org/10.1016/0092-8674(94)90214-3.
Choi, J., Chen, J., Schreiber, S. L., & Clardy, J. (1996). Structure of the FKBP12‐rapamycin complex interacting with the binding domain of human FRAP. Science, 273(5272), 239–242. https://doi.org/10.1126/science.273.5272.239.
Conti, B. (2008). Considerations on temperature, longevity and aging. Cellular and Molecular Life Sciences, 65(11), 1626–1630. https://doi.org/10.1007/s00018-008-7536-1.
Conti, B., Sanchez‐Alavez, M., Winsky‐Sommerer, R., Morale, M. C., Lucero, J., Brownell, S., Fabre, V., Huitron‐Resendiz, S., Henriksen, S., Zorrilla, E. P., de Lecea, L., & Bartfai, T. (2006). Transgenic mice with a reduced core body temperature have an increased life span. Science, 314(5800), 825–828. https://doi.org/10.1126/science.1132191.
Curtis, M. J., Alexander, S. P. H., Cirino, G., George, C. H., Kendall, D. A., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Patel, H. H., Sobey, C. G., Stanford, S. C., Stanley, P., Stefanska, B., Stephens, G. J., Teixeira, M. M., Vergnolle, N., & Ahluwalia, A. (2022). Planning experiments: Updated guidance on experimental design and analysis and their reporting III. British Journal of Pharmacology, 179(15), 3907–3913. https://doi.org/10.1111/bph.15868.
Denda, M., Tsutsumi, M., & Denda, S. (2010). Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: Role of cold‐sensitive TRP receptors in epidermal permeability barrier homoeostasis. Experimental Dermatology, 19(9), 791–795. https://doi.org/10.1111/j.1600-0625.2010.01154.x.
Dhaka, A., Earley, T. J., Watson, J., & Patapoutian, A. (2008). Visualizing cold spots: TRPM8‐expressing sensory neurons and their projections. The Journal of Neuroscience, 28(3), 566–575. https://doi.org/10.1523/JNEUROSCI.3976-07.2008.
Dhaka, A., Murray, A. N., Mathur, J., Earley, T. J., Petrus, M. J., & Patapoutian, A. (2007). TRPM8 is required for cold sensation in mice. Neuron, 54(3), 371–378. https://doi.org/10.1016/j.neuron.2007.02.024.
Foster, R. S., Bint, L. J., & Halbert, A. R. (2012). Topical 0.1% rapamycin for angiofibromas in paediatric patients with tuberous sclerosis: A pilot study of four patients. The Australasian Journal of Dermatology, 53(1), 52–56. https://doi.org/10.1111/j.1440-0960.2011.00837.x.
Hammond, G. R., Fischer, M. J., Anderson, K. E., Holdich, J., Koteci, A., Balla, T., & Irvine, R. F. (2012). PI4P and PI(4,5)P2 are essential but independent lipid determinants of membrane identity. Science, 337(6095), 727–730. https://doi.org/10.1126/science.1222483.
Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., Nadon, N. L., Wilkinson, J. E., Frenkel, K., Carter, C. S., Pahor, M., Javors, M. A., Fernandez, E., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392–395. https://doi.org/10.1038/nature08221.
Heitman, J., Movva, N. R., & Hall, M. N. (1991). Targets for cell cycle arrest by the immunosuppressant rapamycin in yeast. Science, 253(5022), 905–909. https://doi.org/10.1126/science.1715094.
Houghton, P. J. (2010). Everolimus. Clinical Cancer Research, 16(5), 1368–1372. https://doi.org/10.1158/1078-0432.CCR-09-1314.
Izquierdo, C., Martin‐Martinez, M., Gomez‐Monterrey, I., & Gonzalez‐Muniz, R. (2021). TRPM8 channels: Advances in structural studies and pharmacological modulation. International Journal of Molecular Sciences, 22(16), 8502. https://doi.org/10.3390/ijms22168502.
Janssens, A., Gees, M., Toth, B. I., Ghosh, D., Mulier, M., Vennekens, R., Vriens, J., Talavera, K., & Voets, T. (2016). Definition of two agonist types at the mammalian cold‐activated channel TRPM8. eLife, 5, e17240. https://doi.org/10.7554/eLife.17240.
Johnson, S. C., Rabinovitch, P. S., & Kaeberlein, M. (2013). mTOR is a key modulator of ageing and age‐related disease. Nature, 493(7432), 338–345. https://doi.org/10.1038/nature11861.
Julius, D. (2005). From peppers to peppermints: Natural products as probes of the pain pathway. Harvey Lectures, 101, 89–115.
Kennedy, B. K., & Lamming, D. W. (2016). The mechanistic target of rapamycin: The grand ConducTOR of metabolism and aging. Cell Metabolism, 23(6), 990–1003. https://doi.org/10.1016/j.cmet.2016.05.009.
Kita, T., Uchida, K., Kato, K., Suzuki, Y., Tominaga, M., & Yamazaki, J. (2019). FK506 (tacrolimus) causes pain sensation through the activation of transient receptor potential ankyrin 1 (TRPA1) channels. The Journal of Physiological Sciences, 69(2), 305–316. https://doi.org/10.1007/s12576-018-0647-z.
Knowlton, W. M., Palkar, R., Lippoldt, E. K., McCoy, D. D., Baluch, F., Chen, J., & McKemy, D. D. (2013). A sensory‐labeled line for cold: TRPM8‐expressing sensory neurons define the cellular basis for cold, cold pain, and cooling‐mediated analgesia. The Journal of Neuroscience, 33(7), 2837–2848. https://doi.org/10.1523/JNEUROSCI.1943-12.2013.
Kunz, J., & Hall, M. N. (1993). Cyclosporin A, FK506 and rapamycin: More than just immunosuppression. Trends in Biochemical Sciences, 18(9), 334–338. https://doi.org/10.1016/0968-0004(93)90069-Y.
Lashinger, E. S., Steiginga, M. S., Hieble, J. P., Leon, L. A., Gardner, S. D., Nagilla, R., Davenport, E. A., Hoffman, B. E., Laping, N. J., & Su, X. (2008). AMTB, a TRPM8 channel blocker: Evidence in rats for activity in overactive bladder and painful bladder syndrome. American Journal of Physiology. Renal Physiology, 295(3), F803–F810. https://doi.org/10.1152/ajprenal.90269.2008.
Li, J., Kim, S. G., & Blenis, J. (2014). Rapamycin: One drug, many effects. Cell Metabolism, 19(3), 373–379. https://doi.org/10.1016/j.cmet.2014.01.001.
Lilley, E., Stanford, S. C., Kendall, D. E., Alexander, S. P. H., Cirino, G., Docherty, J. R., George, C. H., Insel, P. A., Izzo, A. A., Ji, Y., Panettieri, R. A., Sobey, C. G., Stefanska, B., Stephens, G., Teixeira, M. M., & Ahluwalia, A. (2020). ARRIVE 2.0 and the British Journal of Pharmacology: Updated guidance for 2020. British Journal of Pharmacology, 177, 3611–3616. https://doi.org/10.1111/bph.15178.
Liu, B., Fan, L., Balakrishna, S., Sui, A., Morris, J. B., & Jordt, S. E. (2013). TRPM8 is the principal mediator of menthol‐induced analgesia of acute and inflammatory pain. Pain, 154(10), 2169–2177. https://doi.org/10.1016/j.pain.2013.06.043.
Loeb, J., & Northrop, J. H. (1916). Is there a temperature coefficient for the duration of life? Proceedings of the National Academy of Sciences of the United States of America, 2(8), 456–457. https://doi.org/10.1073/pnas.2.8.456.
Lombardi, A., Trimarco, B., Iaccarino, G., & Santulli, G. (2017). Impaired mitochondrial calcium uptake caused by tacrolimus underlies beta‐cell failure. Cell Communication and Signaling: CCS, 15(1), 47. https://doi.org/10.1186/s12964-017-0203-0.
Madrid, R., de la Pena, E., Donovan‐Rodriguez, T., Belmonte, C., & Viana, F. (2009). Variable threshold of trigeminal cold‐thermosensitive neurons is determined by a balance between TRPM8 and Kv1 potassium channels. The Journal of Neuroscience, 29(10), 3120–3131. https://doi.org/10.1523/JNEUROSCI.4778-08.2009.
Malkia, A., Pertusa, M., Fernandez‐Ballester, G., Ferrer‐Montiel, A., & Viana, F. (2009). Differential role of the menthol‐binding residue Y745 in the antagonism of thermally gated TRPM8 channels. Molecular Pain, 5, 62. https://doi.org/10.1186/1744-8069-5-62.
Mangal, S., Zielich, J., Lambie, E., & Zanin, E. (2018). Rapamycin‐induced protein dimerization as a tool for C. elegans research. Micropublication Biology, 2018, W2BH3H. https://doi.org/10.17912/W2BH3H.
Martínez‐López, P., Treviño, C. L., de la Vega‐Beltrán, J. L., de Blas, G., Monroy, E., Beltrán, C., Orta, G., Gibbs, G. M., O'Bryan, M. K., & Darszon, A. (2011). TRPM8 in mouse sperm detects temperature changes and may influence the acrosome reaction. Journal of Cellular Physiology, 226(6), 1620–1631. https://doi.org/10.1002/jcp.22493.
McKemy, D. D., Neuhausser, W. M., & Julius, D. (2002). Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature, 416(6876), 52–58. https://doi.org/10.1038/nature719.
Meotti, F. C., Lemos de Andrade, E., & Calixto, J. B. (2014). TRP modulation by natural compounds. Handbook of Experimental Pharmacology, 223, 1177–1238. https://doi.org/10.1007/978-3-319-05161-1_19.
Moran, M. M., & Szallasi, A. (2017). Targeting nociceptive transient receptor potential channels to treat chronic pain: Current state of the field. British Journal of Pharmacology, 175, 2185–2203. https://doi.org/10.1111/bph.14044.
Morenilla‐Palao, C., Luis, E., Fernandez‐Pena, C., Quintero, E., Weaver, J. L., Bayliss, D. A., & Viana, F. (2014). Ion channel profile of TRPM8 cold receptors reveals a role of TASK‐3 potassium channels in thermosensation. Cell Reports, 8(5), 1571–1582. https://doi.org/10.1016/j.celrep.2014.08.003.
Mutizwa, M. M., Berk, D. R., & Anadkat, M. J. (2011). Treatment of facial angiofibromas with topical application of oral rapamycin solution (1mgmL(‐1)) in two patients with tuberous sclerosis. The British Journal of Dermatology, 165(4), 922–923. https://doi.org/10.1111/j.1365-2133.2011.10476.x.
Nilius, B., & Appendino, G. (2011). Tasty and healthy TR(i)Ps. The human quest for culinary pungency. EMBO Reports, 12(11), 1094–1101. https://doi.org/10.1038/embor.2011.200.
Olivares, E., Salgado, S., Maidana, J. P., Herrera, G., Campos, M., Madrid, R., & Orio, P. (2015). TRPM8‐dependent dynamic response in a mathematical model of cold thermoreceptor. PLoS ONE, 10(10), e0139314. https://doi.org/10.1371/journal.pone.0139314.
Palkar, R., Ongun, S., Catich, E., Li, N., Borad, N., Sarkisian, A., & McKemy, D. D. (2018). Cooling relief of acute and chronic itch requires TRPM8 channels and neurons. The Journal of Investigative Dermatology, 138(6), 1391–1399. https://doi.org/10.1016/j.jid.2017.12.025.
Parra, A., Madrid, R., Echevarria, D., del Olmo, S., Morenilla‐Palao, C., Acosta, M. C., Gallar, J., Dhaka, A., Viana, F., & Belmonte, C. (2010). Ocular surface wetness is regulated by TRPM8‐dependent cold thermoreceptors of the cornea. Nature Medicine, 16(12), 1396–1399. https://doi.org/10.1038/nm.2264.
Peier, A. M., Moqrich, A., Hergarden, A. C., Reeve, A. J., Andersson, D. A., Story, G. M., Earley, T. J., Dragoni, I., McIntyre, P., Bevan, S., & Patapoutian, A. (2002). A TRP channel that senses cold stimuli and menthol. Cell, 108(5), 705–715. https://doi.org/10.1016/s0092-8674(02)00652-9.
Percie du Sert, N., Hurst, V., Ahluwalia, A., Alam, S., Avey, M. T., Baker, M., Browne, W. J., Clark, A., Cuthill, I. C., Dirnagl, U., Emerson, M., Garner, P., Holgate, S. T., Howells, D. W., Karp, N. A., Lazic, S. E., Lidster, K., MacCallum, C. J., Macleod, M., … Würbel, H. (2020). The ARRIVE guidelines 2.0: updated guidelines for reporting animal research. PLoS Biol, 18, e3000410. https://doi.org/10.1371/journal.pbio.3000410.
Proudfoot, C. J., Garry, E. M., Cottrell, D. F., Rosie, R., Anderson, H., Robertson, D. C., Fleetwood‐Walker, S. M., & Mitchell, R. (2006). Analgesia mediated by the TRPM8 cold receptor in chronic neuropathic pain. Current Biology, 16(16), 1591–1605. https://doi.org/10.1016/j.cub.2006.07.061.
Quallo, T., Vastani, N., Horridge, E., Gentry, C., Parra, A., Moss, S., Viana, F., Belmonte, C., Andersson, D. A., & Bevan, S. (2015). TRPM8 is a neuronal osmosensor that regulates eye blinking in mice. Nature Communications, 6, 7150. https://doi.org/10.1038/ncomms8150.
Reid, G., Amuzescu, B., Zech, E., & Flonta, M. L. (2001). A system for applying rapid warming or cooling stimuli to cells during patch clamp recording or ion imaging. Journal of Neuroscience Methods, 111(1), 1–8. https://doi.org/10.1016/S0165-0270(01)00416-2.
Reid, G., Babes, A., & Pluteanu, F. (2002). A cold‐ and menthol‐activated current in rat dorsal root ganglion neurones: Properties and role in cold transduction. The Journal of Physiology, 545(2), 595–614. https://doi.org/10.1113/jphysiol.2002.024331.
Reimúndez, A., Fernández‐Peña, C., García, G., Fernández, R., Ordás, P., Gallego, R., Pardo‐Vazquez, J. L., Arce, V., Viana, F., & Señarís, R. (2018). Deletion of the cold thermoreceptor TRPM8 increases heat loss and food intake leading to reduced body temperature and obesity in mice. The Journal of Neuroscience, 38(15), 3643–3656. https://doi.org/10.1523/JNEUROSCI.3002-17.2018.
Rivera, B., Moreno, C., Lavanderos, B., Hwang, J. Y., Fernández‐Trillo, J., Park, K. S., Orio, P., Viana, F., Madrid, R., & Pertusa, M. (2021). Constitutive phosphorylation as a key regulator of TRPM8 channel function. The Journal of Neuroscience, 41(41), 8475–8493. https://doi.org/10.1523/JNEUROSCI.0345-21.2021.
Rovira, J., Diekmann, F., Ramirez‐Bajo, M. J., Banon‐Maneus, E., Moya‐Rull, D., & Campistol, J. M. (2012). Sirolimus‐associated testicular toxicity: Detrimental but reversible. Transplantation, 93(9), 874–879. https://doi.org/10.1097/TP.0b013e31824bf1f0.
Roza, C., Belmonte, C., & Viana, F. (2006). Cold sensitivity in axotomized fibers of experimental neuromas in mice. Pain, 120(1–2), 24–35. https://doi.org/10.1016/j.pain.2005.10.006.
Sarria, I., Ling, J., Zhu, M. X., & Gu, J. G. (2011). TRPM8 acute desensitization is mediated by calmodulin and requires PIP(2): Distinction from tachyphylaxis. Journal of Neurophysiology, 106(6), 3056–3066. https://doi.org/10.1152/jn.00544.2011.
Saxton, R. A., & Sabatini, D. M. (2017). mTOR signaling in growth, metabolism, and disease. Cell, 168(6), 960–976. https://doi.org/10.1016/j.cell.2017.02.004.
Seto, B. (2012). Rapamycin and mTOR: A serendipitous discovery and implications for breast cancer. Clinical and Translational Medicine, 1(1), 29. https://doi.org/10.1186/2001-1326-1-29.
Spatola, R., Nadelstein, B., Berdoulay, A., & English, R. V. (2018). The effects of topical aqueous sirolimus on tear production in normal dogs and dogs with refractory dry eye. Veterinary Ophthalmology, 21(3), 255–263. https://doi.org/10.1111/vop.12503.
Takashima, Y., Daniels, R. L., Knowlton, W., Teng, J., Liman, E. R., & McKemy, D. D. (2007). Diversity in the neural circuitry of cold sensing revealed by genetic axonal labeling of transient receptor potential melastatin 8 neurons. The Journal of Neuroscience, 27(51), 14147–14157. https://doi.org/10.1523/JNEUROSCI.4578-07.2007.
Toro, C. A., Eger, S., Veliz, L., Sotelo‐Hitschfeld, P., Cabezas, D., Castro, M. A., Zimmermann, K., & Brauchi, S. (2015). Agonist‐dependent modulation of cell surface expression of the cold receptor TRPM8. The Journal of Neuroscience, 35(2), 571–582. https://doi.org/10.1523/JNEUROSCI.3820-13.2015.
Tóth, B. I., Bazeli, B., Janssens, A., Lisztes, E., Racskó, M., Kelemen, B., Herczeg, M., Nagy, T. M., Kövér, K. E., Mitra, A., Borics, A., & Voets, T. (2024). Direct modulation of TRPM8 ion channels by rapamycin and analog macrolide immunosuppressants. bioRxiv, 2024.2002.2001.578392. https://doi.org/10.1101/2024.02.01.578392.
Tsavaler, L., Shapero, M. H., Morkowski, S., & Laus, R. (2001). Trp‐p8, a novel prostate‐specific gene, is up‐regulated in prostate cancer and other malignancies and shares high homology with transient receptor potential calcium channel proteins. Cancer Research, 61(9), 3760–3769.
van Unen, J., Rashidfarrokhi, A., Hoogendoorn, E., Postma, M., Gadella, T. W. Jr., & Goedhart, J. (2016). Quantitative single‐cell analysis of signaling pathways activated immediately downstream of histamine receptor subtypes. Molecular Pharmacology, 90(3), 162–176. https://doi.org/10.1124/mol.116.104505.
Varnai, P., Thyagarajan, B., Rohacs, T., & Balla, T. (2006). Rapidly inducible changes in phosphatidylinositol 4,5‐bisphosphate levels influence multiple regulatory functions of the lipid in intact living cells. The Journal of Cell Biology, 175(3), 377–382. https://doi.org/10.1083/jcb.200607116.
Vezina, C., Kudelski, A., & Sehgal, S. N. (1975). Rapamycin (AY‐22,989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. Journal of Antibiotics (Tokyo), 28(10), 721–726. https://doi.org/10.7164/antibiotics.28.721.
Voets, T., Droogmans, G., Wissenbach, U., Janssens, A., Flockerzi, V., & Nilius, B. (2004). The principle of temperature‐dependent gating in cold‐ and heat‐sensitive TRP channels. Nature, 430(7001), 748–754. https://doi.org/10.1038/nature02732.
Wilkinson, J. E., Burmeister, L., Brooks, S. V., Chan, C. C., Friedline, S., Harrison, D. E., Hejtmancik, J. F., Nadon, N., Strong, R., Wood, L. K., Woodward, M. A., & Miller, R. A. (2012). Rapamycin slows aging in mice. Aging Cell, 11(4), 675–682. https://doi.org/10.1111/j.1474-9726.2012.00832.x.
Winter, Z., Gruschwitz, P., Eger, S., Touska, F., & Zimmermann, K. (2017). Cold temperature encoding by cutaneous TRPA1 and TRPM8‐carrying fibers in the mouse. Frontiers in Molecular Neuroscience, 10, 209. https://doi.org/10.3389/fnmol.2017.00209.
Wirta, D. L., Senchyna, M., Lewis, A. E., Evans, D. G., McLaurin, E. B., Ousler, G. W., & Hollander, D. A. (2022). A randomized, vehicle‐controlled, phase 2b study of two concentrations of the TRPM8 receptor agonist AR‐15512 in the treatment of dry eye disease (COMET‐1). The Ocular Surface, 26, 166–173. https://doi.org/10.1016/j.jtos.2022.08.003.
Xiao, R., Zhang, B., Dong, Y., Gong, J., Xu, T., Liu, J., & Xu, X. Z. (2013). A genetic program promotes C. elegans longevity at cold temperatures via a thermosensitive TRP channel. Cell, 152(4), 806–817. https://doi.org/10.1016/j.cell.2013.01.020.
Yamamura, H., Ugawa, S., Ueda, T., Morita, A., & Shimada, S. (2008). TRPM8 activation suppresses cellular viability in human melanoma. American Journal of Physiology. Cell Physiology, 295(2), C296–C301. https://doi.org/10.1152/ajpcell.00499.2007.
Yang, J. M., Li, F., Liu, Q., Rüedi, M., Wei, E. T., Lentsman, M., Lee, H. S., Choi, W., Kim, S. J., & Yoon, K. C. (2017). A novel TRPM8 agonist relieves dry eye discomfort. BMC Ophthalmology, 17(1), 101. https://doi.org/10.1186/s12886-017-0495-2.
Zakharian, E., Cao, C., & Rohacs, T. (2010). Gating of transient receptor potential melastatin 8 (TRPM8) channels activated by cold and chemical agonists in planar lipid bilayers. The Journal of Neuroscience, 30(37), 12526–12534. https://doi.org/10.1523/JNEUROSCI.3189-10.2010.
Zakharian, E., Thyagarajan, B., French, R. J., Pavlov, E., & Rohacs, T. (2009). Inorganic polyphosphate modulates TRPM8 channels. PLoS ONE, 4(4), e5404. https://doi.org/10.1371/journal.pone.0005404.
Zhang, L., & Barritt, G. J. (2006). TRPM8 in prostate cancer cells: A potential diagnostic and prognostic marker with a secretory function? Endocrine‐Related Cancer, 13(1), 27–38. https://doi.org/10.1677/erc.1.01093.
Zhang, X. (2019). Direct Galpha(q) gating is the sole mechanism for TRPM8 inhibition caused by bradykinin receptor activation. Cell Reports, 27(12), 3672–3683.e4. https://doi.org/10.1016/j.celrep.2019.05.080.
Zhang, X., Chen, W., Gao, Q., Yang, J., Yan, X., Zhao, H., Su, L., Yang, M., Gao, C., Yao, Y., Inoki, K., Li, D., Shao, R., Wang, S., Sahoo, N., Kudo, F., Eguchi, T., Ruan, B., & Xu, H. (2019). Rapamycin directly activates lysosomal mucolipin TRP channels independent of mTOR. PLoS Biology, 17(5), e3000252. https://doi.org/10.1371/journal.pbio.3000252.
Zimmermann, K., Hein, A., Hager, U., Kaczmarek, J. S., Turnquist, B. P., Clapham, D. E., & Reeh, P. W. (2009). Phenotyping sensory nerve endings in vitro in the mouse. Nature Protocols, 4(2), 174–196. https://doi.org/10.1038/nprot.2008.223.
Zou, Z., Tao, T., Li, H., & Zhu, X. (2020). mTOR signaling pathway and mTOR inhibitors in cancer: Progress and challenges. Cell & Bioscience, 10, 31. https://doi.org/10.1186/s13578-020-00396-1.
Carnevale, T., & Hines, M. (2006). The NEURON book. Cambridge University Press.
Hines, M. L., Davison, A. P., & Muller, E. (2009). NEURON and Python. Frontiers in Neuroinformatics, 3, 1. https://doi.org/10.3389/NEURO.11.001.2009/BIBTEX.
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Fernández del Río, J., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585, 357–362. https://doi.org/10.1038/s41586-020-2649-2.
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., … SciPy 1.0 Contributors. (2020). SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nature Methods, 17, 261–272. https://doi.org/10.1038/s41592-019-0686-2.
Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95.
Mälkiä, A., Madrid, R., Meseguer, V., de la Peña, E., Valero, M., Belmonte, C., & Viana, F. (2007). Bidirectional shifts of TRPM8 channel gating by temperature and chemical agents modulate the cold sensitivity of mammalian thermoreceptors. The Journal of Physiology, 581(Pt 1), 155–174. https://doi.org/10.1113/jphysiol.2006.123059.
Doan, T. L., Pollastri, M., Walters, M. A., & Georg, G. I. (2011). Chapter 23—The future of drug repositioning: Old drugs, new opportunities. In J. E. Macor (Ed.), Annual reports in medicinal chemistry (Vol. 46) (pp. 385–401). Academic Press. https://doi.org/10.1016/B978-0-12-386009-5.00004-7.
معلومات مُعتمدة: GRISOLIA/2019/089 Generalitat Valenciana; PROMETEO/2021/03 Generalitat Valenciana; CEX2021-001165-S Ministerio de Ciencia e Innovación; PID2019-108194RB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación; JAEINT_22_01043 Consejo Superior de Investigaciones Científicas; ionRAPA Grant Fundacion ICAR; European Regional Development Fund
فهرسة مساهمة: Keywords: ageing; cold; dry eye disease; mTOR; pain; thermoregulation
المشرفين على المادة: 0 (TRPM Cation Channels)
W36ZG6FT64 (Sirolimus)
0 (TRPM8 protein, mouse)
0 (Immunosuppressive Agents)
SY7Q814VUP (Calcium)
0 (TRPM8 protein, human)
تواريخ الأحداث: Date Created: 20240514 Date Completed: 20240802 Latest Revision: 20240802
رمز التحديث: 20240802
DOI: 10.1111/bph.16402
PMID: 38741464
قاعدة البيانات: MEDLINE