دورية أكاديمية

Synthesis of Asymmetric Ionic Hybrid Detergents enables Micelles with Scalable Properties including Cell Compatibility.

التفاصيل البيبلوغرافية
العنوان: Synthesis of Asymmetric Ionic Hybrid Detergents enables Micelles with Scalable Properties including Cell Compatibility.
المؤلفون: Wycisk V; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Behnke JS; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Nielinger L; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Seewald M; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Weisner J; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Binsch M; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Wagner MC; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund., Raisch T; Max Planck Institute of Molecular Physiology, Department of Structural Biochemistry, Otto-Hahn-Str. 11, 44227, Dortmund., Urner LH; TU Dortmund University, Department of Chemistry and Chemical Biology, Otto-Hahn-Str. 6, 44227, Dortmund.
المصدر: Chemistry (Weinheim an der Bergstrasse, Germany) [Chemistry] 2024 Aug 12; Vol. 30 (45), pp. e202401833. Date of Electronic Publication: 2024 Jul 15.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9513783 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-3765 (Electronic) Linking ISSN: 09476539 NLM ISO Abbreviation: Chemistry Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH
مواضيع طبية MeSH: Micelles* , Detergents*/chemistry, Humans ; Ions/chemistry ; Solubility
مستخلص: Ionic detergents enable applications and cause harm in biospheres due to cell toxicity. The utility of covalent combinations between ionic and non-ionic detergent headgroups in modulating cell toxicity remains speculative due to the yet rarely explored synthesis. We close this gap and establish the modular synthesis of ionic/non-ionic hybrid detergents. We restructure a combinatorial methallyl dichloride one-pot coupling into a two-step coupling, which reduces by-products, improves product yields, and enables the gram-scale preparation of asymmetric, cationic/non-ionic and anionic/non-ionic hybrid detergents. Our modular synthesis delivers new modalities for the design of ionic detergents, including an unprecedented scaling of properties that determine applications, such as charge, critical micelle concentration, solubilizing properties, hard water tolerance, and cell compatibility. We uncover that shielding the charge in ionic headgroups can switch the detergent species that is toxic to cells from monomers to mixtures of monomers and micellar assemblies. Establishing the chemistry of ionic/non-ionic hybrid detergents provides a missing evolutionary link in the structural comparison of ionic and non-ionic detergents, enables an easy synthesis access to yet unexplored chemical spaces of asymmetric hybrid materials, and delivers new modalities for designing the toxicity of supramolecular nanomaterials.
(© 2024 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.)
References: .
A. C. Kogawa, B. G. Cernic, L. G. Domingos do Couto, H. R. N. Salgado, Saudi Pharm. J. 2017, 25, 934–938;.
H. J. Lee, H. S. Lee, T. Youn, B. Byrne, P. S. Chae, Chem 2022, 8, 980–1013;.
S. Mohapatra, L. Yutao, S. G. Goh, C. Ng, Y. Luhua, N. H. Tran, K. Y.-H. Gin, J. Hazard. Mater. 2023, 445, 130393;.
J. M. Boyce, Antimicrob. Resist. Infect. Control 2023, 12, 32;.
J. R. G. Asio, J. S. Garcia, C. Antonatos, J. B. Sevilla-Nastor, L. C. Trinidad, Emerging Contaminants 2023, 9, 100205;.
V. Wycisk, M.-C. Wagner, L. H. Urner, ChemPlusChem 2023, e202300386;.
V. S. Nagtode, C. Cardoza, H. K. A. Yasin, S. N. Mali, S. M. Tambe, P. Roy, K. Singh, A. Goel, P. D. Amin, B. R. Thorat, J. N. Cruz, A. P. Pratap, ACS Omega 2023, 13, 11674–11699.
K. C. Cheng, Z. S. Khoo, N. W. Lo, W. J. Tan, N. G. Chemmangattuvalappil, Heliyon 2020, 6, e03861.
L. H. Urner, A. Ariamajd, A. Weikum, Chem. Sci. 2022, 13, 10299–10307.
M. Seewald, L. Nielinger, K. Alker, J.-S. Behnke, V. Wycisk, L. H. Urner, Angew. Chem. Int. Ed. 2024, https://doi.org/10.1002/ange.202403833.
 .
F. Malek, E. Ranjbari, M. Mirmohammadkhani, D. Pahlevan, J. Occup. Med. Toxicol. 2022, 17, 6;.
G. F. Nieman, C. E. Bredenberg, J. Appl. Physiol. 1985, 129–136;.
K. Saito, K. Orimo, T. Kubo, M. Tamari, A. Yamada, K. Motomura, H. Sugiyama, R. Matsuoka, N. Nagano, Y. Hayashi, K. Arae, M. Hara, M. Ikutani, T. Fukuie, K. Sudo, A. Matsuda, Y. Ohya, S. Fujieda, H. Saito, S. Nakae, K. Matsumoto, A. C. Akdis, H. Morita, Allergy 2023, 78, 1878–1892;.
I. Ogulur, Y. Pat, T. Aydin, D. Yazici, B. Rückert, Y. Peng, J. Kim, U. Radzikowska, P. Westermann, M. Sokolowska, R. Dhir, M. Akdis, K. Nadeau, C. A. Akdis, J. Allergy Clin. Immunol. 2023, 151, 469–484;.
K. R. Harrison, A. D. Kappell, P. J. McNamara, Environ. Pollut. 2020, 257, 113472;.
R. Lucassen, N. van Leuven, D. Bockmühl, Microorganisms 2024, 12, 712.
Â. S. Inácio, K. A. Mesquita, M. Baptista, J. Ramalho-Santos, W. L. C. Vaz, O. V. Vieira, PLoS One 2011, 6, e19850.
F. G. Jarvis, M. J. HJohnson, J. Am. Chem. Soc. 1949, 71, 4124–4126.
K.-A. Nguyen, M. Peuchmaur, S. Magnard, R. Haudecoeur, C. Boyère, S. Mounien, I. Benammar, V. Zampieri, S. Igonet, V. Chaptal, A. Jawhari, A. Boumendjel, P. Falson, Angew. Chem. Int. Ed. 2018, 57, 2948–2952.
G. Viscardi, P. Quagliotto, C. Barolo, P. Savarino, E. Barni, E. Fisicaro, J. Org. Chem. 2000, 65, 8197–8203.
P. Quagliotto, G. Viscardi, C. Barolo, D. D'Angelo, E. Barni, C. Compari, E. Duce, E. Fisicaro, J. Org. Chem. 2005, 70, 9857–9866.
M. Wyszogrodzka, R. Haag, Chem. Eur. J. 2008, 14, 9202–9214.
L. H. Urner, K. Goltsche, M. Selent, I. Liko, M.-P. Schweder, C. V. Robinson, K. Pagel, R. Haag, Chem. Eur. J. 2021, 27, 2537–2542.
 .
D. R. Boyd, M. A. Mckervey, Q. Rev. Chem. Soc. 1968, 22, 95–122;.
M. Ghosh, V. S. Shinde, M. Rueping, Beilstein J. Org. Chem. 2019, 15, 2710–2746;.
D. J. Ramón, M. Yus, Angew. Chem. Int. Ed. 2005, 44, 1602–1634;.
X. Zhang, F. Wang, C.-H. Tan, JACS Au 2023, 3, 700–714.
 .
J.-F. Lutz, H. Schlaad, Polymer 2008, 49;.
V. Percec, P. Leowanawat, H.-J. Sun, O. Kulikov, C. D. Nusbaum, T. M. Tran, A. Bertin, D. A. Wilson, M. Peterca, S. Zhang, N. P. Kamat, K. Vargo, D. Moock, E. D. Johnston, D. A. Hammer, D. J. Pochan, Y. Chen, Y. M. Chabre, T. C. Shiao, M. Bergeron-Brlek, S. André, R. Roy, H.-J. Gabius, P. A. Heiney, J. Am. Chem. Soc. 2013, 135, 9055–9077;.
L. H. Urner, I. Liko, H.-Y. Yen, K. K. Hoi, J. R. Bolla, J. Gault, F. G. Almeida, M.-P. Schweder, D. Shutin, S. Ehrmann, R. Haag, C. V. Robinson, K. Pagel, Nat. Commun. 2020, 11, 564.
B. N. S. Thota, L. H. Urner, R. Haag, Chem. Rev. 2015, 116, 2079–2102.
T. W. Baughman, J. C. Sworen, K. B. Wagener, Tetrahedron 2004, 60, 10943–10948.
L. H. Urner, B. Schade, M. Schulze, K. Folmert, R. Haag, K. Pagel, ChemPhysChem 2019, 20, 1690–1697.
V. Wycisk, K. Achazi, P. Hillmann, O. Hirsch, C. Kuehne, J. Dernedde, R. Haag, K. Licha, ACS Omega 2016, 1, 808–817.
 .
J. N. Israelachvili, D. J. Mitchell, B. W. Ninham, J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568;.
Y. Lu, E. Zhang, J. Yang, Z. Cao, Nano Res. 2018, 11, 4985–4998;.
H. S. Wang, W. Ran, W. Zhang, W. Dai, H. Wang, C. F. Anderson, Z. Wang, C. Zheng, P. Zhang, Y. Li, H. Cui, PNAS 2020, 117, 4518–4526;.
J.-S. Behnke, L. H. Urner, Anal. Bioanal. Chem. 2023, 415, 3897–3909.
 .
K. A. Sharp, Curr. Opin. Struct. Biol. 1994, 4, 234–239;.
B. H. Honig, W. L. Hubbell, R. F. Flewelling, Ann. Rev. Biophys. Chem. 1986, 15, 163–193;.
M. Ballauff, RSC Adv. 2022, 12, 10105–10113;.
D. Lauster, K. Osterrieder, R. Haag, M. Ballauff, A. Herrmann, Front. Microbiol. 2023, 14, 1169547.
A. S. Rafique, S. Khodaparast, A. S. Poulos, W. N. Sharratt, E. S. J. Robles, J. T. Cabral, Soft Matter 2020, 16, 7835–7844.
 .
M. Pisárčik, F. Devínsky, M. Pupák, Open Chemistry 2015, 13, 922–931;.
A. Jusufi, A.-P. Hynninen, M. Haataja, A. Z. Panagiotopoulos, J. Phys. Chem. B. 2009, 113, 6314–6320.
W. Luo, M. Yang, Y. Zhao, H. Wang, X. Yang, W. Zhang, F. Thao, S. Zhao, H. Tao, Chem. Eur. J. 2022, 28, e202202242.
F. Legrand, C. Breyton, P. Guillet, C. Ebel, G. Durand, J. Org. Chem. 2016, 81, 681–688.
A. E. Speers, C. C. Wu, Chem. Rev. 2007, 107, 3687–3714.
 .
G. G. Prive', Methods 2007, 41, 388–397;.
N. T. Johansen, F. G. Tidemand, M. C. Pedersen, L. Arleth, Biochimie 2023, 205, 3–26;.
L. H. Urner, Curr. Opin. Chem. Biol. 2022, 69, 102157.
 .
D. Abooali, R. Soleimani, Sci. Rep. 2023, 13, 13361;.
A. Khalfallah, S. Mazzouzi, J. Surfactants Deterg. 2020, 24, 193–198.
J. M. Corkill, J. F. Goodman, J. R. Tate, Trans. Faraday Soc. 1964, 60, 986–995.
M. E. Hobbs, J. Phys. Chem. 1951, 55, 675–683.
A. R. Tehrani-Bagha, K. Holmberg, Materials 2013, 6, 580–608.
I. N. Kurniasih, H. Liang, P. C. Mohr, G. Khot, J. P. Rabe, A. Mohr, Langmuir 2015, 31, 2639–2648.
A. Ray, S. Das, N. Chattopadhyay, ACS Omega 2019, 4, 15–24.
W. Teo, A. V. Caprariello, M. L. Morgan, A. Luchicchi, G. J. Schenk, J. T. Joseph, J. J. G. Geurts, P. K. Stys, PNAS 2021, 118, e2016897118.
 .
I. E. Borissevitch, C. P. F. Borges, G. P. Borissevitch, V. E. Yushmanov, S. R. W. Louro, M. Tabak, Z. Naturforsch. 1996, 51c, 578–590;.
A. Banerjee, D. Mukherjee, A. Bera, R. Ghosh, S. Mondal, S. Mukhopadhyay, R. Das, H. M. Altass, S. S. A. Natto, Z. Moussa, S. A. Ahmed, A. Chattopadhyay, S. K. Pal, Sci. Rep. 2022, 12, 18881;.
Z. Vinarov, V. Katev, D. Radeva, S. Tcholakova, N. D. Denkov, Drug Dev. Ind. Pharm. 2017, 44, 677–686.
B. N. S. Thota, H. v. Berlepsch, C. Böttcher, R. Haag, Chem. Commun. 2015, 51, 8648–8651.
P. A. Bhat, A. A. Dar, G. M. Rather, J. Chem. Eng. Data 2008, 53, 1271–1277.
C. G. Wermuth, in The Practice of Medicinal Chemistry (Second Edition) (Ed.: C. G. Wermuth), Academic Press, London, 2003, pp. xiii-xiv.
D. Bajpai, V. K. Tyagi, J. Oleo Sci. 2007, 56, 327–340.
T. Odahara, K. Odahara, Heliyon 2018, 4, E01073.
 .
K. Gotoh, K. Horibe, Y. Mei, T. Tsujisaka, J. Oleo Sci. 2016, 65, 123–133;.
C. H. Rodriguez, L. H. Lowery, J. F. Scamehorn, J. H. Harwell, J. Surfactants Deterg. 2001, 4, 1–14;.
G. Dass, M. S. Revathy, P. Manorama, A. Kumar, Ramesh, J. Environ. Nanotechnol. 2019, 8, 23–25.
T. Lam, Y. Liu, F. Iuchi, Y. Huang, K. Du, Y. Dai, J. Wu, L. Lim, J. Goo, Y. Ishida, J. Liu, J. Xu, iMeta 2023, 2, e110.
 .
A. Ramata-Stunda, M. Boroduskis, V. Vorobjeva, J. Ancans, EEB 2013, 11, 159–177;.
N. A. Falk, J. Surfactants Deterg. 2019, 22, 1119–1127.
 .
M. A. Liebert, J. Am. Coll. Toxicol. 1983, 2, 127–181;.
Y. Takagi, M. Shimizu, Y. Morokuma, M. Miyaki, A. Kiba, K. Matsuo, K. Isoda, H. Mizutani, Int. J. Cosmet. Sci. 2014, 36, 305–311.
E. Soupene, W. C. van Heeswijk, J. Plumbridge, V. Stewart, D. Bertenthal, H. J. Lee, G. Prasad, O. Paliy, P. Charernnoppakul, S. Kusti, J. Bacteriol. 2003, 185, 5611–5626.
I. Wiegand, K. Hilpert, R. E. W. Hancock, Nat. Protoc. 2008, 3, 163–175.
 .
S. Halder, K. K. Kumar, R. Sarkar, S. Mukherjee, P. Saha, S. Haldar, S. Karmakar, T. Sen, SpingerPlus 2015, 4, 672;.
S. Eisenberg, E. Haimov, G. F. W. Walpole, J. Plumb, M. M. Kozlov, S. Grinstein, Mol. Biol. Cell. 2021, 32, 211–310.
 .
U. Kragh-Hansen, M. le Maire, J.-P. Noel, T. Gulik-Krzywicki, J. V. Moller, Biochemistry 1993, 32, 1648–1656;.
S. Vaidyanathan, B. G. Orr, M. M. B. Holl, J. Phys. Chem. B. 2014, 118, 2112–2123.
F. Costamagna, H. Hillaireau, J. Vergnaud, D. Clarisse, L. Jamgotchian, O. Loreau, S. Denis, E. Gravel, E. Doris, E. Fattal, Nanoscale 2020, 12, 2452–2463.
L. H. Urner, F. Fiorentino, D. Shutin, J. B. Sauer, M. T. Agasid, T. J. El-Baba, J. R. Bolla, P. J. Stansfeld, C. V. Robinson, J. Am. Chem. Soc. 2024, https://doi.org/10.1021/jacs.1023c14358.
S. A. V. Morris, R. T. Thompson, R. W. Glenn, K. P. Ananthapadmanabhan, G. B. Kasting, Int. J. Cosmet. Sci. 2019, 41, 55–56.
V. P. Arkhipov, R. V. Arkhipov, E. V. Petrova, A. Filippov, Magn. Reson. Chem. 2023, 61, 345–355.
S. G. Oh, D. O. Shah, Langmuir 1991, 7, 1316–1318.
A. Ali, S. Uzair, N. A. Malik, M. Ali, J. Mol. Liq. 2014, 196, 395–403.
S. Q. Zheng, E. Palovcak, J.-P. Armache, K. A. Verba, Y. Cheng, D. A. Agard, Nat. Methods 2017, 14, 331–332.
J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J.-Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, A. Cardona, Nat. Methods 2012, 9, 676–682.
C. H. Rodriguez, L. H. Lowery, J. F. Scamehorn, J. H. Harwell, J. Surfactants Deterg. 2001, 4, 1–14.
معلومات مُعتمدة: NRW-Rückkehrerprogramm Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen; CANcerTARgeting, NW21-062C Ministerium für Kultur und Wissenschaft des Landes Nordrhein-Westfalen; Material cost allowance Fonds der Chemischen Industrie
فهرسة مساهمة: Keywords: cell toxicity; detergent; micelle; modular chemistry; supramolecular chemistry
المشرفين على المادة: 0 (Micelles)
0 (Detergents)
0 (Ions)
تواريخ الأحداث: Date Created: 20240531 Date Completed: 20240813 Latest Revision: 20240813
رمز التحديث: 20240813
DOI: 10.1002/chem.202401833
PMID: 38819585
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-3765
DOI:10.1002/chem.202401833