دورية أكاديمية

Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes.

التفاصيل البيبلوغرافية
العنوان: Missense mutation of ISL1 (E283D) is associated with the development of type 2 diabetes.
المؤلفون: Zhang J; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.; School of Medicine, Huanghuai University, Henan, China., Zhang R; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Liu C; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Ge X; Department of Endocrinology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China., Wang Y; Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA., Jiang F; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Zhuang L; Department of Endocrinology, the First Affiliated Hospital of Bengbu Medical College, Bengbu, China., Li T; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Zhu Q; Department of Endocrinology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China., Jiang Y; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Chen Y; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China., Lu M; Department of Endocrinology & Metabolism, Putuo Hospital Attached to Shanghai University of Traditional Chinese Medicine, Shanghai, China., Wang Y; School of Population Health and Environmental Science, King's College London, London, UK., Jiang M; Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA., Liu Y; Department of Pediatrics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China. dryanjunliu@hotmail.com., Liu L; Shanghai Diabetes Institute, Department of Endocrinology & Metabolism, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China. lmliu@sjtu.edu.cn.
المصدر: Diabetologia [Diabetologia] 2024 Aug; Vol. 67 (8), pp. 1698-1713. Date of Electronic Publication: 2024 May 31.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Verlag Country of Publication: Germany NLM ID: 0006777 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0428 (Electronic) Linking ISSN: 0012186X NLM ISO Abbreviation: Diabetologia Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin Springer Verlag
مواضيع طبية MeSH: Diabetes Mellitus, Type 2*/genetics , Diabetes Mellitus, Type 2*/metabolism , LIM-Homeodomain Proteins*/genetics , LIM-Homeodomain Proteins*/metabolism , Transcription Factors*/genetics , Transcription Factors*/metabolism , Mutation, Missense*, Animals ; Mice ; Humans ; Male ; Insulin/metabolism ; Female ; Rats ; Insulin Secretion/genetics ; Islets of Langerhans/metabolism
مستخلص: Aims/hypothesis: Mutations in Isl1, encoding the insulin enhancer-binding protein islet-1 (ISL1), may contribute to attenuated insulin secretion in type 2 diabetes mellitus. We made an Isl1 E283D mouse model to investigate the disease-causing mechanism of diabetes mellitus.
Methods: The ISL1 E283D mutation (c. 849A>T) was identified by whole exome sequencing on an early-onset type 2 diabetes family and then the Isl1 E283D knockin (KI) mouse model was created and an IPGTT and IPITT were conducted. Glucose-stimulated insulin secretion (GSIS), expression of Ins2 and other ISL1 target genes and interacting proteins were evaluated in isolated pancreas islets. Transcriptional activity of Isl1 E283D was evaluated by cell-based luciferase reporter assay and electrophoretic mobility shift assay, and the expression levels of Ins2 driven by Isl1 wild-type (Isl1 WT ) and Isl1 E283D mutation in rat INS-1 cells were determined by RT-PCR and western blotting.
Results: Impaired GSIS and elevated glucose level were observed in Isl1 E283D KI mice while expression of Ins2 and other ISL1 target genes Mafa, Pdx1, Slc2a2 and the interacting protein NeuroD1 were downregulated in isolated islets. Transcriptional activity of the Isl1 E283D mutation for Ins2 was reduced by 59.3%, and resulted in a marked downregulation of Ins2 expression when it was overexpressed in INS-1 cells, while overexpression of Isl1 WT led to an upregulation of Ins2 expression.
Conclusions/interpretation: Isl1 E283D mutation reduces insulin expression and secretion by regulating insulin and other target genes, as well as its interacting proteins such as NeuroD1, leading to the development of glucose intolerance in the KI mice, which recapitulated the human diabetic phenotype. This study identified and highlighted the Isl1 E283D mutation as a novel causative factor for type 2 diabetes, and suggested that targeting transcription factor ISL1 could offer an innovative avenue for the precise treatment of human type 2 diabetes.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Wilmot E, Idris I (2014) Early onset type 2 diabetes: risk factors, clinical impact and management. Ther Adv Chronic Dis 5(6):234–244. https://doi.org/10.1177/2040622314548679. (PMID: 10.1177/2040622314548679253644914205573)
Yang W, Lu J, Weng J et al (2010) Prevalence of diabetes among men and women in China. N Engl J Med 362(12):1090–1101. https://doi.org/10.1056/NEJMoa0908292. (PMID: 10.1056/NEJMoa090829220335585)
Wang L, Peng W, Zhao Z et al (2021) Prevalence and treatment of diabetes in China, 2013–2018. JAMA 326(24):2498–2506. https://doi.org/10.1001/jama.2021.22208. (PMID: 10.1001/jama.2021.22208349625268715349)
Zhuang L, Zhao Y, Zhao W et al (2015) The E23K and A190A variations of the KCNJ11 gene are associated with early-onset type 2 diabetes and blood pressure in the Chinese population. Mol Cell Biochem 404(1–2):133–141. https://doi.org/10.1007/s11010-015-2373-7. (PMID: 10.1007/s11010-015-2373-725725792)
Yoshinaga H, Kosaka K (1999) Heterogeneous relationship of early insulin response and fasting insulin level with development of non-insulin-dependent diabetes mellitus in non-diabetic Japanese subjects with or without obesity. Diabetes Res Clin Pract 44(2):129–136. https://doi.org/10.1016/s0168-8227(99)00019-4. (PMID: 10.1016/s0168-8227(99)00019-410414932)
Servitja JM, Ferrer J (2004) Transcriptional networks controlling pancreatic development and beta cell function. Diabetologia 47(4):597–613. https://doi.org/10.1007/s00125-004-1368-9. (PMID: 10.1007/s00125-004-1368-915298336)
Yamagata K, Nammo T, Moriwaki M et al (2002) Overexpression of dominant-negative mutant hepatocyte nuclear fctor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 51(1):114–123. https://doi.org/10.2337/diabetes.51.1.114. (PMID: 10.2337/diabetes.51.1.11411756330)
De Franco E, Flanagan SE, Houghton JA et al (2015) The effect of early, comprehensive genomic testing on clinical care in neonatal diabetes: an international cohort study. Lancet 386(9997):957–963. https://doi.org/10.1016/S0140-6736(15)60098-8. (PMID: 10.1016/S0140-6736(15)60098-8262314574772451)
Riddle MC, Philipson LH, Rich SS et al (2020) Monogenic diabetes: from genetic insights to population-based precision in care. Reflections from a diabetes care editors’ expert forum. Diabetes Care 43(12):3117–3128. https://doi.org/10.2337/dci20-0065. (PMID: 10.2337/dci20-0065335609998162450)
McCarthy MI, Hattersley AT (2008) Learning from molecular genetics: novel insights arising from the definition of genes for monogenic and type 2 diabetes. Diabetes 57(11):2889–2898. https://doi.org/10.2337/db08-0343. (PMID: 10.2337/db08-0343189714362570381)
Karlsson O, Thor S, Norberg T, Ohlsson H, Edlund T (1990) Insulin gene enhancer binding protein Isl-1 is a member of a novel class of proteins containing both a homeo- and a Cys-His domain. Nature 344(6269):879–882. https://doi.org/10.1038/344879a0. (PMID: 10.1038/344879a01691825)
Ahlgren U, Pfaff SL, Jessell TM, Edlund T, Edlund H (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385(6613):257–260. https://doi.org/10.1038/385257a0. (PMID: 10.1038/385257a09000074)
Tanizawa Y, Riggs AC, Dagogo-Jack S et al (1994) Isolation of the human LIM/homeodomain gene islet-1 and identification of a simple sequence repeat polymorphism [corrected]. Diabetes 43(7):935–941. https://doi.org/10.2337/diab.43.7.935. (PMID: 10.2337/diab.43.7.9357912209)
Bhati M, Lee C, Nancarrow AL et al (2008) Implementing the LIM code: the structural basis for cell type-specific assembly of LIM-homeodomain complexes. EMBO J 27(14):2018–2029. https://doi.org/10.1038/emboj.2008.123. (PMID: 10.1038/emboj.2008.123185839622486278)
Du A, Hunter CS, Murray J et al (2009) Islet-1 is required for the maturation, proliferation, and survival of the endocrine pancreas. Diabetes 58(9):2059–2069. https://doi.org/10.2337/db08-0987. (PMID: 10.2337/db08-0987195024152731519)
Ediger BN, Du A, Liu J et al (2014) Islet-1 Is essential for pancreatic beta-cell function. Diabetes 63(12):4206–4217. https://doi.org/10.2337/db14-0096. (PMID: 10.2337/db14-0096250285254237994)
Wang M, Drucker DJ (1995) The LIM domain homeobox gene isl-1 is a positive regulator of islet cell-specific proglucagon gene transcription. J Biol Chem 270(21):12646–12652. https://doi.org/10.1074/jbc.270.21.12646. (PMID: 10.1074/jbc.270.21.126467759514)
Wang M, Drucker DJ (1996) Activation of amylin gene transcription by LIM domain homeobox gene isl-1. Mol Endocrinol 10(3):243–251. https://doi.org/10.1210/mend.10.3.8833653. (PMID: 10.1210/mend.10.3.88336538833653)
Zhang H, Wang WP, Guo T et al (2009) The LIM-homeodomain protein ISL1 activates insulin gene promoter directly through synergy with BETA2. J Mol Biol 392(3):566–577. https://doi.org/10.1016/j.jmb.2009.07.036. (PMID: 10.1016/j.jmb.2009.07.03619619559)
Eeckhoute J, Briche I, Kurowska M, Formstecher P, Laine B (2006) Hepatocyte nuclear factor 4 alpha ligand binding and F domains mediate interaction and transcriptional synergy with the pancreatic islet LIM HD transcription factor Isl1. J Mol Biol 364(4):567–581. https://doi.org/10.1016/j.jmb.2006.07.096. (PMID: 10.1016/j.jmb.2006.07.09617022998)
Riggs AC, Tanizawa Y, Aoki M et al (1995) Characterization of the LIM/homeodomain gene islet-1 and single nucleotide screening in NIDDM. Diabetes 44(6):689–694. https://doi.org/10.2337/diab.44.6.689. (PMID: 10.2337/diab.44.6.6897789634)
Yokoi N, Kanamori M, Horikawa Y et al (2006) Association studies of variants in the genes involved in pancreatic beta-cell function in type 2 diabetes in Japanese subjects. Diabetes 55(8):2379–2386. https://doi.org/10.2337/db05-1203. (PMID: 10.2337/db05-120316873704)
Shimomura H, Sanke T, Hanabusa T, Tsunoda K, Furuta H, Nanjo K (2000) Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with a strong family history. Diabetes 49(9):1597–1600. https://doi.org/10.2337/diabetes.49.9.1597. (PMID: 10.2337/diabetes.49.9.159710969846)
Gao R, Liu Y, Gjesing AP et al (2014) Evaluation of a target region capture sequencing platform using monogenic diabetes as a study-model. BMC Genet 15:13. https://doi.org/10.1186/1471-2156-15-13. (PMID: 10.1186/1471-2156-15-13244760403943834)
Liu L, Nagashima K, Yasuda T et al (2013) Mutations in KCNJ11 are associated with the development of autosomal dominant, early-onset type 2 diabetes. Diabetologia 56(12):2609–2618. https://doi.org/10.1007/s00125-013-3031-9. (PMID: 10.1007/s00125-013-3031-9240189885333983)
Liu L, Liu Y, Ge X et al (2018) Insights into pathogenesis of five novel GCK mutations identified in Chinese MODY patients. Metabolism 89:8–17. https://doi.org/10.1016/j.metabol.2018.09.004. (PMID: 10.1016/j.metabol.2018.09.00430257192)
American Diabetes Association (2017) 2. Classification and diagnosis of diabetes. Diabetes Care 40(Suppl 1):S11–S24. https://doi.org/10.2337/dc17-S005. (PMID: 10.2337/dc17-S005)
Liu P, Jenkins NA, Copeland NG (2003) A highly efficient recombineering-based method for generating conditional knockout mutations. Genome Res 13(3):476–484. https://doi.org/10.1101/gr.749203. (PMID: 10.1101/gr.74920312618378430283)
Gupta RK, Vatamaniuk MZ, Lee CS et al (2005) The MODY1 gene HNF-4alpha regulates selected genes involved in insulin secretion. J Clin Invest 115(4):1006–1015. https://doi.org/10.1172/JCI22365. (PMID: 10.1172/JCI22365157614951059446)
Zhang D, Zhao Y, Wang S, Wang X, Sun Y (2023) A prognostic model of angiogenesis and neutrophil extracellular traps related genes manipulating tumor microenvironment in colon cancer. J Cancer 14(11):2109–2127. https://doi.org/10.7150/jca.85778. (PMID: 10.7150/jca.857783749741010367930)
Chen W, Lin R, Xiao K, Yuan K, Chen Z, Huang Y (2023) Effects of different spectrum of LEDs on retinal degeneration through regulating endoplasmic reticulum stress. Transl Vis Sci Technol 12(6):16. https://doi.org/10.1167/tvst.12.6.16. (PMID: 10.1167/tvst.12.6.163773805610297799)
Chan JC, Cheung CK, Swaminathan R, Nicholls MG, Cockram CS (1993) Obesity, albuminuria and hypertension among Hong Kong Chinese with non-insulin-dependent diabetes mellitus (NIDDM). Postgrad Med J 69(809):204–210. https://doi.org/10.1136/pgmj.69.809.204. (PMID: 10.1136/pgmj.69.809.20484974352399753)
Ko GT, Chan JC, Yeung VT et al (1998) Antibodies to glutamic acid decarboxylase in young Chinese diabetic patients. Ann Clin Biochem 35(Pt 6):761–767. https://doi.org/10.1177/000456329803500609. (PMID: 10.1177/0004563298035006099838990)
Aguilar-Salinas CA, Reyes-Rodriguez E, Ordonez-Sanchez ML et al (2001) Early-onset type 2 diabetes: metabolic and genetic characterization in the Mexican population. J Clin Endocrinol Metab 86(1):220–226. https://doi.org/10.1210/jcem.86.1.7134. (PMID: 10.1210/jcem.86.1.713411232004)
Bohuslavova R, Fabriciova V, Lebron-Mora L et al (2023) ISL1 controls pancreatic alpha cell fate and beta cell maturation. Cell Biosci 13(1):53. https://doi.org/10.1186/s13578-023-01003-9. (PMID: 10.1186/s13578-023-01003-9368994429999528)
Gao T, McKenna B, Li C et al (2014) Pdx1 maintains beta cell identity and function by repressing an alpha cell program. Cell Metab 19(2):259–271. https://doi.org/10.1016/j.cmet.2013.12.002. (PMID: 10.1016/j.cmet.2013.12.002245068673950964)
Thorens B, Weir GC, Leahy JL, Lodish HF, Bonner-Weir S (1990) Reduced expression of the liver/beta-cell glucose transporter isoform in glucose-insensitive pancreatic beta cells of diabetic rats. Proc Natl Acad Sci U S A 87(17):6492–6496. https://doi.org/10.1073/pnas.87.17.6492. (PMID: 10.1073/pnas.87.17.6492220405654562)
Orci L, Unger RH, Ravazzola M et al (1990) Reduced beta-cell glucose transporter in new onset diabetic BB rats. J Clin Invest 86(5):1615–1622. https://doi.org/10.1172/JCI114883. (PMID: 10.1172/JCI1148832243134296911)
Waeber G, Thompson N, Nicod P, Bonny C (1996) Transcriptional activation of the GLUT2 gene by the IPF-1/STF-1/IDX-1 homeobox factor. Mol Endocrinol 10(11):1327–1334. https://doi.org/10.1210/mend.10.11.8923459. (PMID: 10.1210/mend.10.11.89234598923459)
Low BSJ, Lim CS, Ding SSL et al (2021) Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant beta cells. Nat Commun 12(1):3133. https://doi.org/10.1038/s41467-021-22843-4. (PMID: 10.1038/s41467-021-22843-4340352388149827)
Parrizas M, Maestro MA, Boj SF et al (2001) Hepatic nuclear factor 1-alpha directs nucleosomal hyperacetylation to its tissue-specific transcriptional targets. Mol Cell Biol 21(9):3234–3243. https://doi.org/10.1128/MCB.21.9.3234-3243.2001. (PMID: 10.1128/MCB.21.9.3234-3243.20011128762686965)
Weinstein SP, O’Boyle E, Fisher M, Haber RS (1994) Regulation of GLUT2 glucose transporter expression in liver by thyroid hormone: evidence for hormonal regulation of the hepatic glucose transport system. Endocrinology 135(2):649–654. https://doi.org/10.1210/endo.135.2.8033812. (PMID: 10.1210/endo.135.2.80338128033812)
Okamoto Y, Tanaka S, Haga Y (2002) Enhanced GLUT2 gene expression in an oleic acid-induced in vitro fatty liver model. Hepatol Res 23(2):138–144. https://doi.org/10.1016/s1386-6346(01)00172-3. (PMID: 10.1016/s1386-6346(01)00172-312048068)
Ahn YH (2018) A journey to understand glucose homeostasis: starting from rat glucose transporter type 2 promoter cloning to hyperglycemia. Diabetes Metab J 42(6):465–471. https://doi.org/10.4093/dmj.2018.0116. (PMID: 10.4093/dmj.2018.0116303980406300444)
Bansal P, Wang Q (2008) Insulin as a physiological modulator of glucagon secretion. Am J Physiol Endocrinol Metab 295(4):E751-761. https://doi.org/10.1152/ajpendo.90295.2008. (PMID: 10.1152/ajpendo.90295.200818647881)
Yang X, Chen Q, Sun L et al (2017) KLF10 transcription factor regulates hepatic glucose metabolism in mice. Diabetologia 60(12):2443–2452. https://doi.org/10.1007/s00125-017-4412-2. (PMID: 10.1007/s00125-017-4412-228836014)
Zhang Y, Fang X, Wei J et al (2022) PDX-1: a promising therapeutic target to reverse diabetes. Biomolecules 12(12):1785. https://doi.org/10.3390/biom12121785. (PMID: 10.3390/biom12121785365512139775243)
Liu J, Walp ER, May CL (2012) Elevation of transcription factor Islet-1 levels in vivo increases beta-cell function but not beta-cell mass. Islets 4(3):199–206. https://doi.org/10.4161/isl.19982. (PMID: 10.4161/isl.19982225958863442817)
Seidah NG, Barale JC, Marcinkiewicz M, Mattei MG, Day R, Chretien M (1994) The mouse homeoprotein mLIM-3 is expressed early in cells derived from the neuroepithelium and persists in adult pituitary. DNA Cell Biol 13(12):1163–1180. https://doi.org/10.1089/dna.1994.13.1163. (PMID: 10.1089/dna.1994.13.11637811383)
Brinkmeier ML, Bando H, Camarano AC et al (2020) Rathke’s cleft-like cysts arise from Isl1 deletion in murine pituitary progenitors. J Clin Invest 130(8):4501–4515. https://doi.org/10.1172/JCI136745. (PMID: 10.1172/JCI136745324537147410063)
معلومات مُعتمدة: 81270876 National Natural Science Foundation of China; 81471012 National Natural Science Foundation of China; 81770791 National Natural Science Foundation of China; 81970686 National Natural Science Foundation of China; 82070823 National Natural Science Foundation of China; YG2019ZDA08 Interdisciplinary Program of Shanghai Jiao Tong University
فهرسة مساهمة: Keywords: Isl1 E283D mutation; ISL1; Insulin secretion; KI mouse model; Mechanism; Type 2 diabetes mellitus
المشرفين على المادة: 0 (LIM-Homeodomain Proteins)
0 (insulin gene enhancer binding protein Isl-1)
0 (Transcription Factors)
0 (Insulin)
تواريخ الأحداث: Date Created: 20240531 Date Completed: 20240823 Latest Revision: 20240823
رمز التحديث: 20240823
DOI: 10.1007/s00125-024-06186-5
PMID: 38819467
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-0428
DOI:10.1007/s00125-024-06186-5