دورية أكاديمية

Comparison of 3T MR arthrography and 3T MRI in intra-articular hip pathology: a cost-analysis.

التفاصيل البيبلوغرافية
العنوان: Comparison of 3T MR arthrography and 3T MRI in intra-articular hip pathology: a cost-analysis.
المؤلفون: Ryan DT; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland. davidtryan@hotmail.com., Hanley M; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland., White A; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland., Hynes JP; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland., Long NM; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland., Eustace SJ; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland., Kavanagh EC; Radiology Department, National Orthopaedic Hospital Cappagh, Dublin, Ireland.
المصدر: Irish journal of medical science [Ir J Med Sci] 2024 May 14. Date of Electronic Publication: 2024 May 14.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Royal Academy of Medicine of Ireland Country of Publication: Ireland NLM ID: 7806864 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1863-4362 (Electronic) Linking ISSN: 00211265 NLM ISO Abbreviation: Ir J Med Sci Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dublin : Royal Academy of Medicine of Ireland
مستخلص: Background: MR arthrography (MRA) has previously been the radiological gold standard for investigating labral and chondral lesions of the hip joint. In recent years, 3T MRI has demonstrated comparable accuracy, being adopted as the first-line imaging investigation in many institutions.
Aims: We compare the associated increased cost and radiation dose of the fluoroscopic component of the MRA compared to MRI.
Methods: In this retrospective review over 2 years, 120 patients (mean age 27.3 years ± 13.2, range 8-67) underwent 3T MRA or non-contrast 3T MRI. Three musculoskeletal radiologists reported the data independently. Primary objectives included cost-comparison between each and radiation dose of the fluoroscopic component of the MRA. Secondary objectives included comparing detection of pathology involving the acetabular labrum, femoral cartilage, and acetabular cartilage.
Results: Then, 58 (48%) underwent 3T MRA and 62 (52%) patients underwent 3T MRI. The added cost of the fluoroscopic injection prior to MRA was €116.31/patient, equating to €7211.22 savings/year. MRA was associated with a small radiation dose of 0.003 mSv.
Conclusions: Transitioning from 3T MRA to 3T MRI in the investigation of intra-articular hip pathology increases cost savings and reduces radiation dose.
(© 2024. The Author(s), under exclusive licence to Royal Academy of Medicine in Ireland.)
References: Imam S, Khanduja V (2011) Current concepts in the diagnosis and management of femoroacetabular impingement. Int Orthop 35:1427–1435. https://doi.org/10.1007/s00264-011-1278-7. (PMID: 10.1007/s00264-011-1278-7217553343174304)
Grant AD, Sala DA, Davidovitch RI (2012) The labrum: structure, function, and injury with femoro-acetabular impingement. J Child Orthop 6:357–372. https://doi.org/10.1007/s11832-012-0431-1. (PMID: 10.1007/s11832-012-0431-1240829513468736)
Su T, Chen G-X, Yang L (2019) Diagnosis and treatment of labral tear. Chin Med J (Engl) 132:211–219. https://doi.org/10.1097/CM9.0000000000000020. (PMID: 10.1097/CM9.000000000000002030614856)
McCarthy JC, Noble PC, Schuck MR et al (2001) The role of labral lesions to development of early degenerative hip disease. Clin Orthop Relat Res 393:25–37. https://doi.org/10.1097/00003086-200112000-00004. (PMID: 10.1097/00003086-200112000-00004)
Tian C-Y, Wang J-Q, Zheng Z-Z, Ren A-H (2014) 3.0T conventional hip MR and hip MR arthrography for the acetabular labral tears confirmed by arthroscopy. Eur J Radiol 83:1822–1827. https://doi.org/10.1016/j.ejrad.2014.05.034. (PMID: 10.1016/j.ejrad.2014.05.03425022979)
Crespo-Rodríguez AM, De Lucas-Villarrubia JC, Pastrana-Ledesma M et al (2017) The diagnostic performance of non-contrast 3-Tesla magnetic resonance imaging (3-T MRI) versus 1.5-Tesla magnetic resonance arthrography (1.5-T MRA) in femoro-acetabular impingement. Eur J Radiol 88:109–116. https://doi.org/10.1016/j.ejrad.2016.12.031. (PMID: 10.1016/j.ejrad.2016.12.03128189195)
Annabell L, Master V, Rhodes A et al (2018) Hip pathology: the diagnostic accuracy of magnetic resonance imaging. J Orthop Surg Res 13:127. https://doi.org/10.1186/s13018-018-0832-z. (PMID: 10.1186/s13018-018-0832-z298437495975565)
Saied AM, Redant C, Anthonissen J et al (2019) Conventional versus direct magnetic resonance imaging in detecting labral lesions in femoroacetabular impingment - a retrospective multicenter study. Acta Orthop Belg 85:100–106. (PMID: 31023206)
Carulli C, Tonelli F, Melani T et al (2018) Diagnostic accuracy of magnetic resonance arthrography in detecting intra-articular pathology associated with femoroacetabular impingement. Joints 6:104–109. https://doi.org/10.1055/s-0038-1660839. (PMID: 10.1055/s-0038-1660839300511076059867)
Smith TO, Hilton G, Toms AP et al (2011) The diagnostic accuracy of acetabular labral tears using magnetic resonance imaging and magnetic resonance arthrography: a meta-analysis. Eur Radiol 21:863–874. https://doi.org/10.1007/s00330-010-1956-7. (PMID: 10.1007/s00330-010-1956-720859632)
Magee T (2015) Comparison of 3.0-T MR vs 3.0-T MR arthrography of the hip for detection of acetabular labral tears and chondral defects in the same patient population. Br J Radiol 88:20140817. https://doi.org/10.1259/bjr.20140817. (PMID: 10.1259/bjr.20140817260908244743561)
Naraghi A, White LM (2015) MRI of labral and chondral lesions of the hip. Am J Roentgenol 205:479–490. https://doi.org/10.2214/AJR.14.12581. (PMID: 10.2214/AJR.14.12581)
Linda DD, Naraghi A, Murnaghan L et al (2017) Accuracy of non-arthrographic 3T MR imaging in evaluation of intra-articular pathology of the hip in femoroacetabular impingement. Skeletal Radiol 46:299–308. https://doi.org/10.1007/s00256-016-2551-z. (PMID: 10.1007/s00256-016-2551-z27975135)
Sconfienza LM, Albano D, Messina C et al (2018) How, when, why in magnetic resonance arthrography: an international survey by the European Society of Musculoskeletal Radiology (ESSR). Eur Radiol 28:2356–2368. https://doi.org/10.1007/s00330-017-5208-y. (PMID: 10.1007/s00330-017-5208-y29318428)
Arora S, Popkin CA, Wong TT (2023) Trends in MR arthrogram utilization at a tertiary care academic center. Curr Probl Diagn Radiol. https://doi.org/10.1067/j.cpradiol.2023.02.002. (PMID: 10.1067/j.cpradiol.2023.02.00236842885)
Kaplan RS, Witkowski M, Abbott M et al (2014) Using time-driven activity-based costing to identify value improvement opportunities in healthcare. J Healthc Manag 59:399–412. (PMID: 25647962)
Wall BF, Haylock R, Jansen JTM et al (2011) Radiation risks from medical x-ray examinations as a function of the age and sex of the patient. Health Protection Agency, Didcot, pp 12–13.
Hajek P, Sartoris D, Neumann C, Resnick D (1987) Potential contrast agents for MR arthrography: in vitro evaluation and practical observations. Am J Roentgenol 149:97–104. https://doi.org/10.2214/ajr.149.1.97. (PMID: 10.2214/ajr.149.1.97)
Gyftopoulos S, Conroy J, Koo J et al (2022) Imaging of patients suspected of SLAP tear: a cost-effectiveness study. Am J Roentgenol 218:227–233. https://doi.org/10.2214/AJR.21.26420. (PMID: 10.2214/AJR.21.26420)
Anthony CA, Rojas EO, Glass N et al (2020) Obtaining imaging cost and quality information in femoroacetabular impingement: the patient experience. Iowa Orthop J 40:185–190. (PMID: 327422287368542)
Günalp M, Gülünay B, Polat O et al (2014) Ionising radiation awareness among resident doctors, interns, and radiographers in a university hospital emergency department. Radiol Med 119:440–447. https://doi.org/10.1007/s11547-013-0374-8. (PMID: 10.1007/s11547-013-0374-824356945)
UNSCEAR United Nations Scientific Comittee on the Effects of Atomic Radiation (2000) Sources and effects of ionizing radiation. Exposures of the public and workers from various sources of radiation, Annex B. (PMID: 10.18356/f48d655d-en)
Zhang P, Li C, Wang W et al (2022) 3.0 T MRI is more recommended to detect acetabular labral tears than MR arthrography: an updated meta-analysis of diagnostic accuracy. J Orthop Surg Res 17:126. https://doi.org/10.1186/s13018-022-02981-1. (PMID: 10.1186/s13018-022-02981-1352324598886969)
Huang Z, Liu W, Li T et al (2023) Diagnostic value of magnetic resonance imaging and magnetic resonance arthrography for assessing acetabular labral tears: a systematic review and meta-analysis. Medicine 102. https://doi.org/10.1097/MD.0000000000032963. (PMID: 10.1097/MD.0000000000032963368628779981430)
Datir A, Xing M, Kang J et al (2014) Diagnostic utility of MRI and MR arthrography for detection of ligamentum teres tears: a retrospective analysis of 187 patients with hip pain. Am J Roentgenol 203:418–423. https://doi.org/10.2214/AJR.13.12258. (PMID: 10.2214/AJR.13.12258)
Tomasevich KM, Mills MK, Allen H et al (2022) Magnetic resonance arthrogram improves visualization of hip capsular defects in patients undergoing previous hip arthroscopy. Arthrosc Sports Med Rehabil 4:e471–e478. https://doi.org/10.1016/j.asmr.2021.11.005. (PMID: 10.1016/j.asmr.2021.11.00535494278)
Chang EY, Bencardino JT, French CN et al (2023) SSR white paper: guidelines for utilization and performance of direct MR arthrography. Skeletal Radiol. https://doi.org/10.1007/s00256-023-04420-6. (PMID: 10.1007/s00256-023-04420-63813367110973042)
Saupe N, Zanetti M, Pfirrmann CWA et al (2009) Pain and other side effects after MR arthrography: prospective evaluation in 1085 patients. Radiology 250:830–838. https://doi.org/10.1148/radiol.2503080276. (PMID: 10.1148/radiol.250308027619164115)
Newberg AH, Munn CS, Robbins AH (1985) Complications of arthrography. Radiology 155:605–606. https://doi.org/10.1148/radiology.155.3.4001360. (PMID: 10.1148/radiology.155.3.40013604001360)
Hugo P, Newberg A, Newman J, Wetzner S (1998) Complications of arthrography. Semin Musculoskelet Radiol 2:345–348. https://doi.org/10.1055/s-2008-1080115. (PMID: 10.1055/s-2008-108011511387113)
Kim M, Tyson C, Mascola L (2013) Outbreak of joint infections associated with magnetic resonance arthrograms performed at an Outpatient Radiology Center.
Kamishima T, Schweitzer ME, Awaya H, Abraham D (2000) Utilization of “used” vials: cost-effective technique for MR arthrography. J Magn Reson Imaging 12:953–955. https://doi.org/10.1002/1522-2586(200012)12:6<953::AID-JMRI20>3.0.CO;2-H. (PMID: 10.1002/1522-2586(200012)12:6<953::AID-JMRI20>3.0.CO;2-H11105035)
Purvis B, Mao Y, Robinson D (2019) Three pillars of sustainability: in search of conceptual origins. Sustain Sci 14:681–695. https://doi.org/10.1007/s11625-018-0627-5. (PMID: 10.1007/s11625-018-0627-5)
Southorn T, Norrish A, Gardner K, Baxandall R (2013) Reducing the carbon footprint of the operating theatre: a multicentre quality improvement report. J Perioper Pract 23:144–146. https://doi.org/10.1177/175045891302300605. (PMID: 10.1177/17504589130230060523909168)
McKenzie BJ, Haas R, Ferreira GE et al (2022) The environmental impact of health care for musculoskeletal conditions: a scoping review. PLoS ONE 17. https://doi.org/10.1371/journal.pone.0276685. (PMID: 10.1371/journal.pone.0276685364416779704655)
Esmaeili A, McGuire C, Overcash M et al (2018) Environmental impact reduction as a new dimension for quality measurement of healthcare services. Int J Health Care Qual Assur 31:910–922. https://doi.org/10.1108/IJHCQA-10-2016-0153. (PMID: 10.1108/IJHCQA-10-2016-015330415627)
Heye T, Knoerl R, Wehrle T et al (2020) The energy consumption of radiology: energy- and cost-saving opportunities for CT and MRI operation. Radiology 295:593–605. https://doi.org/10.1148/radiol.2020192084. (PMID: 10.1148/radiol.202019208432208096)
Brassil MP, Torreggiani WC (2019) Recycling in IR, what IR specialists can do to help. Cardiovasc Intervent Radiol 42:789–790. https://doi.org/10.1007/s00270-019-02206-9. (PMID: 10.1007/s00270-019-02206-930887103)
Brünjes R, Hofmann T (2020) Anthropogenic gadolinium in freshwater and drinking water systems. Water Res 182. https://doi.org/10.1016/j.watres.2020.115966. (PMID: 10.1016/j.watres.2020.115966325994217256513)
Ebrahimi P, Barbieri M (2019) Gadolinium as an emerging microcontaminant in water resources: threats and opportunities. Geosciences (Basel) 9:93. https://doi.org/10.3390/geosciences9020093. (PMID: 10.3390/geosciences9020093)
Unruh C, Van Bavel N, Anikovskiy M, Prenner EJ (2020) Benefits and detriments of gadolinium from medical advances to health and ecological risks. Molecules 25:5762. https://doi.org/10.3390/molecules25235762. (PMID: 10.3390/molecules25235762332975787730697)
فهرسة مساهمة: Keywords: Acetabular labrum; Arthrography; Cost-comparison; Magnetic resonance imaging
تواريخ الأحداث: Date Created: 20240514 Latest Revision: 20240514
رمز التحديث: 20240515
DOI: 10.1007/s11845-024-03708-3
PMID: 38743200
قاعدة البيانات: MEDLINE
الوصف
تدمد:1863-4362
DOI:10.1007/s11845-024-03708-3