دورية أكاديمية

Effect of ultrasound-assisted L-lysine treatment on pork meat quality and myofibrillar protein properties during postmortem aging.

التفاصيل البيبلوغرافية
العنوان: Effect of ultrasound-assisted L-lysine treatment on pork meat quality and myofibrillar protein properties during postmortem aging.
المؤلفون: Xu S; School of Tourism and Cuisine, Yangzhou University, Yangzhou, China., Guo X; School of Tourism and Cuisine, Yangzhou University, Yangzhou, China.; Key Laboratory of Chinese Cuisine intangible Cultural Heritage Technology Inheritance, Ministry of Culture and Tourism, Yangzhou, China., Fu C; School of Tourism and Cuisine, Yangzhou University, Yangzhou, China.; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China., Wang J; School of Tourism and Cuisine, Yangzhou University, Yangzhou, China., Meng X; School of Tourism and Cuisine, Yangzhou University, Yangzhou, China., Hui T; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, China., Peng Z; College of Food Science and Technology, National Center of Meat Quality and Safety Control, Nanjing Agricultural University, Nanjing, China.
المصدر: Journal of food science [J Food Sci] 2024 Jul; Vol. 89 (7), pp. 4162-4177. Date of Electronic Publication: 2024 May 25.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Lysine*/chemistry , Muscle Proteins*/chemistry , Muscle Proteins*/metabolism , Myofibrils*/chemistry , Food Handling*/methods, Animals ; Swine ; Pork Meat/analysis ; Solubility ; Cooking/methods ; Hydrogen-Ion Concentration ; Muscle, Skeletal/chemistry ; Postmortem Changes
مستخلص: This paper aimed to investigate the effects of ultrasound-assisted L-lysine treatment on meat quality and myofibrillar proteins (MPs) properties of pork longissimus dorsi during postmortem aging. The results revealed that the L-lysine (Lys) and/or ultrasound treatment significantly increased (p < 0.05) the water-holding capacity and tenderness of the pork during postmortem aging, while the ultrasound-assisted Lys treatment had the lowest cooking loss, pressurization loss, Warner-Bratzler shear force, and hardness. In addition, L-lysine and/or ultrasound treatment increased (p < 0.05) pH value, T 21 , and myofibrillar fragmentation index, while the ultrasound-assisted Lys treatment had the highest value. Meanwhile, the protein solubility was increased with Lys and/or ultrasound treatment during postmortem aging, and ultrasound-assisted Lys treatment had the highest solubility, reaching 88.19%, 92.98%, and 91.73% at 0, 1, and 3 days, respectively. The result of protein conformational characteristics showed that Lys and/or ultrasound treatment caused the unfolding of the α-helix structure, resulting in the exposure of more hydrophobic amino acids and buried sulfhydryl groups, ultimately enhancing MPs solubility. In summary, ultrasound-assisted Lys treatment altered the structure of MPs, resulting in the enhancement of the water-holding capacity and tenderness of the pork. PRACTICAL APPLICATION: This study showed that ultrasound-assisted L-lysine (Lys) treatment could enhance the water-holding capacity and tenderness of pork during postmortem aging. The results might provide a reference for the application of ultrasound-assisted Lys treatment on the improvement of pork meat quality. To facilitate practical applications in production, the development of medium and large-sized ultrasound equipment for conducting small-scale and pilot experiments is crucial for future research.
(© 2024 Institute of Food Technologists.)
References: Almaráz‐Buendia, I., Hernández‐Escalona, A., González‐Tenorio, R., Santos‐Ordoñez, N., Espino‐García, J. J., Martínez‐Juárez, V., Meza‐Nieto, M. A., & Campos Montiel, R. G. (2019). Producing an emulsified meat system by partially substituting pig fat with nanoemulsions that contain antioxidant compounds: The effect on oxidative stability, nutritional contribution, and texture profile. Foods, 8(9), 357. https://doi.org/10.3390/foods8090357.
Amiri, A., Sharifian, P., & Soltanizadeh, N. (2018). Application of ultrasound treatment for improving the physicochemical, functional and rheological properties of myofibrillar proteins. International Journal of Biological Macromolecules, 111, 139–147. https://doi.org/10.1016/j.ijbiomac.2017.12.167.
Bhat, Z., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2018a). Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 7(3), 196–204. https://doi.org/10.1016/j.fshw.2018.08.002.
Bhat, Z., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2019). Pulsed electric field operates enzymatically by causing early activation of calpains in beef during ageing. Meat Science, 153, 144–151. https://doi.org/10.1016/j.meatsci.2019.03.018.
Bhat, Z., Morton, J. D., Mason, S. L., & Bekhit, A. E. D. A. (2018b). Calpain activity, myofibrillar protein profile, and physicochemical properties of beef semimembranosus and biceps femoris from culled dairy cows during aging. Journal of Food Processing and Preservation, 42(12), e13835. https://doi.org/10.1111/jfpp.13835.
Cai, L., Nian, L., Zhao, G., Zhang, Y., Sha, L., & Li, J. (2019). Effect of herring antifreeze protein combined with chitosan magnetic nanoparticles on quality attributes in red sea bream (Pagrosomus major). Food and Bioprocess Technology, 12, 409–421. https://doi.org/10.1007/s11947‐018‐2220‐4.
Chemat, F., & Khan, M. K. (2011). Applications of ultrasound in food technology: Processing, preservation and extraction. Ultrasonics Sonochemistry, 18(4), 813–835. https://doi.org/10.1016/j.ultsonch.2021.105506.
Chen, L., Chen, J., Ren, J., & Zhao, M. (2011). Effects of ultrasound pretreatment on the enzymatic hydrolysis of soy protein isolates and on the emulsifying properties of hydrolysates. Journal of agricultural and food chemistry, 59(6), 2600–2609. https://doi.org/10.1021/jf103771x.
Chen, L., Li, R., & Zhou, C. (2023). l‐Arginine and l‐lysine can weaken the intermolecular interactions of main myofibrillar proteins: The roles in improving the tenderness of pork Longissimus lumborum muscle. International Journal of Food Science and Technology, 58(6), 3085–3096. https://doi.org/10.1111/ijfs.16435.
Chen, X., Chen, C. G., Zhou, Y. Z., Li, P. J., Ma, F., Nishiumi, T., & Suzuki, A. (2014). Effects of high pressure processing on the thermal gelling properties of chicken breast myosin containing κ‐carrageenan. Food Hydrocolloids, 40, 262–272. https://doi.org/10.1016/j.foodhyd.2014.03.018.
Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., & Lorenzo, J. M. (2019). A comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), 429. https://doi.org/10.3390/antiox8100429.
Dos Santos, B. A., Campagnol, P. C. B., Morgano, M. A., & Pollonio, M. A. R. (2014). Monosodium glutamate, disodium inosinate, disodium guanylate, lysine and taurine improve the sensory quality of fermented cooked sausages with 50% and 75% replacement of NaCl with KCl. Meat Science, 96(1), 509–513. https://doi.org/10.1016/j.meatsci.2013.08.024.
Ertbjerg, P., & Puolanne, E. (2017). Muscle structure, sarcomere length and influences on meat quality: A review. Meat Science, 132, 139–152. https://doi.org/10.1016/j.meatsci.2017.04.261.
Fan, X. K., Gao, X., Li, R., Pan, D. M., & Zhou, C. L. (2024). Myofibrillar proteins’ intermolecular interaction weakening and degradation: Are they mainly responsible for the tenderization of meat containing L‐arginine, L‐lysine, or/and NaCl? Food Chemistry, 441, 138318. https://doi.org/10.1016/j.foodchem.2023.138318.
Fu, Y., Zheng, Y., Lei, Z., Xu, P., & Zhou, C. (2017). Gelling properties of myosin as affected by L‐lysine and L‐arginine by changing the main molecular forces and microstructure. International journal of food properties, 20(sup1), S884–S898. https://doi.org/10.1080/10942912.2017.1315593.
Garcia‐Galicia, I. A., Gonzalez‐Vacame, V. G., Huerta‐Jimenez, M., Carrillo‐Lopez, L. M., Tirado‐Gallegos, J. M., Reyes‐Villagrana, R. A., & Alarcon‐Rojo, A. D. (2020). Ultrasound versus traditional ageing: physicochemical properties in beef longissimus lumborum. CyTA‐Journal of Food, 18(1), 675–682. https://doi.org/10.1080/19476337.2020.1834458.
Gornall, A. G., Bardawill, C. J., & David, M. M. (1949). Determination of serum proteins by means of the biuret reaction. J. biol. Chem, 177(2), 751–766.
Guo, X. Y., Peng, Z. Q., Zhang, Y. W., Liu, B., & Cui, Y. Q. (2015). The solubility and conformational characteristics of porcine myosin as affected by the presence of L‐lysine and L‐histidine. Food Chemistry, 170, 212–217. https://doi.org/10.1016/j.foodchem.2014.08.045.
Guo, X. Y., Wu, J. J., Meng, X. R., Zhang, Y. W., & Peng, Z. Q. (2022). Oxidative characteristics and gel properties of porcine myofibrillar proteins affected by l‐lysine and l‐histidine in a dose‐dependent manner at a low and high salt concentration. International Journal of Food Science & Technology, 57(4), 2556–2567. https://doi.org/10.1111/ijfs.15630.
Guo, X. Y., Xu, S. Y., Meng, X. R., & Peng, Z. Q. (2023). Dose‐dependent effect of hyperoside on the physicochemical and gel properties of porcine myofibrillar proteins at different NaCl concentrations under oxidative stress. Foods, 12(8), 1684. https://doi.org/10.3390/foods12081684.
Jiang, L., Wang, J., Li, Y., Wang, Z., Liang, J., Wang, R., Chen, Y., Ma, W., Qi, B., & Zhang, M. (2014). Effects of ultrasound on the structure and physical properties of black bean protein isolates. Food Research International, 62, 595–601. https://doi.org/10.1016/j.foodres.2014.04.022.
Li, C., Liu, D., Zhou, G., Xu, X., Qi, J., Shi, P., & Xia, T. (2012). Meat quality and cooking attributes of thawed pork with different low field NMR T21. Meat Science, 92(2), 79–83. https://doi.org/10.1016/j.meatsci.2011.11.015.
Li, K., Fu, L., Zhao, Y. Y., Xue, S. W., Wang, P., Xu, X. L., & Bai, Y. H. (2020). Use of high‐intensity ultrasound to improve emulsifying properties of chicken myofibrillar protein and enhance the rheological properties and stability of the emulsion. Food Hydrocolloids, 98, 105275. https://doi.org/10.1016/j.foodhyd.2019.105275.
Li, K., Kang, Z. L., Zou, Y. F., Xu, X. L., & Zhou, G. H. (2015). Effect of ultrasound treatment on functional properties of reduced‐salt chicken breast meat batter. Journal of Food Science and Technology, 52, 2622–2633. https://doi.org/10.1007/s13197‐014‐1356‐0.
Liu, H., Wang, Z., Badar, I. H., Liu, Q., Chen, Q., & Kong, B. (2022). Combination of high‐intensity ultrasound and hydrogen peroxide treatment suppresses thermal aggregation behaviour of myofibrillar protein in water. Food Chemistry, 367, 130756. https://doi.org/10.1016/j.foodchem.2021.130756.
Liu, R., Warner, R. D., Zhou, G., & Zhang, W. (2018). Contribution of nitric oxide and protein S‐nitrosylation to variation in fresh meat quality. Meat Science, 144, 135–148. https://doi.org/10.1016/j.meatsci.2018.04.027.
Liu, R., Yang, L., Yang, T., Qin, M., Li, K., Bao, W., Wu, M., Yu, H., Wu, S., & Ge, Q. (2022). Effect of nitric oxide treatment on pork meat quality, microstructure, and total bacterial count during postmortem aging. Meat Science, 190, 108806. https://doi.org/10.1016/j.meatsci.2022.108806.
Locker, R. (1960). Degree of muscular contraction as a factor in tenderness of beef. Journal of Food Science, 25(2), 304–307. https://doi.org/10.1111/j.1365‐2621.1960.tb00335.x.
Luo, Y., Bi, Y., Du, R., Yuan, H., Hou, Y., & Luo, R. (2023). The impact of freezing methods on the quality, moisture distribution, microstructure, and flavor profile of hand‐grabbed mutton during long‐term frozen storage. Food Research International, 173, 113346. https://doi.org/10.1016/j.foodres.2023.113346.
Ngapo, T., & Vachon, L. (2017). The impact of homogeniser speed, dispersing aggregate size and centrifugation on particle size analyses of pork as a measure of myofibrillar fragmentation. Meat Science, 133, 166–172. https://doi.org/10.1016/j.meatsci.2017.07.002.
Novaković, S., & Tomašević, I. (2017). A comparison between Warner‐Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. IOP Conference Series: Earth and Environmental Science, 85, 012063. https://doi.org/10.1088/1755‐1315/85/1/012063.
Pan, Q., Yang, G. H., Wang, Y., Wang, X. X., Zhou, Y., Li, P. J., & Chen, C. G. (2020). Application of ultrasound‐assisted and tumbling dry‐curing techniques for reduced‐sodium bacon. Journal of Food Processing and Preservation, 44(8), e14607. https://doi.org/10.1111/jfpp.14607.
Poudyal, R. L., Maekawa, R., Redo, M. A., Khanal, R., Suzuki, T., & Watanabe, M. (2023). Effect of supercooled freezing on the quality of pork tenderloin meat under different thawing conditions. Food Control, 144, 109331. https://doi.org/10.1016/j.foodcont.2022.109331.
Shen, Q. W., Means, W. J., Thompson, S. A., Underwood, K. R., Zhu, M. J., McCormick, R. J., Ford, S. P., & Du, M. (2006). Pre‐slaughter transport, AMP‐activated protein kinase, glycolysis, and quality of pork loin. Meat Science, 74(2), 388–395. https://doi.org/10.1016/j.meatsci.2006.04.007.
Shi, H., Khan, I. A., Zhang, R., Zou, Y., Xu, W., & Wang, D. (2022). Evaluation of ultrasound‐assisted L‐histidine marination on beef M. semitendinosus: Insight into meat quality and actomyosin properties. Ultrasonics Sonochemistry, 85, 105987. https://doi.org/10.1016/j.ultsonch.2022.105987.
Shi, H., Zhang, X., Chen, X., Fang, R., Zou, Y., Wang, D., & Xu, W. (2020). How ultrasound combined with potassium alginate marination tenderizes old chicken breast meat: Possible mechanisms from tissue to protein. Food Chemistry, 328, 127144. https://doi.org/10.1016/j.foodchem.2020.127144.
Straadt, I. K., Rasmussen, M., Andersen, H. J., & Bertram, H. C. (2007). Aging‐induced changes in microstructure and water distribution in fresh and cooked pork in relation to water‐holding capacity and cooking loss–A combined confocal laser scanning microscopy (CLSM) and low‐field nuclear magnetic resonance relaxation study. Meat Science, 75(4), 687–695. https://doi.org/10.1016/j.meatsci.2006.09.019.
Suman, S. P., & Joseph, P. (2013). Myoglobin chemistry and meat color. Annual Review of Food Science and Technology, 4, 79–99. https://doi.org/10.1146/annurev‐food‐030212‐182623.
Sun, X., Huang, J., Li, T., Ang, Y., Xu, X., & Huang, M. (2019). Effects of preslaughter shackling on postmortem glycolysis, meat quality, changes of water distribution, and protein structures of broiler breast meat. Poultry Science, 98(9), 4212–4220. https://doi.org/10.3382/ps/pez175.
Tian, R., Feng, J., Huang, G., Tian, B., Zhang, Y., Jiang, L., & Sui, X. (2020). Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics Sonochemistry, 68, 105202. https://doi.org/10.1016/j.ultsonch.2020.105202.
Tong, B., Zhang, L., Hou, Y., Oenema, O., Long, W., Velthof, G., Ma, W., & Zhang, F. (2023). Lower pork consumption and technological change in feed production can reduce the pork supply chain environmental footprint in China. Nature Food, 4(1), 74–83. https://doi.org/10.1038/s43016‐022‐00640‐6.
Wang, D., Deng, S., Zhang, M., Geng, Z., Sun, C., Bian, H., Xu, W., Zhu, Y., Liu, F., & Wu, H. (2016). The effect of adenosine 5′‐monophosphate (AMP) on tenderness, microstructure and chemical–physical index of duck breast meat. Journal of the Science of Food and Agriculture, 96(5), 1467–1473. https://doi.org/10.1002/jsfa.7243.
Wang, H., Gao, Z., Guo, X., Gao, S., Wu, D., Liu, Z., Wu, P., Xu, Z., Zou, X., & Meng, X. (2022). Changes in textural quality and water retention of spiced beef under ultrasound‐assisted sous‐vide cooking and its possible mechanisms. Foods, 11(15), 2251. https://doi.org/10.3390/foods11152251.
Warner, R. D. (2023). The eating quality of meat: IV—Water holding capacity and juiciness. In Lawrie's meat science (pp. 457–508). Woodhead Publishing. https://doi.org/10.1016/B978‐0‐323‐85408‐5.00008‐X.
Wu, D., Wang, H., Guo, X., Zhang, Z., Gao, Z., Gao, S., Liu, Z., Rao, S., & Meng, X. (2023). Insight into the mechanism of enhancing myofibrillar protein gel hardness by ultrasonic treatment combined with insoluble dietary fiber from oat. LWT, 178, 114539. https://doi.org/10.1016/j.lwt.2023.114539.
Wu, W., Wan, O. W., & Chung, K. K. (2015). S‐nitrosylation of XIAP at Cys 213 of BIR2 domain impairs XIAP's anti‐caspase 3 activity and anti‐apoptotic function. Apoptosis, 20, 491–499. https://doi.org/10.1007/s10495‐015‐1087‐3.
Xing, T., Xu, Y., Qi, J., Xu, X., & Zhao, X. (2021). Effect of high intensity ultrasound on the gelation properties of wooden breast meat with different NaCl contents. Food Chemistry, 347, 129031. https://doi.org/10.1016/j.foodchem.2021.129031.
Xiao, Y., Fu, S., Jiao, Y., Zhang, R., & Liu, Y. (2022). Study on the changes of goat meat quality and the expression of 17 quality‐related genes within 48 h of postmortem aging. Food Research International, 158, 111506. https://doi.org/10.1016/j.foodres.2022.111506.
Yan, X. L., Liu, R., Zhang, C. Y., Ren, X. P., Zhang, W. G., & Zhou, G. H. (2018). The postmortem µ‐calpain activity, protein degradation and tenderness of sheep meat from Duolang and Hu breeds. International Journal of Food Science and Technology, 53, 904–912. https://doi.org/10.1111/ijfs.13661.
Zhang, M., Li, F., Diao, X., Kong, B., & Xia, X. (2017). Moisture migration, microstructure damage and protein structure changes in porcine longissimus muscle as influenced by multiple freeze‐thaw cycles. Meat Science, 133, 10–18. https://doi.org/10.1016/j.meatsci.2017.05.019.
Zhang, R., Xing, L., Kang, D., Zhou, L., Wang, L., & Zhang, W. (2021). Effects of ultrasound‐assisted vacuum tumbling on the oxidation and physicochemical properties of pork myofibrillar proteins. Ultrasonics Sonochemistry, 74, 105582. https://doi.org/10.1016/j.ultsonch.2021.105582.
Zhang, Y., Li, X., Zhang, D., Bai, Y., & Wang, X. (2021). Effects of acetylation on dissociation and phosphorylation of actomyosin in postmortem ovine muscle during incubation at 4°C in vitro. Food Chemistry, 356(15), 129696. https://doi.org/10.1016/j.foodchem.2021.129696.
Zhang, Y. W., Wu, J. J., Jamali, M. A., Guo, X. Y., & Peng, Z. Q. (2017). Heat‐induced gel properties of porcine myosin in a sodium chloride solution containing L‐lysine and L‐histidine. LWT‐Food Science and Technology, 85, 16–21. https://doi.org/10.1016/j.lwt.2017.06.059.
Zhang, Y., Zhang, D., Huang, Y., Chen, L., Bao, P., Fang, H., & Zhou, C. (2020). L‐arginine and L‐lysine degrade troponin‐T, and L‐arginine dissociates actomyosin: Their roles in improving the tenderness of chicken breast. Food Chemistry, 318, 126516. https://doi.org/10.1016/j.foodchem.2020.126516.
Zheng, Y., Xu, P., Li, S., Zhu, X., Chen, C., & Zhou, C. (2017). Effects of L‐lysine/L‐arginine on the physicochemical properties and quality of sodium‐reduced and phosphate‐free pork sausage. International Journal of Nutrition and Food Sciences, 6(1), 12–18.
Zhou, Y., Hu, M., & Wang, L. (2022). Effects of different curing methods on edible quality and myofibrillar protein characteristics of pork. Food Chemistry, 387, 132872. https://doi.org/10.1016/j.foodchem.2022.132872.
Zhu, X., Ning, C., Li, S., Xu, P., Zheng, Y., & Zhou, C. (2018). Effects of l‐lysine/l‐arginine on the emulsion stability, textural, rheological and microstructural characteristics of chicken sausages. International Journal of Food Science & Technology, 53(1), 88–96. https://doi.org/10.1111/ijfs.13561.
Zou, Y., Jiang, D., Xu, P., Huang, Y., Fang, R., Wang, D., & Xu, W. (2020). Evaluation of the postmortem ageing process of beef M. semitendinosus based on ultrasound‐assisted L‐histidine treatment. Ultrasonics Sonochemistry, 69, 105265. https://doi.org/10.1016/j.ultsonch.2020.105265.
معلومات مُعتمدة: PRKX2023Z01 Program of Cuisine Science Key Laboratory of Sichuan Province; KYCX23_3525 Postgraduate Research & Practice Innovation Program of Jiangsu Province
فهرسة مساهمة: Keywords: L‐lysine; meat quality; postmortem aging; protein properties; ultrasound
المشرفين على المادة: K3Z4F929H6 (Lysine)
0 (Muscle Proteins)
تواريخ الأحداث: Date Created: 20240525 Date Completed: 20240703 Latest Revision: 20240703
رمز التحديث: 20240703
DOI: 10.1111/1750-3841.17131
PMID: 38795377
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.17131