دورية أكاديمية

Glycosylated SARs Cov 2 interaction with plant lectins.

التفاصيل البيبلوغرافية
العنوان: Glycosylated SARs Cov 2 interaction with plant lectins.
المؤلفون: Devi OS; Department of Biochemistry, Manipur University, Imphal, India., Singh SS; Department of Biochemistry, Manipur University, Imphal, India., Kamei R; Department of Biochemistry, Manipur University, Imphal, India., Sharma HJ; Department of Biological Science, TIFR, Mumbai, India. jkshnshrm@gmail.com., Devi MA; Department of Biochemistry, Manipur Collage, Imphal, India., Brahmacharimayum N; Department of Zoology, Lovely Professional University, Phagwara, India.
المصدر: Glycoconjugate journal [Glycoconj J] 2024 Jun; Vol. 41 (3), pp. 185-199. Date of Electronic Publication: 2024 May 15.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 8603310 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-4986 (Electronic) Linking ISSN: 02820080 NLM ISO Abbreviation: Glycoconj J Subsets: MEDLINE
أسماء مطبوعة: Publication: <2008->: Norwell, MA : Springer
Original Publication: [Lund : The Journal, c1984-
مواضيع طبية MeSH: Plant Lectins*/chemistry , Plant Lectins*/metabolism , Plant Lectins*/pharmacology , SARS-CoV-2*/metabolism , SARS-CoV-2*/drug effects , SARS-CoV-2*/immunology , COVID-19*/virology , COVID-19*/metabolism , COVID-19*/immunology, Humans ; Glycosylation ; Protein Binding ; Animals ; Spike Glycoprotein, Coronavirus/metabolism ; Spike Glycoprotein, Coronavirus/chemistry ; Spike Glycoprotein, Coronavirus/immunology
مستخلص: Lectins are non-immune carbohydrate-binding proteins/glycoproteins that are found everywhere in nature, from bacteria to human cells. They have also been a valuable biological tool for the purification and subsequent characterisation of glycoproteins due to their carbohydrate binding recognition capacity. Antinociceptive, antiulcer, anti-inflammatory activities and immune modulatory properties have been discovered in several plant lectins, with these qualities varying depending on the lectin carbohydrate-binding site. The Coronavirus of 2019 (COVID-19) is a respiratory disease that has swept the globe, killing millions and infecting millions more. Despite the availability of COVID-19 vaccinations and the vaccination of a huge portion of the world's population, viral infection rates continue to rise, causing major concern. Part of the reason for the vaccine's ineffectiveness has been attributed to repeated mutations in the virus's epitope determinant elements. The surface of the Coronavirus envelope is heavily glycosylated, with approximately sixty N-linked oligomannose, composite, and hybrid glycans covering the core of Man3GlcNAc2Asn. Some O-linked glycans have also been discovered. Many of these glyco-chains have also been subjected to multiple mutations, with only a few remaining conserved. As a result, numerous plant lectins with specificity for these viral envelope sugars have been discovered to interact preferentially with them and are being investigated as a potential future tool to combat coronaviruses such as the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by preventing viral attachment to the host. The review will discuss the possible applications of plant lectins as anti-coronaviruses including SARS-CoV-2, antinociceptive, anti-inflammation and its immune modulating effect.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Colgan, S.P., et al.: Receptors involved in carbohydrate binding modulate intestinal epithelialneutrophil interactions. J. Biol. Chem. 270(18), 10531–10539 (1995). https://doi.org/10.1074/jbc.270.18.1053121. (PMID: 10.1074/jbc.270.18.10531217537733)
Gorelik, E., Galili, U., Raz, A.: On the role of cell surface carbohydrates and their binding proteins (lectins) in tumor metastasis. Cancer Metastasis Rev. 20(3–4), 245–277 (2001). https://doi.org/10.1023/a:1015535427597. (PMID: 10.1023/a:101553542759712085965)
Hevey, R.: Strategies for the development of Glycomimetic drug candidates. Pharmaceuticals 12(2), 55 (2019). https://doi.org/10.3390/ph12020055. (PMID: 10.3390/ph12020055309789666631974)
Nardy, A.F.F.R., Freire-de-Lima, L., Freire-de-Lima, C.G., Morrot, A.: The sweet side of immune evasion: Role of glycans in the mechanisms of cancer progression. Front. Oncol. 6, 54 (2016). https://doi.org/10.3389/fonc.2016.00054. (PMID: 10.3389/fonc.2016.00054270146294783415)
Brandley, B.K., Schnaar, R.L.: Cell-surface carbohydrates in cell recognition and response. J. Leukoc. Biol. 40(1), 97–111 (1986). https://doi.org/10.1002/jlb.40.1.97. (PMID: 10.1002/jlb.40.1.973011937)
Jones, M.B., Kansiime, F., Saunders, M.J.: The potential use of papyrus (Cyperus papyrus L.) wetlands as a source of biomass energy for sub-Saharan Africa. GCB Bioenergy 10(1), 4–11 (2018). https://doi.org/10.1111/gcbb.12392. (PMID: 10.1111/gcbb.12392)
Sofowora, A., et al.: The role and place of medicinal plants in the strategies for disease prevention. J. Altern. Complement. Med. 10(5), 210–229 (2013). https://doi.org/10.4314/ajtcam.v10i5.2. (PMID: 10.4314/ajtcam.v10i5.2)
Spilatro, S.R., et al.: Characterization of a new lectin of soy bean vegetative tissues. Plant Physiol 110(3), 825–834 (1996). https://doi.org/10.1104/pp.110.3.825. (PMID: 10.1104/pp.110.3.8258819869157782)
Ahmadiani, A., Fereidoni, M., Semnanian, S., Kamalinejad, M., Saremi, S.: Antinociceptive and anti-inflammatory effects of Sambucus ebulus rhizome extract in rats. J. Ethnopharmacol. 61(3), 229–235 (1998). https://doi.org/10.1016/s0378-8741(98)00043-9. (PMID: 10.1016/s0378-8741(98)00043-99705014)
Sharon, N., Lis, H.: History of lectins: From hemagglutinins to biological recognition molecules. Glycobiology 14(11), 53R-62R (2004). https://doi.org/10.1093/glycob/cwh122. (PMID: 10.1093/glycob/cwh12215229195)
Sharon, N., Lis, H.: Microbial lectins and their glycoprotein receptors. New Compr. Biochem. 29, 475–506 (1997). https://doi.org/10.1016/S0167-7306(08)60626-2. (PMID: 10.1016/S0167-7306(08)60626-2)
Goldstein, I.J., et al.: What should be called a lectin? Nature 285(5760), 66–66 (1980). (PMID: 10.1038/285066b0)
Gomes, F.S., et al.: Antimicrobial lectin from S Chinus terebinthifolius leaf. J Appl Microbiol 114(3), 372–379 (2013). (PMID: 10.1111/jam.12086)
Dias, R.O., Machado, L.S., Migliolo, L., Franco, O.L.: Insights into animal and plant lectins with antimicrobial activities. Molecules 20(1), 519–541 (2015). https://doi.org/10.3390/molecules20010519. (PMID: 10.3390/molecules20010519255695126272381)
Kilpatrick, D.C., Pusztai, A., Grant, G., Graham, C., Ewen, S.W.B.: Tomato lectin resists digestion in the mammalian alimentary canal and binds to intestinal villi without deleterious effects. FEBS Lett. 185, 299–305 (1985). (PMID: 10.1016/0014-5793(85)80927-33888674)
Reyes-Montaño, E. A., & Vega-Castro, N. (2018). Plant lectins with insecticidal and insectistatic activities. Insecticides Agriculture and Toxicology, Ghousia Begum, IntechOpen.  https://www.intechopen.com/chapters/60115 . https://doi.org/10.5772/intechopen.74962.
Mishra, A., et al.: Structure-function and application of plant lectins in disease biology and immunity. Food Chem Toxicol 134, 110827 (2019). https://doi.org/10.1016/j.fct.2019.110827. (PMID: 10.1016/j.fct.2019.110827315424337115788)
Mo, H., et al.: Purification and characterization of Dolichos lablab lectin. Glycobiology. 9(2), 173–179 (1999). https://doi.org/10.1093/glycob/9.2.173. (PMID: 10.1093/glycob/9.2.1739949194)
Roopashree, S., Singh, S.A., Gowda, L.R., Rao, A.G.: Dual-function protein in plant defence: Seed lectin from Dolichos biflorus (horse gram) exhibits lipoxygenase activity. Biochemical Journal 395(3), 629–639 (2006). https://doi.org/10.1042/BJ20051889. (PMID: 10.1042/BJ20051889164412401462680)
Sathe, S. K., & Deshpande, S. S. (2003). Beans. In B. Caballero (Ed.), Encyclopedia of Food Science and Nutrition (2nd ed) (pp. 403–412) .
Spilatro, S.R., Cochran, G.R., Walker, R.E., Cablish, K.L., Bittner, C.C.: Characterization of a new lectin of soybean vegetative tissues. Plant Physiol. 110(3), 825–834 (1996). (PMID: 10.1104/pp.110.3.8258819869157782)
Freeze, H.H.: Lectin Affinity Chromatography. Current Protocols in Protein Science (1995). https://doi.org/10.1002/0471140864.ps0901s00. (PMID: 10.1002/0471140864.ps0901s00)
O’Connor, B.F., et al.: Lectin Affinity Chromatography (LAC). Methods Mol. Biol. 1485, 411–420 (2017). https://doi.org/10.1007/978-1-4939-6412-3&#95;23. (PMID: 10.1007/978-1-4939-6412-3_2327730567)
Coelho, B.B., L. C., et al.: Lectins as antimicrobial agents. J. Appl. Microbiol. 125(5), 1238–1252 (2018). https://doi.org/10.1111/jam.14055. (PMID: 10.1111/jam.14055)
Gaofu, Q., et al.: In vitro assessment of plant lectins with anti-pinwood nematode activity. J. Appl. Microbiol. 98(1), 40–45 (2008). https://doi.org/10.1016/j.jip.2007.11.00422. (PMID: 10.1016/j.jip.2007.11.00422)
Lusvarghi, S., Bewley, C.A.: Griffithsin: An antiviral lectin with outstanding therapeutic potential. Viruses (2016). https://doi.org/10.3390/v8100296. (PMID: 10.3390/v8100296277830385086628)
Pinto, I.R., Chaves, H.V., Vasconcelos, A.S., de Sousa, F.C.F., Santi-Gadelha, T., de Lacerda, J.T.J.G., Ribeiro, K.A., Freitas, R.S., Maciel, L.M., Filho, S.M.P., Viana, A.F.S.C., de Almeida Gadelha, C.A., Filho, G.C., de Paulo Teixeira Pinto, V., Pereira, K. M. A., Rodrigues e Silva, A. A., & Bezerra, M. M.: Antiulcer and Antioxidant Activity of a Lectin from Mucuna pruriens Seeds on ethanol- induced gastropathy: Involvement of Alpha-2 adrenoceptors and prostaglandins. Curr. Pharm. Des. 25(12), 1430–1439 (2019). https://doi.org/10.2174/1381612825666190524081433. (PMID: 10.2174/138161282566619052408143331124421)
VanderLei, E.S., Patoilo, K.K., Lima, N.A., Lima, A.P., Rodrigues, J.A., Silva, L.M., Lima, M.E., Lima, V., Benevides, N.M.: Antinociceptive and anti-inflammatory activities of lectin from the marine green alga Caulerpa cupressoides. Int. Immunopharmacol. 10(9), 1113–1118 (2010). https://doi.org/10.1016/j.intimp.2010.06.014. (PMID: 10.1016/j.intimp.2010.06.01420601179)
Hu, B., Guo, H., Zhou, P., Shi, Z.L.: Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19(3), 141–154 (2021). https://doi.org/10.1038/s41579-020-00459-7. (PMID: 10.1038/s41579-020-00459-733024307)
Baraniuk, C.: Covid-19: How effective are vaccines against the delta variant? BMJ 374, n1960 (2021). https://doi.org/10.1136/bmj.n1960. (PMID: 10.1136/bmj.n196034373255)
Hayawi, K., Shahriar, S., Serhani, M.A., Alashwal, H., Masud, M.M.: Vaccine versus Variants (3Vs): Are the COVID-19 vaccines Effective against the Variants? A Systematic Review. Vaccines 9(11), 1305 (2021). https://doi.org/10.3390/vaccines9111305. (PMID: 10.3390/vaccines911130534835238)
Khan, A., Khan, T., Ali, S., Aftab, S., Wang, Y., Qiankun, W., Khan, M., Suleman, M., Ali, S., Heng, W., Ali, S.S., Wei, D.Q., Mohammad, A.: SARS-CoV-2 new variants: Characteristic features and impact on the efficacy of different vaccines. Biomed. Pharmacother. 143, 112176 (2021). https://doi.org/10.1016/j.biopha.2021.112176. (PMID: 10.1016/j.biopha.2021.112176345627708433040)
Ahmed, M.N., Jahan, R., Nissapatorn, V., Wilairatana, P., Rahmatullah, M.: Plant lectins as prospective antiviral biomolecules in the search for COVID-19 eradication strategies. Biomed. Pharmacother. 146, 112507 (2022). https://doi.org/10.1016/j.biopha.2021.112507. (PMID: 10.1016/j.biopha.2021.11250734891122)
Barre, A., Van Damme, E.J.M., Simplicien, M., Le Poder, S., Klonjkowski, B., Benoist, H., Peyrade, D., Rougé, P.: Man-specific lectins from plants, fungi, algae and Cyanobacteria, as potential blockers for SARS-CoV, MERS-CoV and SARS-CoV-2 (COVID-19) coronaviruses: Biomedical perspectives. Cells (2021). https://doi.org/10.3390/cells10071619. (PMID: 10.3390/cells10071619342034358305077)
Martinez, D., Amaral, D., Markovitz, D., Pinto, L.: The use of lectins as tools to combat SARS-CoV-2. Curr. Pharm. Des. 27(41), 4212–4222 (2021). https://doi.org/10.2174/1381612827666210830094743. (PMID: 10.2174/138161282766621083009474334459375)
Hsieh, P.K., Chang, S.C., Huang, C.C., Lee, T.T., Hsiao, C.W., Kou, Y.H., Chen, I.Y., Chang, C.K., Huang, T.H., Chang, M.F.: Assembly of severe acute respiratory syndrome coronavirus RNA packaging signal into virus-like particles is nucleocapsid dependent. J. Virol. 79(22), 13848–13855 (2005). https://doi.org/10.1128/JVI.79.22.13848-13855.2005. (PMID: 10.1128/JVI.79.22.13848-13855.2005162543201280188)
Boechat, J.L., Chora, I., Morais, A., Delgado, L.: The immune response to SARS-CoV-2 and COVID-19 immunopathology—Current perspectives. Pulmonology 27(5), 423–437 (2021). https://doi.org/10.1016/j.pulmoe.2021.03.008. (PMID: 10.1016/j.pulmoe.2021.03.008338673158040543)
Huang, H.C., Lai, Y.J., Liao, C.C., Yang, W.F., Huang, K.B., Lee, I.J., Chou, W.C., Wang, S.H., Wang, L.H., Hsu, J.M., Sun, C.P., Kuo, C.T., Wang, J., Hsiao, T.C., Yang, P.J., Lee, T.A., Huang, W., Li, F.A., Shen, C.Y., Li, C.W.: Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine 74, 103712 (2021). https://doi.org/10.1016/j.ebiom.2021.103712. (PMID: 10.1016/j.ebiom.2021.103712348392618613501)
Shajahan, A., Pepi, L.E., Rouhani, D.S., Heiss, C., Azadi, P.: Glycosylation of SARS-CoV-2: Structural and functional insights. Anal. Bioanal. Chem. 413(29), 7179–7193 (2021). https://doi.org/10.1007/s00216-021-03499-x. (PMID: 10.1007/s00216-021-03499-x342355688262766)
Coltri, K.C., Oliveira, L.L., Pinzan, C.F., Vendruscolo, P.E., Martinez, R., Goldman, M.H., Panunto-Castelo, A., Roque-Barreira, M.C.: Therapeutic administration of KM+ lectin protects mice against Paracoccidioides brasiliensis infection via interleukin-12 production in a toll-like receptor 2-dependent mechanism. Am. J. Pathol. 173(2), 423–432 (2008). https://doi.org/10.2353/ajpath.2008.080126. (PMID: 10.2353/ajpath.2008.080126185996092475779)
Takeda, K., Akira, S.: Toll receptors and pathogen resistance. Cell. Microbiol. 5(3), 143–153 (2003). https://doi.org/10.1046/j.1462-5822.2003.00264.x. (PMID: 10.1046/j.1462-5822.2003.00264.x12614458)
Zalpoor, H., Akbari, A., & Ephrin, N.-A. M. (2022). (Eph) receptor and downstream signaling pathways: A promising potential targeted therapy for COVID‑19 and associated cancers and diseases. Human Cell, 1–14.
Zhao, X., Chen, H., Wang, H.: Glycans of SARS-CoV-2 spike protein in virus infection and antibody production. Frontiers in Molecular Biosciences (2021). https://doi.org/10.3389/fmolb.2021.629873. (PMID: 10.3389/fmolb.2021.629873352428108691574)
Altulea, D., et al.: What makes (hydroxy) chloroquine ineffective against COVID-19: Insights from cell biology. J. Mol. Cell Biol. 13(3), 175–184 (2021). https://doi.org/10.1093/jmcb/mjab016 JournalofMolecularCellBiology. (PMID: 10.1093/jmcb/mjab016336937237989365)
Ferner, R.E., Aronson, J.K.: Chloroquine and hydroxychloroquine in covid-19. BMJ 369, m1432 (2020). https://doi.org/10.1136/bmj.m1432. (PMID: 10.1136/bmj.m143232269046)
El Bairi, K., Trapani, D., Petrillo, A., Le Page, C., Zbakh, H., Daniele, B., Belbaraka, R., Curigliano, G., Afqir, S.: Repurposing anticancer drugs for the management of COVID-19. Eur. J. Cancer 141, 40–61 (2020). https://doi.org/10.1016/j.ejca.2020.09.014. (PMID: 10.1016/j.ejca.2020.09.014331259467508523)
Greig, A.S., Bouillant, A.M.: Binding effects of concanavalin A on a coronavirus. Canadian Journal of Comparative Medicine: Revue Canadienne de Medecine Comparee 41(1), 122–126 (1977). (PMID: 8321841277703)
Shibuya, N., Goldstein, I.J., Shafer, J.A., Peumans, W.J., Broekaert, W.F.: Carbohydrate binding properties of the stinging nettle (Urtica dioica) rhizome lectin. Arch. Biochem. Biophys. 249(1), 215–224 (1986). https://doi.org/10.1016/0003-9861(86)90577-1. (PMID: 10.1016/0003-9861(86)90577-13740853)
Kumaki, Y., Wandersee, M.K., Smith, A.J., Zhou, Y., Simmons, G., Nelson, N.M., Bailey, K.W., Vest, Z.G., Li, J.K., Chan, P.K., Smee, D.F., Barnard, D.L.: Inhibition of severe acute respiratory syndrome coronavirus replication in a lethal SARS-CoV BALB/c mouse model by stinging nettle lectin. Urtica dioica agglutinin. Antiviral Research 90(1), 22–32 (2011). https://doi.org/10.1016/j.antiviral.2011.02.003. (PMID: 10.1016/j.antiviral.2011.02.00321338626)
Saul, F.A., Rovira, P., Boulot, G., Van Damme, E.J., Peumans, W.J., Truffa-Bachi, P., Bentley, G.A.: Crystal structure of Urtica dioica agglutinin, a superantigen presented by MHC molecules of class I and class II. Structure. Academic Press 8(6), 593–603 (2000). https://doi.org/10.1016/S0969-2126(00)00142-8. (PMID: 10.1016/S0969-2126(00)00142-8)
Millet, J.K., Séron, K., Labitt, R.N., Danneels, A., Palmer, K.E., Whittaker, G.R., Dubuisson, J., Belouzard, S.: Middle East respiratory syndrome coronavirus infection is inhibited by griffithsin. Antiviral Res. 133, 1–8 (2016). https://doi.org/10.1016/j.antiviral.2016.07.011. (PMID: 10.1016/j.antiviral.2016.07.011274244947113895)
Alexandre, K.B., Gray, E.S., Pantophlet, R., Moore, P.L., McMahon, J.B., Chakauya, E., O’Keefe, B.R., Chikwamba, R., Morris, L.: Binding of the mannose-specific lectin, griffithsin, to HIV-1 gp120 exposes the CD4-binding site. J. Virol. 85(17), 9039–9050 (2011). https://doi.org/10.1128/JVI.02675-10. (PMID: 10.1128/JVI.02675-10216974673165825)
Fischer, K., Nguyen, K., LiWang, P.J.: Griffithsin retains anti-HIV-1 potency with changes in gp120 glycosylation and complements broadly neutralizing antibodies PGT121 and PGT126. Antimicrob. Agents Chemother. 64(1), e01084-e1119 (2019). https://doi.org/10.1128/AAC.01084-19. (PMID: 10.1128/AAC.01084-19316113567187567)
Swanson, M.D., et al.: A lectin isolated from bananas is a potent inhibitor of HIV replication. Int. J. Biol. Chem. 285(12), 8646–8655 (2010). https://doi.org/10.1074/jbc.M109.034926. (PMID: 10.1074/jbc.M109.034926)
Keyaerts, E., Vijgen, L., Pannecouque, C., Van Damme, E., Peumans, W., Egberink, H., Balzarini, J., Van Ranst, M.: Plant lectins are potent inhibitors of coronaviruses by interfering with two targets in the viral replication cycle. Antiviral Res. 75(3), 179–187 (2007). https://doi.org/10.1016/j.antiviral.2007.03.003. (PMID: 10.1016/j.antiviral.2007.03.003174285537114093)
Auth, J., Fröba, M., Große, M., Rauch, P., Ruetalo, N., Schindler, M., Morokutti-Kurz, M., Graf, P., Dolischka, A., Prieschl-Grassauer, E., Setz, C., Schubert, U.: Lectin from Triticum vulgaris (WGA) inhibits infection with SARS-CoV-2 and its variants of concern alpha and beta. Int. J. Mol. Sci. 22(19), 10205 (2021). https://doi.org/10.3390/ijms221910205. (PMID: 10.3390/ijms221910205346385458508056)
Garcia-Pino, A., Buts, L., Wyns, L., Imberty, A., Loris, R.: How a plant lectin recognizes high mannose oligosaccharides. Plant Physiol. 144(4), 1733–1741 (2007). https://doi.org/10.1104/pp.107.100867. (PMID: 10.1104/pp.107.100867175565091949895)
Charan, R.D., Munro, M.H., O’Keefe, B.R., Rcii, S., McKee, T.C., Currens, M.J., Pannell, L.K., Boyd, M.R.: Isolation and characterization of myrianthus holstii lectin, a potent HIV-1 inhibitory protein from the plant myrianthus holstii (1). J. Nat. Prod. 63(8), 1170–1174 (2000). https://doi.org/10.1021/np000039h. (PMID: 10.1021/np000039h10978222)
David, M., et al.: A molecularly engineered, broad-spectrum anti-coronavirus lectin inhibits SARSCoV-2 and MERS-CoV infection in vivo. Cell Rep Med (2022). https://doi.org/10.1016/j.xcrm.2022.100774. (PMID: 10.1016/j.xcrm.2022.100774)
Koshte, V.L., van Dijk, W., van der Stelt, M.E., Aalberse, R.C.: Isolation and characterization of BanLec-I, a mannoside-binding lectin from Musa paradisiac (banana). Biochemical Journal 272(3), 721–726 (1990). https://doi.org/10.1042/bj2720721. (PMID: 10.1042/bj272072122682971149768)
Chan, Y.S., Yu, H., Xia, L., Ng, T.B.: Lectin from green speckled lentil seeds (Lens culinaris) triggered apoptosis in nasopharyngeal carcinoma cell lines. Chinese Medicine 10(1), 25 (2015). https://doi.org/10.1186/s13020-015-0057-6. (PMID: 10.1186/s13020-015-0057-6263575254563850)
Wang, W., Li, Q., Wu, J., Hu, Y., Wu, G., Yu, C., Xu, K., Liu, X., Wang, Q., Huang, W., Wang, L., Wang, Y.: Lentil lectin derived from Lens culinaris exhibit broad antiviral activities against SARS-CoV-2 variants. Emerging Microbes and Infections 10(1), 1519–1529 (2021). https://doi.org/10.1080/22221751.2021.1957720. (PMID: 10.1080/22221751.2021.1957720342789678330776)
LeVine, D., Kaplan, M.J., Greenaway, P.J.: The purification and characterization of wheat-germ agglutinin. Biochemical Journal 129(4), 847–856 (1972). https://doi.org/10.1042/bj1290847. (PMID: 10.1042/bj129084746558201174230)
Sheehan, S.A., Hamilton, K.L., Retzbach, E.P., Balachandran, P., Krishnan, H., Leone, P., Goldberg, G.S.: Evidence that Maackia amurensis seed lectin (MASL) exerts pleiotropic actions on oral squamous cells to inhibit SARS-CoV-2 infection and COVID-19 disease progression. Research Square. (2020). https://doi.org/10.21203/rs.3.rs-93851/v1. (PMID: 10.21203/rs.3.rs-93851/v1331068017587785)
Van Damme, E.J.M., Van Leuven, F., Peumans, W.J.: Isolation, characterization and molecular cloning of the bark lectins from Maackia amurensis. Glycoconj. J. 14(4), 449–456 (1997). https://doi.org/10.1023/A:1018595300863. (PMID: 10.1023/A:10185953008639249142)
Gordts, S.C., Renders, M., Férir, G., Huskens, D., Van Damme, E.J., Peumans, W., Balzarini, J., Schols, D.: NICTABA and UDA, two GlcNAc-binding lectins with unique antiviral activity profiles. J. Antimicrob. Chemother. 70(6), 1674–1685 (2015). https://doi.org/10.1093/jac/dkv034. (PMID: 10.1093/jac/dkv03425700718)
Kaur, R., Neetu, M., R., Jose, J., Kumar, P., & Tomar, S.: Glycan-dependent chikungunya viral infection divulged by antiviral activity of NAG specific chi-like lectin. Virology 526, 91–98 (2019). https://doi.org/10.1016/j.virol.2018.10.009. (PMID: 10.1016/j.virol.2018.10.00930388630)
Balzarini, J., Hatse, S., Vermeire, K., Princen, K., Aquaro, S., Perno, C.F., De Clercq, E., Egberink, H., Vanden Mooter, G., Peumans, W., Van Damme, E., Schols, D.: Mannose-specific plant lectins from the Amaryllidaceae family qualify as efficient microbicides for prevention of human immunodeficiency virus infection. Antimicrob. Agents Chemother. 48(10), 3858–3870 (2004). https://doi.org/10.1128/AAC.48.10.3858-3870.2004. (PMID: 10.1128/AAC.48.10.3858-3870.200415388446521907)
Hwang, H.J., Han, J.W., Jeon, H., Cho, K., Kim, J.H., Lee, D.S., Han, J.W.: Characterization of a Novel mannose-binding Lectin with antiviral Activities from Red Alga. Grateloupia chiangii. Biomolecules 10(2), 333 (2020). https://doi.org/10.3390/biom10020333. (PMID: 10.3390/biom1002033332092955)
Sharma, A. et al. (2009). Purification and characterization of a lectin from Phaseolus vulgaris cv. (Anasazi Beans). Biomed. biotechnol. PubMed: 929568 https://doi.org/10.1155/2009/929568 .
Yang, Y., Xu, H.L., Zhang, Z.T., Liu, J.J., Li, W.W., Ming, H., Bao, J.K.: Characterization, molecular cloning, and in silico analysis of a novel mannose-binding lectin from Polygonatum odoratum (Mill.) with anti-HSV-II and apoptosis-inducing activities. Phytomedicine 18(8–9), 748–755 (2011). https://doi.org/10.1016/j.phymed.2010.11.001. (PMID: 10.1016/j.phymed.2010.11.00121146383)
Khan, H., et al.: The analgesic potential of glycosides derived from medicinal plants Daru. DARU: J Pharm Sci 28(1), 387–401 (2020). https://doi.org/10.1007/s40199-019-00319-7. (PMID: 10.1007/s40199-019-00319-7)
Bhagat, S., Agarwal, M., Roy, V.: Serratiopeptidase: A systematic review of the existing evidence. Int. J. Surg. 11(3), 209–217 (2013). https://doi.org/10.1016/j.ijsu.2013.01.010. (PMID: 10.1016/j.ijsu.2013.01.01023380245)
Jehan, A. R. N. et al. (2017). Analgesic potential of extracts and derived natural products from medicinal plants, pain relief. In C. Maldonado (Ed.). https://www.intechopen.com/chapters/54987 , Analgesics to Alternative Therapies vol. https://doi.org/10.5772/intechopen.68631 . IntechOpen.
Karar, M.G.E., Kuhnert, N.: Herbal drugs from Sudan: Traditional uses and phytoconstituents. Pharmacogn. Rev. 11(22), 83–103 (2017). https://doi.org/10.4103/phrev.phrev&#95;15&#95;15. (PMID: 10.4103/phrev.phrev_15_15289892445628527)
Prashantkumar, P., & Vidyasagar, G. M. (2008). Traditional knowledge on medicinal plants used for the treatment of skin diseases in Bidar district. http://hdl.handle.net/123456789/1588 . (CRIS). Karnataka Council of Scientific & Industrial Research (CRIS). vol. India (pp. 273–276).
Kamkar Asl, M., et al.: Analgesic effect of the aqueous and ethanolic extracts of clove. Avicenna Journal of Phytomedicine 3(2), 186–192 (2013). (PMID: 250502734075701)
Uritu, C.M., Mihai, C.T., Stanciu, G.D., Dodi, G., Alexa-Stratulat, T., Luca, A., Leon-Constantin, M.M., Stefanescu, R., Bild, V., Melnic, S., Tamba, B.I.: Medicinal plants of the family Lamiaceae in pain therapy: A review. Pain Res. Manage. 2018, 7801543 (2018). https://doi.org/10.1155/2018/7801543. (PMID: 10.1155/2018/7801543)
Mogosan, C., Vostinaru, O., Oprean, R., Heghes, C., Filip, L., Balica, G., Moldovan, R.I.: A comparative analysis of the chemical composition, anti-inflammatory, and antinociceptive effects of the essential oils from three species of mentha cultivated in Romania. Molecules 22(2), 263 (2017). https://doi.org/10.3390/molecules22020263. (PMID: 10.3390/molecules22020263282086146155945)
Nunes, B.S., Rensonnet, N.S., Dal-Secco, D., Vieira, S.M., Cavada, B.S., Teixeira, E.H., Moura, T.R., Teixeira, C.S., Clemente-Napimoga, J.T., Cunha, F.Q., Napimoga, M.H.: Lectin extracted from Canavalia grandiflora seeds presents potential antiinflammatory and analgesic effects. Naunyn-Schmiedeberg’s Arch. Pharmacol. 379(6), 609–616 (2009). https://doi.org/10.1007/s00210-009-0397-9. (PMID: 10.1007/s00210-009-0397-9)
Campos, J.K.L., et al.: Anti-inflammatory and antinociceptive activities of Bauhinia monandra leaf lectin. Biochim Open 2, 62–68 (2016). https://doi.org/10.1016/j.biopen.2016.03.001. (PMID: 10.1016/j.biopen.2016.03.001296328395889483)
Leite, J.F., Assreuy, A.M., Mota, M.R., Bringel, P.H., Lacerda, R.R., Gomes, V.M., Cajazeiras, J.B., Nascimento, K.S., Pessôa, H.L., Gadelha, C.A., Delatorre, P., Cavada, B.S., Santi-Gadelha, T.: Antinociceptive and anti-inflammatory effects of a lectin-like substance from Clitoria fairchildiana R. Howard seeds. Molecules 17(3), 3277–3290 (2012). https://doi.org/10.3390/molecules17033277. (PMID: 10.3390/molecules1703327722418929)
Sverdén, E., et al.: Peptic ulcer disease. BMJ 367, l5495 (2019). https://doi.org/10.1136/bmj.l5495 BMJ. (PMID: 10.1136/bmj.l549531578179)
De Vasconcellos Abdon, A.P., Coelho de Souza, G., Coelho, N., de Souza, L., Prado Vasconcelos, R., Araújo Castro, C., Moreira Guedes, M., Pereira Lima, R.C., de Azevedo Moreira, R., de Oliveira Monteiro-Moreira, A.C., Rolim Campos, A.: Gastroprotective potential of frutalin, a d-galactose binding lectin, against ethanol-induced gastric lesions. Fitoterapia 83(3), 604–608 (2012). https://doi.org/10.1016/j.fitote.2012.01.005. (PMID: 10.1016/j.fitote.2012.01.00522285860)
Gorakshakar, A.C., Ghosh, K.: Use of lectins in immunohematology. Asian J Transfus Sci 10(1), 12–21 (2016). https://doi.org/10.4103/0973-6247.172180 . (PMID: 27011665; PMCID: PMC4782487). (PMID: 10.4103/0973-6247.172180270116654782487)
Van Damme, E.J.M., Peumans, W.J., Barre, A., Rougé, P.: Plant lectins: A composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit. Rev. Plant Sci. 17(6), 575–692 (1998). (PMID: 10.1080/07352689891304276)
Van Damme, E.J.M., Lannoo, N., Peumans, W.J.: Plant lectins. Adv. Bot. Res. 48, 107–209 (2008). https://doi.org/10.1016/S0065-2296(08)00403-5. (PMID: 10.1016/S0065-2296(08)00403-5)
Olsnes, S., Stirpe, F., Sandvig, K., Pihl, A.: Isolation and characterization of viscumin, a toxic lectin from Viscum album L. (mistletoe). J. Biol. Chem. 257(22), 13263–13270 (1982). https://doi.org/10.1016/S0021-9258(18)33440-9. (PMID: 10.1016/S0021-9258(18)33440-97142144)
Endo, Y., Tsurugi, K., Franz, H.: The site of action of the A-chain of mistletoe lectin I on eukaryotic ribosomes. The RNA Nglycosidase activity of the protein. FEBS Letters 231(2), 378–380 (1988). https://doi.org/10.1016/0014-5793(88)80853-6. (PMID: 10.1016/0014-5793(88)80853-63360143)
Klopp, R., Schmidt, W., Werner, E., Werner, M., Niemer, W., Beuth, J.: Influence of complementary Viscum album (iscador) administration on microcirculation and immune system of ear, nose and throat carcinoma patients treated with radiation and chemotherapy. Anticancer Res 25(1B), 601–610 (2005). (PMID: 15816634)
Hajto, T., Hostanska, K., Gabius, H.J.: Modulatory potency of the beta-galactoside-specific lectin from mistletoe extract (iscador) on the host defense system in vivo in rabbits and patients. Can. Res. 49(17), 4803–4808 (1989).
Bocci, V.: Mistletoe (Viscum album) lectins as cytokine inducers and immunoadjuvant in tumor therapy. A review: Journal of Biological Regulators and Homeostatic Agents 7(1), 1–6 (1993). (PMID: 8346712)
Eck, J., Langer, M., Möckel, B., Baur, A., Rothe, M., Zinke, H., Lentzen, H.: Cloning of the mistletoe lectin gene and characterization of the recombinant A-chain. Eur. J. Biochem. 264(3), 775–784 (1999). https://doi.org/10.1046/j.1432-1327.1999.00638.x. (PMID: 10.1046/j.1432-1327.1999.00638.x10491123)
Yoon, T.J., Yoo, Y.C., Kang, T.B., Shimazaki, K., Song, S.K., Lee, K.H., Kim, S.H., Park, C.H., Azuma, I., Kim, J.B.: Lectins isolated from Korean mistletoe (Viscum album coloratum) induce apoptosis in tumor cells. Cancer Lett. 136(1), 33–40 (1999). https://doi.org/10.1016/s0304-3835(98)00300-0. (PMID: 10.1016/s0304-3835(98)00300-010211936)
Kang, T.B., Yoo, Y.C., Lee, K.H., Yoon, H.S., Her, E., Kim, J.B., Song, S.K.: Korean mistletoe lectin (KML-IIU) and its subchains induce nitric oxide (NO) production in murine macrophage cells. J. Biomed. Sci. 15(2), 197–204 (2008). https://doi.org/10.1007/s11373-007-9210-2. (PMID: 10.1007/s11373-007-9210-217940853)
Park, H.J., Hong, J.H., Kwon, H.J., Kim, Y., Lee, K.H., Kim, J.B., Song, S.K.: TLR4-mediated activation of mouse macrophages by Koreanmistletoe lectin-C (KML-C). Biochem. Biophys. Res. Commun. 396(3), 721–725 (2010). https://doi.org/10.1016/j.bbrc.2010.04.169. (PMID: 10.1016/j.bbrc.2010.04.16920450885)
Panunto-Castelo, A., Souza, M.A., Roque-Barreira, M.C., Silva, J.S.: KM (+), a lectin from Artocarpus integrifolia, induces IL-12 p40 production by macrophages and switches from type 2 to type 1 cell-mediated immunity against Leishmania major antigens, resulting in BALB/c mice resistance to infection. Glycobiology 11(12), 1035–1042 (2001). https://doi.org/10.1093/glycob/11.12.1035. (PMID: 10.1093/glycob/11.12.103511805076)
Yoon, T.J., Yoo, Y.C., Kang, T.B., Her, E., Kim, S.H., Kim, K., Azuma, I., Kim, J.B.: Cellular and humoral adjuvant activity of lectins isolated from Korean mistletoe (Viscum album colaratum). Int. Immunopharmacol. 1(5), 881–889 (2001). https://doi.org/10.1016/s1567-5769(01)00024-8. (PMID: 10.1016/s1567-5769(01)00024-811379043)
De Melo, C.M., de Castro, M.C., de Oliveira, A.P., Gomes, F.O., Pereira, V.R., Correia, M.T., Coelho, L.C., Paiva, P.M.: Immunomodulatory response of Cramoll 1,4 lectin on experimental lymphocytes. Phytother. Res. 24(11), 1631–1636 (2010). https://doi.org/10.1002/ptr.3156. (PMID: 10.1002/ptr.315621031620)
Dong, Q., Sugiura, T., Toyohira, Y., Yoshida, Y., Yanagihara, N., Karasaki, Y.: Stimulation of IFN-gamma production by garlic lectin in mouse spleen cells: Involvement of IL-12 via activation of p38 MAPK and ERK in macrophages. Phytomedicine 18(4), 309–316 (2011). https://doi.org/10.1016/j.phymed.2010.06.008. (PMID: 10.1016/j.phymed.2010.06.00820724126)
Carter, J.E., Yu, J., Choi, N.W., Hough, J., Henderson, D., He, D., Langridge, W.H.: Bacterial and plant enterotoxin B subunit-autoantigen fusion proteins suppress diabetes insulitis. Mol. Biotechnol. 32(1), 1–15 (2006). https://doi.org/10.1385/MB:32:1:001. (PMID: 10.1385/MB:32:1:00116382177)
Rogerio, A.P., Cardoso, C.R., Fontanari, C., Souza, M.A., Afonso-Cardoso, S.R., Silva, E.V., Koyama, N.S., Basei, F.L., Soares, E.G., Calixto, J.B., Stowell, S.R., Dias-Baruffi, M., Faccioli, L.H.: Anti-asthmatic potential of a D-galactose-binding lectin from Synadenium carinatum latex. Glycobiology 17(8), 795–804 (2007). https://doi.org/10.1093/glycob/cwm053. (PMID: 10.1093/glycob/cwm05317522108)
Carter, J.E., 3rd., Odumosu, O., Langridge, W.H.: Expression of a ricin toxin B subunit: Insulin fusion protein in edible plant tissues. Mol. Biotechnol. 44(2), 90–100 (2010). https://doi.org/10.1007/s12033-009-9217-1. (PMID: 10.1007/s12033-009-9217-1198989713565754)
Azizi, A., Kumar, A., Diaz-Mitoma, F., Mestecky, J.: Enhancing oral vaccine potency by targeting intestinal M cells. PLoS Pathog. 6(11), e1001147 (2010). https://doi.org/10.1371/journal.ppat.1001147. (PMID: 10.1371/journal.ppat.1001147210855992978714)
Jang, M.H., Kweon, M.N., Iwatani, K., Yamamoto, M., Terahara, K., Sasakawa, C., Suzuki, T., Nochi, T., Yokota, Y., Rennert, P.D., Hiroi, T., Tamagawa, H., Iijima, H., Kunisawa, J., Yuki, Y., Kiyono, H.: Intestinal villous M cells: An antigen entry site in the mucosal epithelium. Proc. Natl. Acad. Sci. U.S.A. 101(16), 6110–6115 (2004). https://doi.org/10.1073/pnas.0400969101. (PMID: 10.1073/pnas.040096910115071180395931)
Manocha, M., Pal, P.C., Chitralekha, K.T., Thomas, B.E., Tripathi, V., Gupta, S.D., Paranjape, R., Kulkarni, S., Rao, D.N.: Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex europaeus-I lectin as M cell target. Vaccine 23(48–49), 5599–5617 (2005). https://doi.org/10.1016/j.vaccine.2005.06.031. (PMID: 10.1016/j.vaccine.2005.06.03116099080)
Pereira-da-Silva, G., Roque-Barreira, M.C., Van Damme, E.J.: Artin M: A rational substitution for the names artocarpin and KM+. Immunol. Lett. 119(1–2), 114–115 (2008). https://doi.org/10.1016/j.imlet.2008.06.002. (PMID: 10.1016/j.imlet.2008.06.00218602950)
Fontenelle, T.P.C., Lima, G.C., Mesquita, J.X., Lopes, J.L.S., de Brito, T.V., Vieira Júnior, F.D.C., Sales, A.B., Aragão, K.S., Souza, M.H.L.P., Barbosa, A.L.D.R., Freitas, A.L.P.: Lectin obtained from the red seaweed Bryothamnion triquetrum: Secondary structure and anti-inflammatory activity in mice. Int. J. Biol. Macromol. 112, 1122–1130 (2018). https://doi.org/10.1016/j.ijbiomac.2018.02.058. (PMID: 10.1016/j.ijbiomac.2018.02.05829452186)
Bitencourt, F.S., Figueiredo, J.G., Mota, M.R., Bezerra, C.C., Silvestre, P.P., Vale, M.R., Nascimento, K.S., Sampaio, A.H., Nagano, C.S., Saker-Sampaio, S., Farias, W.R., Cavada, B.S., Assreuy, A.M., de Alencar, N.M.: Antinociceptive and anti-inflammatory effects of a mucin-binding agglutinin isolated from the red marine alga Hypnea cervicornis. Naunyn-Schmiedeberg’s Arch. Pharmacol. 377(2), 139–148 (2008). https://doi.org/10.1007/s00210-008-0262-2. (PMID: 10.1007/s00210-008-0262-2)
Abreu, T.M., Ribeiro, N.A., Chaves, H.V., Jorge, R.J., Bezerra, M.M., Monteiro, H.S., Vasconcelos, I.M., Mota, É.F., Benevides, N.M.: Antinociceptive and anti-inflammatory activities of the lectin from marine red alga Solieria filiformis. Planta Med. 82(7), 596–605 (2016). https://doi.org/10.1055/s-0042-101762. (PMID: 10.1055/s-0042-10176227093245)
Araújo, T.S., Teixeira, C.S., Falcão, M.A., Junior, V.R., Santiago, M.Q., Benevides, R.G., Delatorre, P., Martins, J.L., Alexandre-Moreira, M.S., Cavada, B.S., Campesatto, E.A., Rocha, B.A.: Anti-inflammatory and antinociceptive activity of chitin-binding lectin from Canna limbata Seeds. Applied Biochemistry and Biotechnology 171(8), 1944–1955 (2013). https://doi.org/10.1007/s12010-013-0470-1. (PMID: 10.1007/s12010-013-0470-124013883)
Silva, H.C., Bari, A.U., Rocha, B.A., Nascimento, K.S., Ponte, E.L., Pires, A.F., Delatorre, P., Teixeira, E.H., Debray, H., Assreuy, A.M., Nagano, C.S., Cavada, B.S.: Purification and primary structure of a mannose/glucose-binding lectin from Parkia biglobosa Jacq. seeds with antinociceptive and anti-inflammatory properties. Journal of Molecular Recognition 26(10), 470–478 (2013). https://doi.org/10.1002/jmr.2289. (PMID: 10.1002/jmr.228923996489)
de Oliveira Leite, G., Santos, S.A.A.R., Bezerra, F.M.D.H., Silva, S.E., F. E., de Castro Ribeiro, A. D., Roma, R. R., Silva, R. R. S., Santos, M. H. C., Santos, A. L. E., Teixeira, C. S., & Campos, A. R.: Is the orofacial antinociceptive effect of lectins intrinsically related to their specificity to monosaccharides? International Journal of Biological Macromolecules. MHC. CS, and AR 161, 1079–1085 (2020). https://doi.org/10.1016/j.ijbiomac.2020.06.132. (PMID: 10.1016/j.ijbiomac.2020.06.132)
Araújo, R.M.S., Vaz, A.F.M., Aguiar, J.S., Coelho, L.C.B.B., Paiva, P.M.G., Melo, A.M.M., Silva, T.G., Correia, M.T.S.: Lectin from Crataeva tapia bark exerts antitumor, anti-inflammtory and analgesic activities. Natural Products and Bioprospecting 1(2), 97–100 (2011). https://doi.org/10.1007/s13659-011-0014-8. (PMID: 10.1007/s13659-011-0014-84131655)
Araújo, R.M., Ferreira, R.S., Napoleão, T.H., Carneiro-da-Cunha, Md., Coelho, L.C., Correia, M.T., Oliva, M.L., Paiva, P.M., Araújo, M.R.MSd., et al.: Crataeva tapia bark lectin is an affinity adsorbent and insecticidal agent. Plant Sci. 183, 20–26 (2012). https://doi.org/10.1016/j.plantsci.2011.10.018. (PMID: 10.1016/j.plantsci.2011.10.01822195573)
Assreuy, A.M., Shibuya, M.D., Martins, G.J., De Souza, M.L., Cavada, B.S., Moreira, R.A., Oliveira, J.T., Ribeiro, R.A., Flores, C.A.: Anti-inflammatory effect of glucose-mannose binding lectins isolated from Brazilian beans. Mediators Inflamm. 6(3), 201–210 (1997). https://doi.org/10.1080/09629359791695. (PMID: 10.1080/09629359791695184728212365833)
Moreira, R.A., Barros, A.C., Stewart, J.C., Pusztai, A.: Isolation and characterization of a lectin from the seeds of Dioclea grandiflora (Mart.). Planta 158(1), 63–69 (1983). https://doi.org/10.1007/BF00395404. (PMID: 10.1007/BF0039540424264449)
Márcio, V.R., et al.: Purification and partial characterization of a lectin from Dioclea virgata Benth seeds. Fascículos Revista Brasileira de Fisiologia Vegetal. 8, 37–42 (1996).
Holanda, F.R., Coelho-de-Sousa, A.N., Assreuy, A.M., Leal-Cardoso, J.H., Pires, A.F., do Nascimento, K. S., Teixeira, C. S., Cavada, B. S., & Santos, C. F.: Antinociceptive activity of lectins from Diocleinae seeds on acetic acid-induced writhing test in mice. Protein Pept. Lett. 16(9), 1088–1092 (2009). https://doi.org/10.2174/092986609789055304. (PMID: 10.2174/09298660978905530419799552)
Renato, D.A.M., et al.: isolation and partial characterization of a lectin from seeds of Dioclea violacea. Braz. J. Plant. Physiol. 8(1), 23–29 (1996).
Do Nascimento, F.L.F., et al.: The anti-inflammatory effect of Andira Anthelmia lectin in rats involves inhibition of the prostanoid pathway. TNF-α and lectin domain. Research Square. (2021). https://doi.org/10.21203/rs.3.rs-718940/v1. (PMID: 10.21203/rs.3.rs-718940/v1)
De Freitas Pires, A., Bezerra, M.M., Amorim, R.M.F., do Nascimento, F. L. F., Marinho, M. M., Moura, R. M., Silva, M. T. L., Correia, J. L. A., Cavada, B. S., Assreuy, A. M. S., & Nascimento, K. S.: Lectin purified from Lonchocarpus campestris seeds inhibits inflammatory nociception. Int. J. Biol. Macromol. 125, 53–60 (2019). https://doi.org/10.1016/j.ijbiomac.2018.11.233. (PMID: 10.1016/j.ijbiomac.2018.11.23330500503)
Oladokun, et al.: Anti-nociceptive and anti-inflammatory activities of Tetracarpidium conophorum seed lectin. Sci. Afr 3, e00073 (2019).
Pratap, J.V., Jeyaprakash, A.A., Rani, P.G., Sekar, K., Surolia, A., Vijayan, M.: Crystal structures of artocarpin, a Moraceae lectin with mannose specificity, and its complex with methyl-alpha-Dmannose: Implications to the generation of carbohydrate specificity. J. Mol. Biol. 317(2), 237–247 (2002). https://doi.org/10.1006/jmbi.2001.5432. (PMID: 10.1006/jmbi.2001.543211902840)
Young, N.M., Johnston, R.A., Watson, D.C.: The amino acid sequences of jacalin and the Maclura pomifera agglutinin. FEBS Lett. 282(2), 382–384 (1991). https://doi.org/10.1016/0014-5793(91)80518-8. (PMID: 10.1016/0014-5793(91)80518-82037053)
Ngoc, L.D., Brillard, M., Hoebeke, J.: The alpha- and betasubunits of the jacalins are cleavage products from a 17-kDa precursor. Biochem. Biophys. Acta. 1156(2), 219–222 (1993). https://doi.org/10.1016/0304-4165(93)90139-y. (PMID: 10.1016/0304-4165(93)90139-y8427879)
Lerouge, P., Cabanes-Macheteau, M., Rayon, C., Fischette-Lainé, A.C., Gomord, V., Faye, L.: N-glycoprotein biosynthesis in plants: Recent developments and future trends. Plant Mol. Biol. 38(1–2), 31–48 (1998). https://doi.org/10.1023/A:1006012005654. (PMID: 10.1023/A:10060120056549738959)
Nakamura-Tsuruta, S., Uchiyama, N., Peumans, W.J., Van Damme, E.J., Totani, K., Ito, Y., Hirabayashi, J.: Analysis of the sugar-binding specificity of mannose-binding-type Jacalinrelated lectins by frontal affinity chromatography—An approach to functional classification. FEBS J. 275(6), 1227–1239 (2008). https://doi.org/10.1111/j.1742-4658.2008.06282.x. (PMID: 10.1111/j.1742-4658.2008.06282.x18266762)
Pranchevicius, M.C., Oliveira, L.L., Rosa, J.C., Avanci, N.C., Quiapim, A.C., Roque-Barreira, M.C., Goldman, M.H.: Characterization and optimization of ArtinM lectin expression in Escherichia coli. BMC Biotechnol. 12, 44 (2012). https://doi.org/10.1186/1472-6750-12-44. (PMID: 10.1186/1472-6750-12-44228572593431236)
Akira, S., Uematsu, S., Takeuchi, O.: Pathogen recognition and innate immunity. Cell 124(4), 783–801 (2006). https://doi.org/10.1016/j.cell.2006.02.015. (PMID: 10.1016/j.cell.2006.02.01516497588)
Santos, A.L.E., Leite, G.O., Carneiro, R.F., Roma, R.R., Santos, V.F., Santos, M.H.C., Pereira, R.O., Silva, R.C., Nagano, C.S., Sampaio, A.H., Rocha, B.A.M., Delatorre, P., Campos, A.R., Teixeira, C.S.: Purification and biophysical characterization of a mannose/N-acetyl-dglucosamine-specific lectin from Machaerium acutifolium and its effect on inhibition of orofacial pain via TRPV1 receptor. Arch. Biochem. Biophys. 664, 149–156 (2019). https://doi.org/10.1016/j.abb.2019.02.009. (PMID: 10.1016/j.abb.2019.02.00930772259)
Nolte, S., de Castro, D., Damasio, A.C., Baréa, J.G., Magalhães, A., Mello Zischler, L.F.C., Stuelp-Campelo, P.M., Elífio-Esposito, S.L., Roque-Barreira, M.C., Reis, C.A., Moreno-Amaral, Andréa Novais.: BJcuL, a lectin purified from Bothrops jararacussu venom, induces apoptosis in human gastric carcinoma cells accompanied by inhibition of cell adhesion and actin cytoskeleton disassembly. Toxicon 59(1), 81–85 (2012). https://doi.org/10.1016/j.toxicon.2011.10.012 . (ISSN 0041-0101). (PMID: 10.1016/j.toxicon.2011.10.01222079298)
Teixeira, C.R., Cavassani, K.A., Gomes, R.B., Teixeira, M.J., Roque-Barreira, M.C., Cavada, B.S., da Silva, J.S., Barral, A., Barral-Netto, M.: Potential of KM+lectin in immunization against Leishmania amazonensis infection. Vaccine 24(15), 3001–3008 (2006). https://doi.org/10.1016/j.vaccine.2005.11.067. (PMID: 10.1016/j.vaccine.2005.11.06716455170)
Trinchieri, G., Wysocka, M., D’Andrea, A., Rengaraju, M., Aste-Amezaga, M., Kubin, M., Valiante, N.M., Chehimi, J.: Natural killer cell stimulatory factor (NKSF) or interleukin-12 is a key regulator of immune response and inflammation. Prog. Growth Factor Res. 4(4), 355–368 (1992). https://doi.org/10.1016/0955-2235(92)90016-b. (PMID: 10.1016/0955-2235(92)90016-b1364096)
فهرسة مساهمة: Keywords: Anti-coronavirus; Anti-inflammatory; Antinociceptive; Covid; Glycosylation; Immune modulation; Lectin
المشرفين على المادة: 0 (Plant Lectins)
0 (Spike Glycoprotein, Coronavirus)
تواريخ الأحداث: Date Created: 20240515 Date Completed: 20240816 Latest Revision: 20240827
رمز التحديث: 20240827
DOI: 10.1007/s10719-024-10154-x
PMID: 38748325
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-4986
DOI:10.1007/s10719-024-10154-x