دورية أكاديمية

Tree demographic strategies largely overlap across succession in Neotropical wet and dry forest communities.

التفاصيل البيبلوغرافية
العنوان: Tree demographic strategies largely overlap across succession in Neotropical wet and dry forest communities.
المؤلفون: Schorn ME; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.; Department of Economics, University of Leipzig, Leipzig, Germany., Kambach S; Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle, Germany., Chazdon RL; Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, Connecticut, USA.; Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia., Craven D; GEMA Center for Genomics, Ecology and Environment, Universidad Mayor, Santiago, Chile.; Data Observatory Foundation, ANID Technology Center, Santiago, Chile., Farrior CE; Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA., Meave JA; Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico., Muñoz R; Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico.; Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands., van Breugel M; Department of Geography, National University of Singapore, Singapore, Singapore.; Smithsonian Tropical Research Institute, Ancón, Panama., Amissah L; CSIR-Forestry Research Institute of Ghana, Kumasi, Ghana., Bongers F; Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands., Hérault B; CIRAD, UPR Forêts et Sociétés, Yamoussoukro, Côte d'Ivoire.; Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France.; Institut National Polytechnique Félix Houphouët-Boigny, INP-HB, Yamoussoukro, Côte d'Ivoire., Jakovac CC; Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands.; Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Florianópolis, Brazil., Norden N; Programa de Ciencias Básicas de la Biodiversidad, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Bogotá, Colombia., Poorter L; Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands., van der Sande MT; Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands., Wirth C; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.; Systematic Botany and Functional Biodiversity, Institute for Biology, Leipzig University, Leipzig, Germany.; Max-Planck Institute for Biogeochemistry, Jena, Germany., Delgado D; CATIE - Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica., Dent DH; Smithsonian Tropical Research Institute, Ancón, Panama.; Biological and Environmental Sciences, University of Stirling, Stirling, UK.; Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland., DeWalt SJ; Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA., Dupuy JM; Centro de Investigación Científica de Yucatán (CICY), Unidad de Recursos Naturales, Mérida, Mexico., Finegan B; CATIE - Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba, Costa Rica., Hall JS; Smithsonian Tropical Research Institute, Ancón, Panama., Hernández-Stefanoni JL; Centro de Investigación Científica de Yucatán (CICY), Unidad de Recursos Naturales, Mérida, Mexico., Lopez OR; Smithsonian Tropical Research Institute, Ancón, Panama.; Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT), Clayton, Panama.; Departamento de Botánica, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panama City, Panama., Rüger N; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.; Department of Economics, University of Leipzig, Leipzig, Germany.; Smithsonian Tropical Research Institute, Ancón, Panama.
المصدر: Ecology [Ecology] 2024 Jul; Vol. 105 (7), pp. e4321. Date of Electronic Publication: 2024 May 19.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Ecological Society of America Country of Publication: United States NLM ID: 0043541 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1939-9170 (Electronic) Linking ISSN: 00129658 NLM ISO Abbreviation: Ecology Subsets: MEDLINE
أسماء مطبوعة: Publication: Washington, DC : Ecological Society of America
Original Publication: Brooklyn, NY : Brooklyn Botanical Garden
مواضيع طبية MeSH: Forests* , Trees* , Tropical Climate*, Panama ; Mexico ; Costa Rica ; Biodiversity
مستخلص: Secondary tropical forests play an increasingly important role in carbon budgets and biodiversity conservation. Understanding successional trajectories is therefore imperative for guiding forest restoration and climate change mitigation efforts. Forest succession is driven by the demographic strategies-combinations of growth, mortality and recruitment rates-of the tree species in the community. However, our understanding of demographic diversity in tropical tree species stems almost exclusively from old-growth forests. Here, we assembled demographic information from repeated forest inventories along chronosequences in two wet (Costa Rica, Panama) and two dry (Mexico) Neotropical forests to assess whether the ranges of demographic strategies present in a community shift across succession. We calculated demographic rates for >500 tree species while controlling for canopy status to compare demographic diversity (i.e., the ranges of demographic strategies) in early successional (0-30 years), late successional (30-120 years) and old-growth forests using two-dimensional hypervolumes of pairs of demographic rates. Ranges of demographic strategies largely overlapped across successional stages, and early successional stages already covered the full spectrum of demographic strategies found in old-growth forests. An exception was a group of species characterized by exceptionally high mortality rates that was confined to early successional stages in the two wet forests. The range of demographic strategies did not expand with succession. Our results suggest that studies of long-term forest monitoring plots in old-growth forests, from which most of our current understanding of demographic strategies of tropical tree species is derived, are surprisingly representative of demographic diversity in general, but do not replace the need for further studies in secondary forests.
(© 2024 The Authors. Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.)
References: Becknell, J. M., and J. S. Powers. 2014. “Stand Age and Soils as Drivers of Plant Functional Traits and Aboveground Biomass in Secondary Tropical Dry Forest.” Canadian Journal of Forest Research 44: 604–613. https://doi.org/10.1139/cjfr-2013-0331.
Blonder, B. 2018. “Hypervolume Concepts in Niche‐ and Trait‐Based Ecology.” Ecography 41: 1441–1455. https://doi.org/10.1111/ecog.03187.
Blonder, B., C. Lamanna, C. Violle, and B. J. Enquist. 2014. “The n‐Dimensional Hypervolume.” Global Ecology and Biogeography 23: 595–609. https://doi.org/10.1111/geb.12146.
Bohlman, S., and S. Pacala. 2012. “A Forest Structure Model that Determines Crown Layers and Partitions Growth and Mortality Rates for Landscape‐Scale Applications of Tropical Forests.” Journal of Ecology 100: 508–518. https://doi.org/10.1111/j.1365-2745.2011.01935.x.
Boucher, D. H., J. H. Vandermeer, I. La Granzow, M. A. de Cerda, I. P. Mallona, and N. Zamora. 2001. “Post‐Agriculture Versus Post‐Hurricane Succession in Southeastern Nicaraguan Rain Forest.” Plant Ecology 156: 131–137. https://doi.org/10.1023/A:1012672005360.
Boukili, V. K., and R. L. Chazdon. 2017. “Environmental Filtering, Local Site Factors and Landscape Context Drive Changes in Functional Trait Composition during Tropical Forest Succession.” Perspectives in Plant Ecology, Evolution and Systematics 24: 37–47. https://doi.org/10.1016/j.ppees.2016.11.003.
Buzzard, V., C. M. Hulshof, T. Birt, C. Violle, and B. J. Enquist. 2016. “Re‐Growing a Tropical Dry Forest: Functional Plant Trait Composition and Community Assembly during Succession.” Functional Ecology 30: 1006–1013. https://doi.org/10.1111/1365-2435.12579.
Cailleret, M., S. Jansen, E. M. R. Robert, L. Desoto, T. Aakala, J. A. Antos, B. Beikircher, et al. 2017. “A Synthesis of Radial Growth Patterns Preceding Tree Mortality.” Global Change Biology 23: 1675–1690. https://doi.org/10.1111/gcb.13535.
Cayuela, L., Í. La Granzow‐de Cerda, F. S. Albuquerque, and D. J. Golicher. 2012. “Taxonstand: An R Package for Species Names Standardisation in Vegetation Databases.” Methods in Ecology and Evolution 3: 1078–1083. https://doi.org/10.1111/j.2041-210X.2012.00232.x.
Chazdon, R. L. 2008. “Chance and Determinism in Tropical Forest Succession.” In Tropical Forest Community Ecology, edited by W. P. Carson and S. A. Schnitzer, 384–408. Chichester, Malden: Wiley‐Blackwell Pub.
Chazdon, R. L. 2014. Second Growth. The Promise of Tropical Forest Regeneration in an Age of Deforestation. Chicago: University of Chicago Press.
Chazdon, R. L., E. N. Broadbent, D. M. A. Rozendaal, F. Bongers, A. M. A. Zambrano, T. M. Aide, P. Balvanera, et al. 2016. “Carbon Sequestration Potential of Second‐Growth Forest Regeneration in the Latin American Tropics.” Science Advances 2: e1501639. https://doi.org/10.1126/sciadv.1501639.
Chazdon, R. L., S. G. Letcher, M. van Breugel, M. Martínez‐Ramos, F. Bongers, and B. Finegan. 2007. “Rates of Change in Tree Communities of Secondary Neotropical Forests Following Major Disturbances.” Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 362: 273–289. https://doi.org/10.1098/rstb.2006.1990.
Clark, D., and D. Clark. 2000. “Landscape‐Scale Variation in Forest Structure and Biomass in a Tropical Rain Forest.” Forest Ecology and Management 137: 185–198. https://doi.org/10.1016/S0378-1127(99)00327-8.
Clark, D. B., S. F. Oberbauer, D. A. Clark, M. G. Ryan, and R. O. Dubayah. 2021. “Physical Structure and Biological Composition of Canopies in Tropical Secondary and Old‐Growth Forests.” PLoS One 16: e0256571. https://doi.org/10.1371/journal.pone.0256571.
Condit, R., R. Pérez, S. Aguilar, S. Lao, R. Foster, and S. Hubbell. 2019. “Complete Data from the Barro Colorado 50‐ha Plot: 423617 Trees, 35 Years.” Dryad. https://doi.org/10.15146/5xcp-0d46.
Dechnik‐Vázquez, Y. A., J. A. Meave, E. A. Pérez‐García, J. A. Gallardo‐Cruz, and M. A. Romero‐Romero. 2016. “The Effect of Treefall Gaps on the Understorey Structure and Composition of the Tropical Dry Forest of Nizanda, Oaxaca, Mexico: Implications for Forest Regeneration.” Journal of Tropical Ecology 32: 89–106. https://doi.org/10.1017/S0266467416000092.
Denslow, J. S., and S. Guzman. 2000. “Variation in Stand Structure, Light and Seedling Abundance across a Tropical Moist Forest Chronosequence, Panama.” Journal of Vegetation Science 11: 201–212. https://doi.org/10.2307/3236800.
Derroire, G., J. S. Powers, C. M. Hulshof, L. E. Cárdenas Varela, and J. R. Healey. 2018. “Contrasting Patterns of Leaf Trait Variation among and within Species during Tropical Dry Forest Succession in Costa Rica.” Scientific Reports 8: 285. https://doi.org/10.1038/s41598-017-18525-1.
Duong, T. 2007. “Ks: Kernel Density Estimation and Kernel Discriminant Analysis for Multivariate Data in R.” Journal of Statistical Software 21: 1–16. https://doi.org/10.18637/jss.v021.i07.
Dupuy, J. M., J. L. Hernández‐Stefanoni, R. A. Hernández‐Juárez, E. Tetetla‐Rangel, J. O. López‐Martínez, E. Leyequién‐Abarca, F. J. Tun‐Dzul, and F. May‐Pat. 2012. “Patterns and Correlates of Tropical Dry Forest Structure and Composition in a Highly Replicated Chronosequence in Yucatán, Mexico.” Biotropica 44: 151–162. https://doi.org/10.1111/j.1744-7429.2011.00783.x.
Egler, F. E. 1954. “Vegetation Science Concepts I. Initial Floristic Composition, a Factor in Old‐Field Vegetation Development with 2 Figs.” Vegetatio. Acta Geobotanica 4: 412–417. https://doi.org/10.1007/BF00275587.
Ewel, J. J. 1977. “Differences between Wet and Dry Successional Tropical Ecosystems.” International Journal of Tropical Geology, Geography and Ecology 1: 103–117.
FAO. 2020. Global forest resources assessment 2020: Main Report. Rome: FAO. https://doi.org/10.4060/ca9825en.
Finegan, B. 1996. “Pattern and Process in Neotropical Secondary Rain Forests: The First 100 Years of Succession.” Trends in Ecology & Evolution 11: 119–124. https://doi.org/10.1016/0169-5347(96)81090-1.
Gallardo‐Cruz, J., J. Meave, E. Pérez‐García, and J. Hernández‐Stefanoni. 2010. “Spatial Structure of Plant Communities in a Complex Tropical Landscape: Implications for β‐Diversity.” Community Ecology 11: 202–210. https://doi.org/10.1556/comec.11.2010.2.8.
Hernández‐Stefanoni, J., J. Dupuy, K. Johnson, R. Birdsey, F. Tun‐Dzul, A. Peduzzi, J. Caamal‐Sosa, G. Sánchez‐Santos, and D. López‐Merlín. 2014. “Improving Species Diversity and Biomass Estimates of Tropical Dry Forests Using Airborne LiDAR.” Remote Sensing 6: 4741–4763. https://doi.org/10.3390/rs6064741.
Huanca‐Nuñez, N., R. L. Chazdon, and S. E. Russo. 2023. “Effects of Large Mammal Exclusion on Seedling Communities Depend on Plant Species Traits and Landscape Protection in Human‐Modified Costa Rican Forests.” Journal of Applied Ecology 60: 2561–2572. https://doi.org/10.1111/1365-2664.14531.
Kambach, S., R. Condit, S. Aguilar, H. Bruelheide, S. Bunyavejchewin, C.‐H. Chang‐Yang, Y.‐Y. Chen, et al. 2022. “Consistency of Demographic Trade‐Offs across 13 (Sub)Tropical Forests.” Journal of Ecology 110: 1485–1496. https://doi.org/10.1111/1365-2745.13901.
Kupers, S. J., C. Wirth, B. M. J. Engelbrecht, A. Hernández, R. Condit, S. J. Wright, and N. Rüger. 2019. “Performance of Tropical Forest Seedlings under Shade and Drought: An Interspecific Trade‐off in Demographic Responses.” Scientific Reports 9: 18784. https://doi.org/10.1038/s41598-019-55256-x.
Kuprewicz, E. K. 2013. “Mammal Abundances and Seed Traits Control the Seed Dispersal and Predation Roles of Terrestrial Mammals in a Costa Rican Forest.” Biotropica 45: 333–342. https://doi.org/10.1111/btp.12014.
Lai, H. R., D. Craven, J. S. Hall, F. K. C. Hui, and M. van Breugel. 2021. “Successional Syndromes of Saplings in Tropical Secondary Forests Emerge from Environment‐Dependent Trait‐Demography Relationships.” Ecology Letters 24: 1776–1787. https://doi.org/10.1111/ele.13784.
Lebrija‐Trejos, E., F. Bongers, E. A. Pérez‐García, and J. A. Meave. 2008. “Successional Change and Resilience of a Very Dry Tropical Deciduous Forest Following Shifting Agriculture.” Biotropica 40: 422–431. https://doi.org/10.1111/j.1744-7429.2008.00398.x.
Lebrija‐Trejos, E., E. A. Pérez‐García, J. A. Meave, F. Bongers, and L. Poorter. 2010. “Functional Traits and Environmental Filtering Drive Community Assembly in a Species‐Rich Tropical System.” Ecology 91: 386–398. https://doi.org/10.1890/08-1449.1.
Lebrija‐Trejos, E., E. A. Pérez‐García, J. A. Meave, L. Poorter, and F. Bongers. 2011. “Environmental Changes during Secondary Succession in a Tropical Dry Forest in Mexico.” Journal of Tropical Ecology 27: 477–489. https://doi.org/10.1017/S0266467411000253.
Letcher, S. G., and R. L. Chazdon. 2009. “Rapid Recovery of Biomass, Species Richness, and Species Composition in a Forest Chronosequence in Northeastern Costa Rica.” Biotropica 41: 608–617. https://doi.org/10.1111/j.1744-7429.2009.00517.x.
Letcher, S. G., J. R. Lasky, R. L. Chazdon, N. Norden, S. J. Wright, J. A. Meave, E. A. Pérez‐García, et al. 2015. “Environmental Gradients and the Evolution of Successional Habitat Specialization: A Test Case with 14 Neotropical Forest Sites.” Journal of Ecology 103: 1276–1290. https://doi.org/10.1111/1365-2745.12435.
Lewis, S. L., C. E. Wheeler, E. T. A. Mitchard, and A. Koch. 2019. “Restoring Natural Forests Is the Best Way to Remove Atmospheric Carbon.” Nature 568: 25–28. https://doi.org/10.1038/d41586-019-01026-8.
Lohbeck, M., L. Poorter, E. Lebrija‐Trejos, M. Martínez‐Ramos, J. A. Meave, H. Paz, E. A. Pérez‐García, I. E. Romero‐Pérez, A. Tauro, and F. Bongers. 2013. “Successional Changes in Functional Composition Contrast for Dry and Wet Tropical Forest.” Ecology 94: 1211–1216. https://doi.org/10.1890/12-1850.1.
Marra, D. M., J. Q. Chambers, N. Higuchi, S. E. Trumbore, G. H. P. M. Ribeiro, J. Dos Santos, R. I. Negrón‐Juárez, B. Reu, and C. Wirth. 2014. “Large‐Scale Wind Disturbances Promote Tree Diversity in a Central Amazon Forest.” PLoS One 9: e103711. https://doi.org/10.1371/journal.pone.0103711.
Martínez‐Ramos, M., M. M. Del Gallego‐Mahecha, T. Valverde, E. Vega, and F. Bongers. 2021. “Demographic Differentiation among Pioneer Tree Species during Secondary Succession of a Neotropical Rainforest.” Journal of Ecology 109: 3572–3586. https://doi.org/10.1111/1365-2745.13738.
Mascaro, J., G. P. Asner, H. C. Muller‐Landau, M. van Breugel, J. Hall, and K. Dahlin. 2011. “Controls over Aboveground Forest Carbon Density on Barro Colorado Island, Panama.” Biogeosciences 8: 1615–1629. https://doi.org/10.5194/bg-8-1615-2011.
Montgomery, R. A., and R. L. Chazdon. 2001. “Forest Structure, Canopy Architecture, and Light Transmittance in Tropical Wet Forests.” Ecology 82: 2707–2718. https://doi.org/10.1890/0012-9658(2001)082[2707:FSCAAL]2.0.CO;2.
Needham, J. F., D. J. Johnson, K. J. Anderson‐Teixeira, N. Bourg, S. Bunyavejchewin, N. Butt, M. Cao, et al. 2022. “Demographic Composition, Not Demographic Diversity, Predicts Biomass and Turnover across Temperate and Tropical Forests.” Global Change Biology 28: 2895–2909. https://doi.org/10.1111/gcb.16100.
Norden, N., H. A. Angarita, F. Bongers, M. Martínez‐Ramos, I. La Granzow‐de Cerda, M. van Breugel, E. Lebrija‐Trejos, et al. 2015. “Successional Dynamics in Neotropical Forests Are as Uncertain as they Are Predictable.” Proceedings of the National Academy of Sciences of the United States of America 112: 8013–8018. https://doi.org/10.1073/pnas.1500403112.
Pan, Y., R. A. Birdsey, J. Fang, R. Houghton, P. E. Kauppi, W. A. Kurz, O. L. Phillips, et al. 2011. “A Large and Persistent Carbon Sink in the world's Forests.” Science 333: 988–993. https://doi.org/10.1126/science.1201609.
Pérez‐García, E. A., J. A. Meave, J. L. Villaseñor, J. A. Gallardo‐Cruz, and E. E. Lebrija‐Trejos. 2010. “Vegetation Heterogeneity and Life‐Strategy Diversity in the Flora of the Heterogeneous Landscape of Nizanda, Oaxaca, Mexico.” Folia Geobotanica 45: 143–161. https://doi.org/10.1007/s12224-010-9064-7.
Poorter, L., D. Craven, C. C. Jakovac, M. T. van der Sande, L. Amissah, F. Bongers, R. L. Chazdon, et al. 2021. “Multidimensional Tropical Forest Recovery.” Science 374: 1370–1376. https://doi.org/10.1126/science.abh3629.
Poorter, L., K. Kitajima, P. Mercado, J. Chubiña, I. Melgar, and H. H. T. Prins. 2010. “Resprouting as a Persistence Strategy of Tropical Forest Trees: Relations with Carbohydrate Storage and Shade Tolerance.” Ecology 91: 2613–2627. https://doi.org/10.1890/09-0862.1.
Poorter, L., D. M. A. Rozendaal, F. Bongers, J. S. de Almeida‐Cortez, A. M. Almeyda Zambrano, F. S. Álvarez, J. L. Andrade, et al. 2019. “Wet and Dry Tropical Forests Show Opposite Successional Pathways in Wood Density but Converge over Time.” Nature Ecology & Evolution 3: 928–934. https://doi.org/10.1038/s41559-019-0882-6.
Poorter, L., M. van de Plassche, S. Willems, and R. G. A. Boot. 2004. “Leaf Traits and Herbivory Rates of Tropical Tree Species Differing in Successional Status.” Plant Biology 6: 746–754. https://doi.org/10.1055/s-2004-821269.
Purves, D. W., J. W. Lichstein, N. Strigul, and S. W. Pacala. 2008. “Predicting and Understanding Forest Dynamics Using a Simple Tractable Model.” Proceedings of the National Academy of Sciences of the United States of America 105: 17018–17022. https://doi.org/10.1073/pnas.0807754105.
R Core Team. 2022. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Revilla, U. S., F. Bongers, M. Enríquez, R. Muñoz, M. Peña‐Claros, and J. A. Meave. 2023. “The Regulating Role of Mimosa Acantholoba Var. Eurycarpa in Tropical Dry Forest Succession: Stem Twisting as a Successional Accelerating Mechanism.” Forest Ecology and Management 548: 121410. https://doi.org/10.1016/j.foreco.2023.121410.
Rico‐Gray, V., and J. G. García‐Franco. 1991. “The Maya and the Vegetation of the Yucatán Peninsula.” Journal of Ethnobiology 11: 135–142.
Rozendaal, D. M. A., F. Bongers, T. M. Aide, E. Alvarez‐Dávila, N. Ascarrunz, P. Balvanera, J. M. Becknell, et al. 2019. “Biodiversity Recovery of Neotropical Secondary Forests.” Science Advances 5: eaau3114. https://doi.org/10.1126/sciadv.aau3114.
Rüger, N., L. S. Comita, R. Condit, D. Purves, B. Rosenbaum, M. D. Visser, S. J. Wright, and C. Wirth. 2018. “Beyond the Fast‐Slow Continuum: Demographic Dimensions Structuring a Tropical Tree Community.” Ecology Letters 21: 1075–1084. https://doi.org/10.1111/ele.12974.
Rüger, N., R. Condit, D. H. Dent, S. J. DeWalt, S. P. Hubbell, J. W. Lichstein, O. R. Lopez, C. Wirth, and C. E. Farrior. 2020. “Demographic Trade‐Offs Predict Tropical Forest Dynamics.” Science 368: 165–168. https://doi.org/10.1126/science.aaz4797.
Rüger, N., M. E. Schorn, S. Kambach, R. L. Chazdon, C. E. Farrior, J. A. Meave, R. Muñoz, et al. 2023. “Successional Shifts in Tree Demographic Strategies in Neotropical Wet and Dry Forests.” Global Ecology and Biogeography 32: 1002–1014. https://doi.org/10.1111/geb.13669.
Rüger, N., C. Wirth, S. J. Wright, and R. Condit. 2012. “Functional Traits Explain Light and Size Response of Growth Rates in Tropical Tree Species.” Ecology 93: 2626–2636. https://doi.org/10.1890/12-0622.1.
Russo, S. E., S. M. McMahon, M. Detto, G. Ledder, S. J. Wright, R. S. Condit, S. J. Davies, et al. 2021. “The Interspecific Growth‐Mortality Trade‐off Is Not a General Framework for Tropical Forest Community Structure.” Nature Ecology & Evolution 5: 174–183. https://doi.org/10.1038/s41559-020-01340-9.
Saenz‐Pedroza, I., R. Feldman, C. Reyes‐García, J. A. Meave, L. M. Calvo‐Irabien, F. May‐Pat, and J. M. Dupuy. 2020. “Seasonal and Successional Dynamics of Size‐Dependent Plant Demographic Rates in a Tropical Dry Forest.” PeerJ 8: e9636. https://doi.org/10.7717/peerj.9636.
Salguero‐Gómez, R., O. R. Jones, E. Jongejans, S. P. Blomberg, D. J. Hodgson, C. Mbeau‐Ache, P. A. Zuidema, H. de Kroon, and Y. M. Buckley. 2016. “Fast‐Slow Continuum and Reproductive Strategies Structure Plant Life‐History Variation Worldwide.” Proceedings of the National Academy of Sciences of the United States of America 113: 230–235. https://doi.org/10.1073/pnas.1506215112.
Sanaphre‐Villanueva, L., J. M. Dupuy, J. L. Andrade, C. Reyes‐García, P. C. Jackson, and H. Paz. 2017. “Patterns of Plant Functional Variation and Specialization along Secondary Succession and Topography in a Tropical Dry Forest.” Environmental Research Letters 12: 55004. https://doi.org/10.1088/1748-9326/aa6baa.
Schnitzer, S. A., and W. P. Carson. 2001. “Treefall Gaps and the Maintenance of Species Diversity in a Tropical Forest.” Ecology 82: 913–919. https://doi.org/10.1890/0012-9658(2001)082[0913:TGATMO]2.0.CO;2.
Schorn, M. E., S. Kambach, R. L. Chazdon, D. Craven, C. Farrior, J. Meave, R. Muñoz, et al. 2024. “Data from: Tree Demographic Strategies Largely Overlap across Succession in Neotropical Wet and Dry Forest Communities.” Dryad, Dataset. https://doi.org/10.5061/dryad.f7m0cfz4h.
Slik, J. W. F., V. Arroyo‐Rodríguez, S.‐I. Aiba, P. Alvarez‐Loayza, L. F. Alves, P. Ashton, P. Balvanera, et al. 2015. “An Estimate of the Number of Tropical Tree Species.” Proceedings of the National Academy of Sciences of the United States of America 112: 7472–7477. https://doi.org/10.1073/pnas.1423147112.
Stearns, S. C. 1992. The Evolution of Life Histories. Oxford: Oxford University Press.
Tilman, D. 1988. Plant Strategies and the Dynamics and Structure of Plant Communities. Princeton: Princeton University Press.
Umaña, M. N., C. Zhang, M. Cao, L. Lin, and N. G. Swenson. 2018. “Quantifying the Role of Intra‐Specific Trait Variation for Allocation and Organ‐Level Traits in Tropical Seedling Communities.” Journal of Vegetation Science 29: 276–284. https://doi.org/10.1111/jvs.12613.
van Breugel, M., J. S. Hall, D. Craven, M. Bailon, A. Hernandez, M. Abbene, and P. van Breugel. 2013. “Succession of Ephemeral Secondary Forests and their Limited Role for the Conservation of Floristic Diversity in a Human‐Modified Tropical Landscape.” PLoS One 8: e82433. https://doi.org/10.1371/journal.pone.0082433.
Vieira, D. L. M., and A. Scariot. 2006. “Principles of Natural Regeneration of Tropical Dry Forests for Restoration.” Restoration Ecology 14: 11–20. https://doi.org/10.1111/j.1526-100X.2006.00100.x.
Walker, L. R., D. A. Wardle, R. D. Bardgett, and B. D. Clarkson. 2010. “The Use of Chronosequences in Studies of Ecological Succession and Soil Development.” Journal of Ecology 98: 725–736. https://doi.org/10.1111/j.1365-2745.2010.01664.x.
Wright, S. J., K. Kitajima, N. J. B. Kraft, P. B. Reich, I. J. Wright, D. E. Bunker, R. Condit, et al. 2010. “Functional Traits and the Growth‐Mortality Trade‐off in Tropical Trees.” Ecology 91: 3664–3674. https://doi.org/10.1890/09-2335.1.
معلومات مُعتمدة: FZT-118 Deutsche Forschungsgemeinschaft; FOMIX YUC-2008-C06-108863 Fondo Mixto CONACYT - Gobierno del Estado de Yucatán; FOSEMARNAT 2004-C01-227 Fondo Mixto CONACYT - Gobierno del Estado de Yucatán; Reinforcing REDD+ and the South-South Cooperation Project; COL10-052 Secretaria Nacional de Ciencia y Tecnología; US NASA Terrestrial Ecology Program; University of Connecticut; Yale-NUS College; Heising-Simons Foundation; SinBiose-REGENERA 442371/2019-5 Conselho Nacional de Desenvolvimento Científico e Tecnológico; ForestGEO; 17418 NEWFOR Fundação de Amparo á Pesquisa do Estado de São Paulo; ALW.OP241 Netherlands Organisation for Scientific Research; ALW.OP457 Netherlands Organisation for Scientific Research; Veni.192.027 Netherlands Organisation for Scientific Research; 34600967 German Centre for Integrative Biodiversity Research; 34600970 German Centre for Integrative Biodiversity Research; Hoch family; Small World Institute Fund; Smithsonian Tropical Research Institute in Panama; 1201347 Fondo Nacional de Desarrollo Científico y Tecnológico; Andrew W. Mellon Foundation; IG16-LR004 Ministry of Education - Singapore; DEB-0424767 US National Science Foundation; DEB-0639393 US National Science Foundation; DEB-1147429 US National Science Foundation; DEB-9208031 US National Science Foundation; HSBC Climate Partnership; CONAFOR; USFS; STRI; Stanley Motta; Universidad Nacional Autónoma de México; DPAGA-PAPIIT IN218416 Universidad Nacional Autónoma de México, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica; DPAGA-PAPIIT IN217620 Universidad Nacional Autónoma de México, Programa de Apoyo a Proyectos de Investigación e Innovación Tecnológica; Center for Tropical Forest Science
فهرسة مساهمة: Keywords: demographic rates; growth; life‐history strategies; mortality; old‐growth forest; recruitment; secondary succession; survival
تواريخ الأحداث: Date Created: 20240519 Date Completed: 20240701 Latest Revision: 20240701
رمز التحديث: 20240701
DOI: 10.1002/ecy.4321
PMID: 38763891
قاعدة البيانات: MEDLINE