دورية أكاديمية

Identifying Individual Pseudouridine (Ψ) Sites Across Transcripts from HIV-1 Infected Cells.

التفاصيل البيبلوغرافية
العنوان: Identifying Individual Pseudouridine (Ψ) Sites Across Transcripts from HIV-1 Infected Cells.
المؤلفون: Coutts HL; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK., Courtney DG; Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, UK. david.courtney@qub.ac.uk.
المصدر: Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2807, pp. 229-242.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Totowa, NJ : Humana Press
Original Publication: Clifton, N.J. : Humana Press,
مواضيع طبية MeSH: Pseudouridine*/metabolism , Pseudouridine*/genetics , HIV-1*/genetics , RNA, Viral*/genetics , RNA, Messenger*/genetics , RNA, Messenger*/metabolism, Humans ; HIV Infections/virology ; HIV Infections/genetics ; RNA Processing, Post-Transcriptional ; Cell Line
مستخلص: The identification of RNA modifications at single nucleotide resolution has become an emerging area of interest within biology and specifically among virologists seeking to ascertain how this untapped area of RNA regulation may be altered or hijacked upon viral infection. Herein, we describe a straightforward biochemical approach modified from two original published Ψ mapping protocols, BID-seq and PRAISE, to specifically identify pseudouridine modifications on mRNA transcripts from an HIV-1 infected T cell line. This protocol could readily be adapted for other viral infected cell types and additionally for populations of purified virions from infected cells.
(© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Dominissini D, Moshitch-Moshkovitz S, Schwartz S et al (2012) Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature 485:201–206. (PMID: 10.1038/nature1111222575960)
Edelheit S, Schwartz S, Mumbach MR et al (2013) Transcriptome-wide mapping of 5-methylcytidine RNA modifications in bacteria, archaea, and yeast reveals m5C within archaeal mRNAs. PLoS Genet 9(6):e1003602. (PMID: 10.1371/journal.pgen.1003602238259703694839)
Schwartz S, Bernstein DA, Mumbach MR et al (2014) Transcriptome-wide mapping reveals widespread dynamic-regulated pseudouridylation of ncRNA and mRNA. Cell 159:148–162. (PMID: 10.1016/j.cell.2014.08.028252196744180118)
Marchand V, Blanloeil-Oillo F, Helm M et al (2016) Illumina-based RiboMethSeq approach for mapping of 2′-O-Me residues in RNA. Nucleic Acids Res 44:e135. (PMID: 10.1093/nar/gkw547273021335027498)
Arango D, Sturgill D, Alhusaini N et al (2018) Acetylation of cytidine in mRNA promotes translation efficiency. Cell 175(7):1872–1886.e24. (PMID: 10.1016/j.cell.2018.10.030304496216295233)
McIntyre W, Netzband R, Bonenfant G et al (2018) Positive-sense RNA viruses reveal the complexity and dynamics of the cellular and viral epitranscriptomes during infection. Nucleic Acids Res 46:5776–5791. (PMID: 10.1093/nar/gky029293737156009648)
Tsai K, Courtney DG, Cullen BR (2018) Addition of m6A to SV40 late mRNAs enhances viral structural gene expression and replication. PLoS Pathog 14:e1006919. (PMID: 10.1371/journal.ppat.1006919294472825831754)
Courtney DG, Chalem A, Bogerd HP et al (2019) Extensive epitranscriptomic methylation of A and C residues on murine leukemia virus transcripts enhances viral gene expression. MBio 10:e01209–e01219. (PMID: 10.1128/mBio.01209-19311863316561033)
Courtney DG, Kennedy EM, Dumm RE et al (2017) Epitranscriptomic enhancement of influenza A virus gene expression and replication. Cell Host Microbe 22:377–386. (PMID: 10.1016/j.chom.2017.08.004289106365615858)
Courtney DG, Tsai K, Bogerd HP et al (2019) Epitranscriptomic addition of m5C to HIV-1 transcripts regulates viral gene expression. Cell Host Microbe 26:217–227. (PMID: 10.1016/j.chom.2019.07.005314157546714563)
Gokhale NS, McIntyre ABR, McFadden MJ et al (2016) N6-methyladenosine in flaviviridae viral RNA genomes regulates infection. Cell Host Microbe 20:654–665. (PMID: 10.1016/j.chom.2016.09.015277735355123813)
Price AM, Hayer KE, McIntyre ABR et al (2020) Direct RNA sequencing reveals m6A modifications on adenovirus RNA are necessary for efficient splicing. Nat Commun 11:1–17. (PMID: 10.1038/s41467-020-19787-6)
Kennedy EM, Bogerd HP, Kornepati AVR et al (2016) Posttranscriptional m6A editing of HIV-1 mRNAs enhances viral gene expression. Cell Host Microbe 19:675–685. (PMID: 10.1016/j.chom.2016.04.002271170544867121)
Kim D, Lee JY, Yang JS et al (2020) The architecture of SARS-CoV-2 transcriptome. Cell 181:1–29. (PMID: 10.1016/j.cell.2020.04.011)
Tsai K, Jaguva Vasudevan AA, Martinez Campos C et al (2020) Acetylation of cytidine residues boosts HIV-1 gene expression by increasing viral RNA stability. Cell Host Microbe 28(2):306–312.e6. (PMID: 10.1016/j.chom.2020.05.011325339237429276)
Xue M, Zhao BS, Zhang Z et al (2019) Viral N 6-methyladenosine upregulates replication and pathogenesis of human respiratory syncytial virus. Nat Commun 10:1–18. (PMID: 10.1038/s41467-019-12504-y)
Courtney DG (2021) Post-transcriptional regulation of viral RNA through epitranscriptional modification. Cells 10:1129. (PMID: 10.3390/cells10051129340669748151693)
Ringeard M, Marchand V, Decroly E et al (2019) FTSJ3 is an RNA 2′-O-methyltransferase recruited by HIV to avoid innate immune sensing. Nature 565:500–504. (PMID: 10.1038/s41586-018-0841-430626973)
Shi H, Wei J, He C (2019) Where, when, and how: context-dependent functions of rna methylation writers, readers, and erasers. Mol Cell 74(4):640–650. (PMID: 10.1016/j.molcel.2019.04.025311002456527355)
Garcia-Campos MA, Edelheit S, Toth U et al (2019) Deciphering the “m6A code” via antibody-independent quantitative profiling. Cell 178:731–747.e16. (PMID: 10.1016/j.cell.2019.06.01331257032)
Schaefer M, Pollex T, Hanna K et al (2009) RNA cytosine methylation analysis by bisulfite sequencing. Nucleic Acids Res 37:e12. (PMID: 10.1093/nar/gkn95419059995)
Khoddami V, Yerra A, Mosbruger TL et al (2019) Transcriptome-wide profiling of multiple RNA modifications simultaneously at single-base resolution. Proc Natl Acad Sci USA 116:6784–6789. (PMID: 10.1073/pnas.1817334116308724856452723)
Dai Q, Zhang LS, Sun HL et al (2023) Quantitative sequencing using BID-seq uncovers abundant pseudouridines in mammalian mRNA at base resolution. Nat Biotechnol 41:344–354. (PMID: 10.1038/s41587-022-01505-w36302989)
Zhang M, Jiang Z, Ma Y et al (2023) Quantitative profiling of pseudouridylation landscape in the human transcriptome. Nat Chem Biol 19(10):1–11. (PMID: 10.1038/s41589-023-01304-7)
Campos CM, Tsai K, Courtney DG et al (2021) Mapping of pseudouridine residues on viral and cellular transcripts using a novel antibody-based technique. RNA 27(11):rna.078940.121.
Dickson RJ, Gloor GB (2013) XORRO: rapid paired-end read overlapper. arxiv:13044620 9:1–7.
Li H, Handsaker B, Wysoker A et al (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. (PMID: 10.1093/bioinformatics/btp352195059432723002)
Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357. (PMID: 10.1038/nmeth.1923223882863322381)
فهرسة مساهمة: Keywords: Bisulfite; Epitranscriptomics; HIV-1; Mapping; Modifications; Pseudouridine; RNA; Virus
تواريخ الأحداث: Date Created: 20240514 Date Completed: 20240514 Latest Revision: 20240514
رمز التحديث: 20240515
DOI: 10.1007/978-1-0716-3862-0_16
PMID: 38743232
قاعدة البيانات: MEDLINE