دورية أكاديمية

Influence of Host Plants and Tending Ants on the Cuticular Hydrocarbon Profile of a Generalist Myrmecophilous Caterpillar.

التفاصيل البيبلوغرافية
العنوان: Influence of Host Plants and Tending Ants on the Cuticular Hydrocarbon Profile of a Generalist Myrmecophilous Caterpillar.
المؤلفون: Ceballos-González AV; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil. aceballos@usp.br., da Silva RC; Institute of Biology Paris Seine (IBPS), Sorbonne University, Paris, France., Lima LD; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil., Kaminski LA; Núcleo de Ecologia e Biodiversidade, Instituto de Ciências Básicas e da Saúde, Universidade Federal de Alagoas - UFAL, Maceió, 57072-900, AL, Brazil.; Departamento de Zoologia, Universidade Federal do Rio Grande do Sul- UFRGS, Porto Alegre, 91540-000, RS, Brazil., Turatti ICC; NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil., Lopes NP; NPPNS, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ciências BioMoleculares, Universidade de São Paulo - USP, Ribeirão Preto, 14040-900, SP, Brazil., do Nascimento FS; Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Departamento de Biologia, Universidade de São Paulo - USP, Ribeirão Preto, 14040-901, SP, Brazil.
المصدر: Journal of chemical ecology [J Chem Ecol] 2024 Jun; Vol. 50 (5-6), pp. 222-236. Date of Electronic Publication: 2024 May 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 7505563 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-1561 (Electronic) Linking ISSN: 00980331 NLM ISO Abbreviation: J Chem Ecol Subsets: MEDLINE
أسماء مطبوعة: Publication: New York, NY : Springer
Original Publication: New York, Plenum Press.
مواضيع طبية MeSH: Ants*/physiology , Ants*/chemistry , Ants*/metabolism , Hydrocarbons*/metabolism , Hydrocarbons*/chemistry , Hydrocarbons*/analysis , Larva*/physiology , Larva*/chemistry, Animals ; Symbiosis ; Butterflies/physiology ; Butterflies/chemistry
مستخلص: In myrmecophilous organisms, which live in symbiosis with ants, cuticular hydrocarbons (CHCs) play a pivotal role in interspecific communication and defense against chemical-oriented predators. Although these interactions form complex information webs, little is known about the influence of biotic environmental factors on the CHC profiles of myrmecophiles. Here, we analyzed the effect of different host plants and tending ants on the larval CHC profile of Synargis calyce (Lepidoptera: Riodinidae), a polyphagous species with facultative myrmecophily. Groups of caterpillars were fed individually with three host plant species (without tending ants), and with two tending ant species. Through gas chromatography analysis, we compared the cuticular profiles of treatments and found a high similarity between plants and caterpillars (65-82%), but a low similarity between caterpillars and their tending ants (30 - 25%). Cluster analysis showed that caterpillars, ants, and plants form distinct groups, indicating that S. calyce caterpillars have their own chemical profile. These results are similar to those observed for Lycaenidae caterpillars indicating that there is functional convergence in the chemical strategies used by myrmecophilous caterpillar species with similar ecology. Also, the results suggest that the cuticular compounds of S. calyce are primarily influenced by their host plants rather than their tending ants. Thus, we propose that these caterpillars present a trade-off between camouflage and directly informing their presence to ants, maintaining their unique chemical profile, though slightly affected by biotic environmental factors.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Akino T (2008) Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News 11:173–181.
Akino T, Knapp JJ, Thomas JA, Elmes GW (1999) Chemical mimicry and host specificity in the butterfly Maculinea Rebeli, a social parasite of Myrmica ant colonies. Proc R Soc Lond B Biol Sci 266:1419–1426. https://doi.org/10.1098/rspb.1999.0796. (PMID: 10.1098/rspb.1999.0796)
Akino T, Nakamura KI, Wakamura S (2004) Diet-induced chemical phytomimesis by twig-like caterpillars of Biston Robustum Butler (Lepidoptera: Geometridae). Chemoecology 14:165–174. https://doi.org/10.1007/s00049-004-0274-4. (PMID: 10.1007/s00049-004-0274-4)
Alves-Silva E, Bächtold A, Del-Claro K (2018) Florivorous myrmecophilous caterpillars exploit an ant–plant mutualism and distract ants from extrafloral nectaries. Austral Ecol 43:643–650. https://doi.org/10.1111/aec.12609. (PMID: 10.1111/aec.12609)
Barbero F (2016) Cuticular lipids as a cross-talk among ants, plants and butterflies. Int J Mol Sci 17:1966. https://doi.org/10.3390/ijms17121966. (PMID: 10.3390/ijms17121966278861445187766)
Barbero F, Patricelli D, Witek M, Balletto E, Casacci LP, Sala M, Bonelli S (2012) Myrmica ants and their butterfly parasites with special focus on the acoustic communication. Psyche 2012:1–11. https://doi.org/10.1155/2012/725237. (PMID: 10.1155/2012/725237)
Beccaloni GW, Viloria AL, Hall SK, Robinson GS (2008) Catalogue of the hostplants of the neotropical butterflies/Catálogo De las plantas huésped de las mariposas neotropicales. Monografias Tercer Milenio, Saragosa.
Bertea C, Casacci P, Bonelli S, Zampollo A, Barbero F (2020) Chemical, physiological, and molecular responses of host plants to lepidopteran egg-laying. Front Plant Sci 10:1768. https://doi.org/10.3389/fpls.2019.01768. (PMID: 10.3389/fpls.2019.01768320823397002387)
Blomquist GJ, Bagnères AG (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press. (PMID: 10.1017/CBO9780511711909)
Callaghan CJ (1986) Restinga butterflies: biology of Synargis brennus (Stichel) (Riodinidae). J Lepid Soc 40:93–96.
Carlson DA, Bernier UR, Sutton BD (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845–1865. (PMID: 10.1023/A:1022311701355)
Casacci LP, Bonelli S, Balletto E, Barbero F (2019) Multimodal signaling in myrmecophilous butterflies. Front Ecol Evol 7:454. https://doi.org/10.3389/fevo.2019.00454. (PMID: 10.3389/fevo.2019.00454)
Cottrell CB (1984) Aphytophagy in butterflies: its relationship to myrmecophily. Zool J Linn Soc 80:1–57. https://doi.org/10.1111/j.1096-3642.1984.tb02318.x. (PMID: 10.1111/j.1096-3642.1984.tb02318.x)
da Silva RC, Brown RL, do Nascimento FS, Wenseelers T, Oi CA (2021) Cuticular hydrocarbons as cues of caste and sex in the German wasp Vespula Germanica. Insect Soc 68:261–276. https://doi.org/10.1007/s00040-021-00817-5. (PMID: 10.1007/s00040-021-00817-5)
Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129–154. https://doi.org/10.1146/annurev.en.39.010194.001021. (PMID: 10.1146/annurev.en.39.010194.001021)
DeVries PJ (1988) The larval ant-organs of Thisbe Irenea (Lepidoptera: Riodinidae) and their effects upon attending ants. Zool J Linn Soc 94:379–393. https://doi.org/10.1111/j.1096-3642.1988.tb01201.x. (PMID: 10.1111/j.1096-3642.1988.tb01201.x)
DeVries PJ, Harvey DJ, Kitching IJ (1986) The ant associated epidermal organs on the larva of the lycaenid butterfly Curetis regula Evans. J Nat Hist 20:621–633. https://doi.org/10.1080/00222938600770421. (PMID: 10.1080/00222938600770421)
Elmes G, Akino T, Thomas J, Clarke R, Knapp J (2002) Interspecific differences in cuticular hydrocarbon profiles of Myrmica ants are sufficiently consistent to explain host specificity by Maculinea (large blue) butterflies. Oecologia 130:525–535. https://doi.org/10.1007/s00442-001-0857-5. (PMID: 10.1007/s00442-001-0857-528547253)
Elmes G, Thomas JA, Wardlaw JC (1991) Larvae of Maculinea rebeli, a large-blue butterfly, and their Myrmica host ants: wild adoption and behaviour in ant‐nests. J Zool 223:447–460. https://doi.org/10.1111/j.1469-7998.1991.tb04775.x. (PMID: 10.1111/j.1469-7998.1991.tb04775.x)
Espelie KE, Bernays EA, Brown JJ (1991) Plant and insect cuticular lipids serve as behavioral cues for insects. Arch Insect Biochem Physiol 17:223–233. (PMID: 10.1002/arch.940170406)
Ferguson ST, Bakis I, Zwiebel LJ (2021) Advances in the study of olfaction in eusocial ants. Insects 12:252. https://doi.org/10.3390/insects12030252. (PMID: 10.3390/insects12030252338027838002415)
Fiedler K (1991) European and North West African Lycaenidae (Lepidoptera) and their associations with ants. J Res Lepid 28:239–257. (PMID: 10.5962/p.332216)
Fiedler K (1994) Lycaenid butterflies and plants: is myrmecophily associated with amplified hostplant diversity? Ecol Entomol 19:79–82. https://doi.org/10.1111/j.1365-2311.1994.tb00393.x. (PMID: 10.1111/j.1365-2311.1994.tb00393.x)
Fiedler K (1995) Associations of lycaenid butterflies with ants in Turkey. Die tagfalter der türkei unter Berücksichtigung der angrenzenden Länder 1:437–450.
Fiedler K (1996) Host-plant relationships of lycaenid butterflies: large-scale patterns, interactions with plant chemistry, and mutualism with ants. Entomol Exp Appl 80:259–267. (PMID: 10.1111/j.1570-7458.1996.tb00931.x)
Fiedler K (2021) The ant associates of Lycaenidae butterfly caterpillars–revisited. Nota Lepidopterologica 44:159–174. https://doi.org/10.3897/nl.44.68993. (PMID: 10.3897/nl.44.68993)
Fiedler K, Hölldobler B, Seufert P (1996) Butterflies and ants: the communicative domain. Experientia 52:14–24. https://doi.org/10.1007/BF01922410. (PMID: 10.1007/BF01922410)
Gnatzy W, Jatho M, Kleinteich T, Gorb S, Hustert R (2017) The eversible tentacle organs of Polyommatus caterpillars (Lepidoptera, Lycaenidae): morphology, fine structure, sensory supply and functional aspects. Arthropod Struct Develop 46:788–804. https://doi.org/10.1016/j.asd.2017.10.003. (PMID: 10.1016/j.asd.2017.10.003)
Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9.
Hefetz A (2007) The evolution of hydrocarbon pheromone parsimony in ants (Hymenoptera: Formicidae)-interplay of colony odor uniformity and odor idiosyncrasy. Myrmecol News 10:59–68.
Henning SF (1983) Chemical communication between Iycaenid larvae (Lepidoptera: Lycaenidae) and ants (Hymenoptera: Formicidae). J Entomol Soc South Afr 46:341–366.
Hill GM, Trager MD, Lucky A, Daniels JC (2022) Protective benefits of tending ants to a critically endangered butterfly. J Insect Sci 22:9. https://doi.org/10.1093/jisesa/ieac068. (PMID: 10.1093/jisesa/ieac068365083549744248)
Hojo MK, Wada-Katsumata A, Akino T, Yamaguchi S, Ozaki M, Yamaoka R (2009) Chemical disguise as particular caste of host ants in the ant inquiline parasite Niphanda fusca (Lepidoptera: Lycaenidae). Proc R Soc Lond B Biol Sci 276:551–558. https://doi.org/10.1098/rspb.2008.1064. (PMID: 10.1098/rspb.2008.1064)
Hojo MK, Yamamoto A, Akino T, Tsuji K, Yamaoka R (2014) Ants use partner specific odors to learn to recognize a mutualistic partner. PLoS ONE 9:e86054. https://doi.org/10.1371/journal.pone.0086054. (PMID: 10.1371/journal.pone.0086054244896903906017)
Hölldobler B, Kwapich (2022) The Lycaenidae: mutualists, predators, and parasites. The guests of ants: how myrmecophiles interact with their hosts. Harvard University Press, Massachusetts, pp 149–219.
Hölldobler B, Wilson EO (1990) The Ants. The Belknap Press of Harvard University Press, Cambridge, p 732. (PMID: 10.1007/978-3-662-10306-7)
Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Ann Rev Entomol 50:371–393. https://doi.org/10.1146/annurev.ento.50.071803.130359. (PMID: 10.1146/annurev.ento.50.071803.130359)
Ingleby FC (2015) Insect cuticular hydrocarbons as dynamic traits in sexual communication. Insects 6:732–742. https://doi.org/10.3390/insects6030732. (PMID: 10.3390/insects6030732264634134598662)
Inui Y, Shimizu-kaya U, Okubo T, Yamsaki E, Itioka T (2015) Various chemical strategies to deceive ants in three Arhopala species (Lepidoptera: Lycaenidae) exploiting Macaranga. PLoS ONE 10:e0120652. https://doi.org/10.1371/journal.pone.0120652. (PMID: 10.1371/journal.pone.0120652258536754390302)
Kaminski LA (2021) Ant-butterfly interactions - Borboletas formigueiras. iNaturalist. https://www.inaturalist.org/projects/ant-butterfly-interactions-borboletas-formigueiras . Accessed 26 Apr 2023.
Kaminski LA (2008) Polyphagy and obligate myrmecophily in the butterfly Hallonympha paucipuncta (Lepidoptera: Riodinidae) in the Neotropical Cerrado savanna. Biotropica 40:390–394. https://doi.org/10.1111/j.1744-7429.2007.00379.x. (PMID: 10.1111/j.1744-7429.2007.00379.x)
Kaminski LA, Carvalho-Filho FS (2012) Life history of Aricoris propitia (Lepidoptera: Riodinidae)—A myrmecophilous butterfly obligately associated with fire ants. Psyche 2012:1. https://doi.org/10.1155/2012/126876. (PMID: 10.1155/2012/126876)
Kaminski LA, Mota LL, Freitas AV, Moreira GR (2013) Two ways to be a myrmecophilous butterfly: natural history and comparative immature-stage morphology of two species of Theope (Lepidoptera: Riodinidae). Biol J Linn Soc 108:844–870. https://doi.org/10.1111/bij.12014. (PMID: 10.1111/bij.12014)
Kaminski LA, Volkmann L, Callaghan CJ, DeVries PJ, Vila R (2021) The first known riodinid ‘cuckoo’butterfly reveals deep-time convergence and parallelism in ant social parasites. Zool J Linn Soc 193:860–879. https://doi.org/10.1093/zoolinnean/zlaa150. (PMID: 10.1093/zoolinnean/zlaa150)
Krebs CJ (1999) Ecological Methodology. Addison Wesley Longman, Menlo Park.
Kronauer DJ, Pierce NE (2011) Myrmecophiles. Curr Biol 21:R208–R209. (PMID: 10.1016/j.cub.2011.01.05021419982)
Lenoir A, Fresneau D, Errard C, Hefetz A (1999) The individuality and the colonial identity in ants: the emergence of the social representation concept. In: Information Processing in Social Insects, Basel, pp 219–37.
Li GQ, Ishikawa Y (2006) Leaf epicuticular wax chemicals of the Japanese knotweed Fallopia japonica as oviposition stimulants for Ostrinia latipennis. J Chem Ecol 32:595–604. https://doi.org/10.1007/s10886-005-9022-7. (PMID: 10.1007/s10886-005-9022-716586039)
Lima LD, Ceballos-González AV, Prato A, Cavalleri A, Trigo JR, Nascimento FS (2024) Chemical camouflage induced by diet in a pest treehopper on host plants. Plants 13:216. https://doi.org/10.3390/plants13020216. (PMID: 10.3390/plants130202163825676910820158)
Lima LD, Ceballos-González AV, Prato A, Kaminski LA, Nascimento FS (2023) Plant-treehopper convergence may trick butterflies into trophic oviposition mistakes. Biotropica 55:292–298. https://doi.org/10.1111/btp.13194. (PMID: 10.1111/btp.13194)
Lima LD, Trigo JR, Kaminski LA (2021) Chemical convergence between a guild of facultative myrmecophilous caterpillars and host plants. Ecol Entomol 46:66–75. https://doi.org/10.1111/een.12941. (PMID: 10.1111/een.12941)
Lohman DJ, Liao Q, Pierce NE (2006) Convergence of chemical mimicry in a guild of aphid predators. Ecol Entomol 31:41–51. https://doi.org/10.1111/j.0307-6946.2006.00758.x. (PMID: 10.1111/j.0307-6946.2006.00758.x)
Malicky H (1970) New aspects of the association between lycaenid larvae (Lycaenidae) and ants (Formicidae, Hymenoptera). J Lepid Soc 24:190–202.
Marquis RJ, Koptur S (2022) Caterpillars in the middle: Tritrophic interactions in a changing world. Springer, pp 319–391. (PMID: 10.1007/978-3-030-86688-4)
Martemyanov VV, Pavlushin SV, Dubovskiy IM, Belousova IA, Yushkova YV, Morosov SV, Glupov VV (2015) Leaf surface lipophilic compounds as one of the factors of silver birch chemical defense against larvae of gypsy moth. PLoS ONE 10:e0121917. https://doi.org/10.1371/journal.pone.0121917. (PMID: 10.1371/journal.pone.0121917258163714376524)
Mizuno T, Hagiwara Y, Akino T (2018) Chemical tactic of facultative myrmecophilous lycaenid pupa to suppress ant aggression. Chemoecology 28:173–182. https://doi.org/10.1007/s00049-018-0270-8. (PMID: 10.1007/s00049-018-0270-8)
Mota LL, Kaminski LA, Freitas AV (2020) The tortoise caterpillar: carnivory and armoured larval morphology of the metalmark butterfly Pachythone xanthe (Lepidoptera: Riodinidae). J Nat Hist 54:309–319. https://doi.org/10.1080/00222933.2020.1759720. (PMID: 10.1080/00222933.2020.1759720)
Newcomer EJ (1912) Some observations on the relations of ants and lycaenid caterpillars, and a description of the relational organs of the latter. J N Y Entomol Soc 20:31–36.
Nunes TM, Mateus S, Favaris AP, Amaral MF, von Zuben LG, Clososki GC, Lopes NP (2014) Queen signals in a stingless bee: suppression of worker ovary activation and spatial distribution of active compounds. Sci Rep 4:7449. https://doi.org/10.1038/srep07449. (PMID: 10.1038/srep07449255025984264003)
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara RB, Simpson GL, Solymos P, Stevens MHH Szoecs E + 1 more (2013) Package ‘vegan’. Community ecology package. 1-295 version 2.
Ômura H, Watanabe M, Honda K (2009) Cuticular hydrocarbons of larva and pupa of Reverdin’s blue, Lycaeides argyrognomon (Lycaenidae) and its tending ants. Lepid Sci 60:203–210. https://doi.org/10.18984/lepid.60.3_203. (PMID: 10.18984/lepid.60.3_203)
Ômura H, Watanabe M, Honda K (2012) Cuticular hydrocarbon profiles of Lycaeides subsolanus larvae and their attendant ants. Lepid Sci 63:186–190. https://doi.org/10.18984/lepid.63.4_186. (PMID: 10.18984/lepid.63.4_186)
Otte T, Hilker M, Geiselhardt S (2018) Phenotypic plasticity of cuticular hydrocarbon profiles in insects. J Chem Ecol 44:235–247. https://doi.org/10.1007/s10886-018-0934-4. (PMID: 10.1007/s10886-018-0934-429468480)
Parker J (2016) Myrmecophily in beetles (Coleoptera): evolutionary patterns and biological mechanisms. Myrmecological news 22:65–108.
Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DB, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771. https://doi.org/10.1146/annurev.ento.47.091201.145257. (PMID: 10.1146/annurev.ento.47.091201.14525711729090)
Pierce NE, Dankowicz E (2022) Behavioral, ecological and evolutionary mechanisms underlying caterpillar-ant symbioses. Curr Opin Insect Sci 52:100898. https://doi.org/10.1016/j.cois.2022.100898. (PMID: 10.1016/j.cois.2022.10089835257969)
Portugal AHA, Trigo JR (2005) Similarity of cuticular lipids between a caterpillar and its host plant: a way to make prey undetectable for predatory ants? J Chem Ecol 31:2551–2561. https://doi.org/10.1007/s10886-005-7613-y. (PMID: 10.1007/s10886-005-7613-y16273428)
R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ . Accessed 16 Feb 2023.
Schlick-Steiner BC, Steiner FM, Höttinger H, Nikiforov A, Mistrik R, Schafellner C, Baier P, Christian E (2004) A butterfly’s chemical key to various ant forts: Intersection-odour or aggregate-odour multi-host mimicry? Naturwissenschaften 91:209–214. https://doi.org/10.1007/s00114-004-0518-8. (PMID: 10.1007/s00114-004-0518-815146266)
Schönrogge K, Barbero F, Casacci LP, Settele J, Thomas JA (2017) Acoustic communication within ant societies and its mimicry by mutualistic and socially parasitic myrmecophiles. Anim Behav 134:249–256. https://doi.org/10.1016/j.anbehav.2016.10.031. (PMID: 10.1016/j.anbehav.2016.10.031)
Schönrogge K, Wardlaw J, Peters A, Everett S, Thomas J, Elmes G (2004) Changes in chemical signature and host specificity from larval retrieval to full social integration in the myrmecophilous butterfly Maculinea rebeli. J Chem Ecol 30:91–107. https://doi.org/10.1023/B:JOEC.0000013184.18176.a9. (PMID: 10.1023/B:JOEC.0000013184.18176.a915074659)
Silveira HC, Oliveira PS, Trigo JR (2010) Attracting predators without falling prey: chemical camouflage protects honeydew-producing treehoppers from ant predation. Am Nat 175:261–268. https://doi.org/10.1086/649580. (PMID: 10.1086/64958020001602)
Sprenger PP, Menzel F (2020) Cuticular hydrocarbons in ants (Hymenoptera: Formicidae) and other insects: how and why they differ among individuals, colonies, and species. Myrmecol News 30:1–6. https://doi.org/10.25849/myrmecol.news_030:013. (PMID: 10.25849/myrmecol.news_030:013)
Steiger S, Stökl J (2014) The role of sexual selection in the evolution of chemical signals in insects. Insects 5:423–438. https://doi.org/10.3390/insects5020423. (PMID: 10.3390/insects5020423264626924592599)
Thomas JA, Elmes G, Sielezniew M, Stankiewicz-Fiedurek A, Simcox DJ, Settele J, Schönrogge K (2013) Mimetic host shifts in an endangered social parasite of ants. Proc R Soc Lond B Biol Sci 280:20122336. https://doi.org/10.1098/rspb.2012.2336. (PMID: 10.1098/rspb.2012.2336)
Thomas JA, Schönrogge K, Elmes GW (2005) Specialisations and host associations of social parasites of ants. Evolutionary ecology. In: Rolff J, Fellowes M, Holloway G (eds) Symposium of the Royal Entomological Society XXI, pp 475–514. https://doi.org/10.1079/9780851998121.047.
von Beeren C, Pohl S, Witte V (2012) On the use of adaptive resemblance terms in chemical ecology. Psyche 2012:1. https://doi.org/10.1155/2012/635761. (PMID: 10.1155/2012/635761)
Witek M, Casacci LP, Barbero F, Patricelli D, Sala M, Bossi S, Bonelli S (2013) Interspecific relationships in co-occurring populations of social parasites and their host ants. Biol J Linn Soc 109:699–709. https://doi.org/10.1111/bij.12074. (PMID: 10.1111/bij.12074)
Yamaoka R (1990) Chemical approach to understanding interactions among organisms. Physiol Ecol Jap 27:31–52.
Zu P, Boege K, Del-Val E, Schuman MC, Stevenson PC, Zaldivar-Riverón A, Saavedra S (2020) Information arms race explains plant-herbivore chemical communication in ecological communities. Science 368:1377–1381. https://doi.org/10.1126/science.aba2965. (PMID: 10.1126/science.aba296532554595)
معلومات مُعتمدة: 140313/2020-6 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 05082/2018-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior; 2018/22461-3 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2021/00984-7 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2021/05598-8 Fundação de Amparo à Pesquisa do Estado de São Paulo
فهرسة مساهمة: Keywords: Synargis calyce; Chemical compounds; Mutualistic interactions; Myrmecophilous butterflies; Riodinidae
المشرفين على المادة: 0 (Hydrocarbons)
تواريخ الأحداث: Date Created: 20240515 Date Completed: 20240709 Latest Revision: 20240709
رمز التحديث: 20240710
DOI: 10.1007/s10886-024-01477-y
PMID: 38748380
قاعدة البيانات: MEDLINE