دورية أكاديمية

Electrocatalytic Transfer Hydrogenation of 1-Octene with [( tBu PCP)Ir(H)(Cl)] and Water.

التفاصيل البيبلوغرافية
العنوان: Electrocatalytic Transfer Hydrogenation of 1-Octene with [( tBu PCP)Ir(H)(Cl)] and Water.
المؤلفون: Mollik P; Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany., Drees M; Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany., Frantz AM; Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany., Halter DP; Technical University of Munich, TUM School of Natural Sciences, Department of Chemistry, Chair of Inorganic and Metal-Organic Chemistry, Lichtenbergstr. 4, 85748, Garching, Germany.
المصدر: Angewandte Chemie (International ed. in English) [Angew Chem Int Ed Engl] 2024 Jul 29; Vol. 63 (31), pp. e202317844. Date of Electronic Publication: 2024 Jul 01.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 0370543 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3773 (Electronic) Linking ISSN: 14337851 NLM ISO Abbreviation: Angew Chem Int Ed Engl Subsets: PubMed not MEDLINE; MEDLINE
أسماء مطبوعة: Publication: <2004-> : Weinheim : Wiley-VCH
Original Publication: Weinheim/Bergstr. : New York, : Verlag Chemie ; Academic Press, c1962-
مستخلص: Electrocatalytic hydrogenation of 1-octene as non-activated model substrate with neutral water as H-donor is reported, using [( tBu PCP)Ir(H)(Cl)] (1) as the catalyst, to form octane with high faradaic efficiency (FE) of 96 % and a k obs of 87 s -1 . Cyclic voltammetry with 1 revealed that two subsequent reductions trigger the elimination of Cl - and afford the highly reactive anionic Ir(I) hydride complex [( tBu PCP)Ir(H)] - (2), a previously merely proposed intermediate for which we now report first experimental data by mass spectrometry. In absence of alkene, the stoichiometric electrolysis of 1 in THF with water selectively affords the Ir(III) dihydride complex [( tBu PCP)Ir(H) 2 ] (3) in 88 % FE from the reaction of 2 with H 2 O. Complex 3 then hydrogenates the alkene in classical fashion. The presented electro-hydrogenation works with extremely high FE, because the iridium hydrides are water stable, which prevents H 2 formation. Even in strongly alkaline conditions (Bu 4 NOH added), the electro-hydrogenation of 1-octene with 1 also proceeds cleanly (89 % FE), suggesting a highly robust process that may rely on H 2 O activation, reminiscent to transfer hydrogenation pathways, instead of classical H + reduction. DFT calculations confirmed oxidative addition of H 2 O as a key step in this context.
(© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.)
References: L. Alig, M. Fritz, S. Schneider, Chem. Rev. 2019, 119, 2681.
M. A. Stoffels, F. J. R. Klauck, T. Hamadi, F. Glorius, J. Leker, Adv. Synth. Catal. 2020, 362, 1258.
H.-U. Blaser, C. Malan, B. Pugin, F. Spindler, H. Steiner, M. Studer, Adv. Synth. Catal. 2003, 345, 103.
H. Jorschick, M. Vogl, P. Preuster, A. Bösmann, P. Wasserscheid, Int. J. Hydrogen Energy 2019, 44, 31172.
Y. Nakagawa, M. Tamura, K. Tomishige, ACS Catal. 2013, 3, 2655.
S. Werkmeister, J. Neumann, K. Junge, M. Beller, Chem. Eur. J. 2015, 21, 12226.
J. G. D. Vries, C. J. Elsevier (Eds.) The handbook of homogeneous hydrogenation, Wiley-VCH, Weinheim, 2007.
D. Wang, D. Astruc, Chem. Rev. 2015, 115, 6621.
R. Nie, Y. Tao, Y. Nie, T. Lu, J. Wang, Y. Zhang, X. Lu, C. C. Xu, ACS Catal. 2021, 11, 1071.
X. Hu, G. Wang, C. Qin, X. Xie, C. Zhang, W. Xu, Y. Liu, Org. Chem. Front. 2019, 6, 2619.
Y. Gao, X. Zhang, R. D. Laishram, J. Chen, K. Li, K. Zhang, G. Zeng, B. Fan, Adv. Synth. Catal. 2019, 361, 3991.
K. Li, R. Khan, X. Zhang, Y. Gao, Y. Zhou, H. Tan, J. Chen, B. Fan, Chem. Commun. 2019, 55, 5663.
S. Guo, X. Wang, J. S. Zhou, Org. Lett. 2020, 22, 1204.
S. Rao, K. R. Prabhu, Chem. Eur. J. 2018, 24, 13954.
Q. Xuan, Q. Song, Org. Lett. 2016, 18, 4250.
J. Derosa, P. Garrido-Barros, J. C. Peters, J. Am. Chem. Soc. 2021, 143, 9303.
J. Li, L. He, X. Liu, X. Cheng, G. Li, Angew. Chem. Int. Ed. 2019, 58, 1759.
J. Bu, Z. Liu, W. Ma, L. Zhang, T. Wang, H. Zhang, Q. Zhang, X. Feng, J. Zhang, Nat. Catal. 2021, 4, 557.
B. Li, H. Ge, Sci. Adv. 2019, 5, eaaw2774.
B.-H. Zhao, F. Chen, M. Wang, C. Cheng, Y. Wu, C. Liu, Y. Yu, B. Zhang, Nat Sustain 2023, 6, 827.
S. H. Langer, S. Yurchak, J. Electrochem. Soc. 1969, 116, 1228.
Y. Inami, H. Ogihara, S. Nagamatsu, K. Asakura, I. Yamanaka, ACS Catal. 2019, 9, 2448.
N. Itoh, W. Xu, S. Hara, K. Sakaki, Catal. Today 2000, 56, 307.
B. K. Peters, K. X. Rodriguez, S. H. Reisberg, S. B. Beil, D. P. Hickey, Y. Kawamata, M. Collins, J. Starr, L. Chen, S. Udyavara, K. Klunder, T. J. Gorey, S. L. Anderson, M. Neurock, S. D. Minteer, P. S. Baran, Science 2019, 363, 838.
I. Fokin, I. Siewert, Chem. Eur. J. 2020, 26, 14137.
M. J. Chalkley, P. Garrido-Barros, J. C. Peters, Science 2020, 369, 850.
I. Fokin, K.-T. Kuessner, I. Siewert, ACS Catal. 2022, 12, 8632.
C. H. Lam, C. B. Lowe, Z. Li, K. N. Longe, J. T. Rayburn, M. A. Caldwell, C. E. Houdek, J. B. Maguire, C. M. Saffron, D. J. Miller, J. E. Jackson, Green Chem. 2015, 17, 601.
S. Kim, E. E. Kwon, Y. T. Kim, S. Jung, H. J. Kim, G. W. Huber, J. Lee, Green Chem. 2019, 21, 3715.
W. Liu, W. You, Y. Gong, Y. Deng, Energy Environ. Sci. 2020, 13, 917.
A. Kurimoto, R. S. Sherbo, Y. Cao, N. W. X. Loo, C. P. Berlinguette, Nat. Catal. 2020, 3, 719.
J. Yang, H. Qin, K. Yan, X. Cheng, J. Wen, Adv. Synth. Catal. 2021, 363, 5407.
R. S. Sherbo, R. S. Delima, V. A. Chiykowski, B. P. MacLeod, C. P. Berlinguette, Nat. Catal. 2018, 1, 501.
P. Garrido-Barros, J. Derosa, M. J. Chalkley, J. C. Peters, Nature 2022, 609, 71.
J. Derosa, P. Garrido-Barros, M. Li, J. C. Peters, J. Am. Chem. Soc. 2022, 144, 20118.
S. A. Akhade, N. Singh, O. Y. Gutiérrez, J. Lopez-Ruiz, H. Wang, J. D. Holladay, Y. Liu, A. Karkamkar, R. S. Weber, A. B. Padmaperuma, et al., V.-A. Glezakou, Chem. Rev. 2020, 120, 11370.
M. Wakisaka, M. Kunitake, Electrochem. Commun. 2016, 64, 5.
H. Carrero, J. Gao, J. F. Rusling, C.-W. Lee, A. J. Fry, Electrochim. Acta 1999, 45, 503.
P. Li, R. Zhao, H. Chen, H. Wang, P. Wei, H. Huang, Q. Liu, T. Li, X. Shi, Y. Zhang, M. Liu, X. Sun, Small 2019, 15, 1805103.
O. V. Ozerov, Chem. Soc. Rev. 2009, 38, 83.
D. Morales-Morales, D. W. Lee, Z. Wang, C. M. Jensen, Organometallics 2001, 20, 1144.
C. Liu, Y. Wu, B. Zhao, B. Zhang, Acc. Chem. Res. 2023, 56, 1872.
Y. Wu, C. Liu, C. Wang, S. Lu, B. Zhang, Angew. Chem. Int. Ed. 2020, 59, 21170.
J. Sheng, X. Cheng, CCS Chem 2024, 6, 230.
C. J. Moulton, B. L. Shaw, J. Chem. Soc. Dalton Trans. 1976, 1020.
M. Rimoldi, A. Mezzetti, Inorg. Chem. 2014, 53, 11974.
T. Abura, S. Ogo, Y. Watanabe, S. Fukuzumi, J. Am. Chem. Soc. 2003, 125, 4149.
S. I. Johnson, R. J. Nielsen, W. A. Goddard, ACS Catal. 2016, 6, 6362.
D. Y. Wang, Y. Choliy, M. C. Haibach, J. F. Hartwig, K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc. 2016, 138, 149.
I. Osadchuk, T. Tamm, M. S. G. Ahlquist, ACS Catal. 2016, 6, 3834.
P. Kang, C. Cheng, Z. Chen, C. K. Schauer, T. J. Meyer, M. Brookhart, J. Am. Chem. Soc. 2012, 134, 5500.
H. Neugebauer, F. Bohle, M. Bursch, A. Hansen, S. Grimme, J. Phys. Chem. A 2020, 124, 7166.
J. L. Dye, Science 1990, 247, 663.
L. Cao, C. Sun, N. Sun, L. Meng, D. Chen, Dalton Trans. 2013, 42, 5755.
C. Sandford, M. A. Edwards, K. J. Klunder, D. P. Hickey, M. Li, K. Barman, M. S. Sigman, H. S. White, S. D. Minteer, Chem. Sci. 2019, 10, 6404.
M. Kanzelberger, X. Zhang, T. J. Emge, A. S. Goldman, J. Zhao, C. Incarvito, J. F. Hartwig, J. Am. Chem. Soc. 2003, 125, 13644.
A. Kumar, T. Zhou, T. J. Emge, O. Mironov, R. J. Saxton, K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc. 2015, 137, 9894.
K. Krogh-Jespersen, M. Czerw, A. S. Goldman, in ACS Symposium Series, Vol. 885 (Eds.: K. Krogh-Jespersen, M. Czerw, A. S. Goldman), American Chemical Society, Washington, DC, 2004, pp. 216–233.
A. B. P. Lever, Inorg. Chem. 1990, 29, 1271.
M. Wilklow-Marnell, B. Li, T. Zhou, K. Krogh-Jespersen, W. W. Brennessel, T. J. Emge, A. S. Goldman, W. D. Jones, J. Am. Chem. Soc. 2017, 139, 8977.
M. W. Kanan, D. G. Nocera, Science 2008, 321, 1072.
معلومات مُعتمدة: Feodor Lynen Return Fellowship Alexander von Humboldt-Stiftung; Liebig Fellowship Fonds der Chemischen Industrie; TUM Junior Fellow Funds Technische Universität München
فهرسة مساهمة: Keywords: Ir(III)-pincer; anionic Ir(I) hydride; cyclic voltammetry; electro-synthesis; electrochemical hydrogenation
تواريخ الأحداث: Date Created: 20240517 Latest Revision: 20240722
رمز التحديث: 20240723
DOI: 10.1002/anie.202317844
PMID: 38757787
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3773
DOI:10.1002/anie.202317844