دورية أكاديمية

A systematic review on products derived from nematophagous fungi in the biological control of parasitic helminths of animals.

التفاصيل البيبلوغرافية
العنوان: A systematic review on products derived from nematophagous fungi in the biological control of parasitic helminths of animals.
المؤلفون: Rodrigues JA; Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Sate of Paraíba, Patos, Brazil., Feitosa TF; Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, State of Paraíba, Sousa, Brazil., Vilela VLR; Post-Graduate Program in Science and Animal Health, Federal University of Campina Grande - UFCG, Sate of Paraíba, Patos, Brazil. vinicius.vilela@ifpb.edu.br.; Department of Veterinary Medicine, Federal Institute of Paraíba - IFPB, State of Paraíba, Sousa, Brazil. vinicius.vilela@ifpb.edu.br.
المصدر: World journal of microbiology & biotechnology [World J Microbiol Biotechnol] 2024 Jun 01; Vol. 40 (7), pp. 224. Date of Electronic Publication: 2024 Jun 01.
نوع المنشور: Journal Article; Systematic Review
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9012472 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-0972 (Electronic) Linking ISSN: 09593993 NLM ISO Abbreviation: World J Microbiol Biotechnol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : Berlin : Springer
Original Publication: Oxford, OX, UK : Published by Rapid Communications of Oxford Ltd in association with UNESCO and in collaboration with the International Union of Microbiological Societies, c1990-
مواضيع طبية MeSH: Helminths*, Animals ; Biological Control Agents/metabolism ; Brazil ; Duddingtonia/metabolism ; Fungi/metabolism ; Metal Nanoparticles/chemistry ; Pest Control, Biological/methods ; Serine Proteases/metabolism ; Silver/metabolism
مستخلص: Nematophagous fungi have been widely evaluated in the biological control of parasitic helminths in animals, both through their direct use and the use of their derived products. Fungal bioproducts can include extracellular enzymes, silver nanoparticles (AgNPs), as well as secondary metabolites. The aim of this study was to conduct a systematic review covering the evaluation of products derived from nematophagous fungi in the biological control of parasitic helminths in animals. In total, 33 studies met the inclusion criteria and were included in this review. The majority of the studies were conducted in Brazil (72.7%, 24/33), and bioproducts derived from the fungus Duddingtonia flagrans were the most commonly evaluated (36.3%, 12/33). The studies involved the production of extracellular enzymes (48.4%, 16/33), followed by crude enzymatic extract (27.2%, 9/33), secondary metabolites (15.1%, 5/33) and biosynthesis of AgNPs (9.1%, 3/33). The most researched extracellular enzymes were serine proteases (37.5%, 6/16), with efficacies ranging from 23.9 to 85%; proteases (31.2%, 5/16), with efficacies from 41.4 to 95.4%; proteases + chitinases (18.7%, 3/16), with efficacies from 20.5 to 43.4%; and chitinases (12.5%, 2/16), with efficacies ranging from 12 to 100%. In conclusion, extracellular enzymes are the most investigated derivatives of nematophagous fungi, with proteases being promising strategies in the biological control of animal helminths. Further studies under in vivo and field conditions are needed to explore the applicability of these bioproducts as tools for biological control.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Acevedo-Ramírez PMC, Figueroa‐Castillo JA, Ulloa‐Arvizú R, Martínez-García LG, Guevara-Flores A, Rendón JL, Valero-Coss RO, Mendoza-de-Gives P, Quiroz-Romero H (2015) Proteolytic activity of extracellular products from Arthrobotrys musiformis and their effect in vitro against Haemonchus contortus infective larvae. Vet Rec Open 2(e000103). https://doi.org/10.1136/vetreco-2014-000103.
Alghuthaymi MA, Almoammar H, Rai M, Said-Galiev E, Abd-Elsalam KA (2015) Myconanoparticles: synthesis and their role in phytopathogens management. Biotechnol Biotechnol Equip 29:221–236. https://doi.org/10.1080/13102818.2015.1008194. (PMID: 10.1080/13102818.2015.1008194260196364433920)
Araújo JV, Braga FR, Mendoza-de-Gives P, Paz-Silva A, Ribeiro Braga FR (2021) Recent advances in the control of helminths of domestic animals by helminthophagous fungi. Parasitol 1:168–176. https://doi.org/10.3390/parasitologia1030018. (PMID: 10.3390/parasitologia1030018)
Araújo JM, Braga FR, Vilela VLR, Soares FEF, Ferraz CM, Bindaco ALS (2022) Evaluation of the acute oral toxicity of the fungus Duddingtonia flagrans at the gut level. Biocontrol Sci Technol 32:1275–1284. https://doi.org/10.1080/09583157.2022.2104809. (PMID: 10.1080/09583157.2022.2104809)
Barbosa ACMS, Silva LPC, Ferraz CM, Tobias FL, Araújo JV, Loureiro B, Braga GMAM, Veloso FBR, Soares FEF, Fronta M, Braga FR (2019) Nematicidal activity of silver nanoparticles from the fungus Duddingtonia flagrans. Int J Nanomed 2:2341–2348. https://doi.org/10.2147/IJN.S193679. (PMID: 10.2147/IJN.S193679)
Braga FR, Araújo JV (2014) Nematophagous fungi for biological control of gastrointestinal nematodes in domestic animals. Appl Microbiol Biotechnol 98:71–82. https://doi.org.10.1007/s00253-0135366-z.
Braga FR, Araújo JV, Carvalho RO, Silva AR, Araújo JM, Soares FEF, Geniêr HLA, Ferreira SR, Queiroz JH (2010) Ovicidal action of a crude enzymatic extract of the fungus Pochonia chlamydosporia against cyathostomin eggs. Vet Parasitol 172:264–268. https://doi.org/10.1016/j.vetpar.2010.05.011. (PMID: 10.1016/j.vetpar.2010.05.01120627419)
Braga FR, Araújo JM, Tavela AO, Araújo JV, Soares FEF, Geniêr HLA, Lima WS, Mozzer LR, Queiroz JH (2011a) Larvicidal activity of a crude enzyme extract of the fungus Duddingtonia flagrans on first-stage larvae of Angiostrongylus Vasorum. Rev Soc Bras Med Trop 44:383–385. https://doi.org/10.1590/s0037-86822011000300024. (PMID: 10.1590/s0037-8682201100030002421779678)
Braga FR, Araújo JV, Soares FEF, Araújo JM, Ferreira SR, Frassy LN, Queiroz JH (2011b) Production and partial characterization of Duddingtonia flagrans (AC001) crude extract and its in vitro larvicidal action against trichostrongylid infective larvae. Biocontrol Sci Tech 21:1313–1120. https://doi.org/10.1080/09583157.2011.619258. (PMID: 10.1080/09583157.2011.619258)
Braga FR, Araújo JV, Soares FEF, Araújo JM, Genier HLA, Silva AR, Carvalho RO, Queiroz JH, Ferreira SR (2011c) Optimizing protease production from an isolate of the nematophagous fungus Duddingtonia flagrans using response surface methodology and its larvicidal activity on horse cyathostomins. J Helminthol 85:164–170. https://doi.org/10.1017/S0022149X10000416. (PMID: 10.1017/S0022149X1000041620682085)
Braga FR, Araujo JM, Silva AR, Araújo JV, Carvalho RO, Soares FEF, Queiroz JH, Gênier HLA (2011d) Ação Ovicida do extrato bruto enzimático do fungo Pochonia chlamydosporia sobre ovos de ancylostoma sp. Rev Soc Bras Med Trop 44:116–118. https://doi.org/10.1590/S0037-86822011000100027. (PMID: 10.1590/S0037-8682201100010002721340423)
Braga FR, Araújo JV, Soares FEF, Geniêr HLA, Queiroz JH (2012a) An extracellular serine protease of an isolate of Duddingtonia flagrans nematophagous fungus. Biocontrol Sci Tech 22:1131–1142. https://doi.org/10.1080/09583157.2012.713912. (PMID: 10.1080/09583157.2012.713912)
Braga FR, Araújo JV, Soares FEF, Tavela AO, Araújo JM, Carvalho RO, Fernandes FM, Queiroz JH (2012b) Enzymatic analysis and in vitro ovicidal effect of Pochonia chlamydosporia and Paecilomyces lilacinus on Oxyuris equi eggs of horses. Biocontrol Sci Tech 22:685–696. https://doi.org/10.1080/09583157.2012.677807.
Braga FR, Araújo JV, Soares FEF, Araújo JM, Ferreira SR, Tavela AO, Silveira WF, Queiroz JH (2013) Proteolytic action of the crude extract of Duddingtonia flagrans on cyathostomins (Nematoda: Cyathostominae) in coprocultures. Rev Bras Parasitol Vet 22:143–146. https://doi.org/10.1590/S1984-29612013000100026. (PMID: 10.1590/S1984-2961201300010002624252960)
Braga FR, Soares FEF, Araújo JM, Fonseca LA, Hiura E, Gava MG, Vieira FT, Paz JS, Carvalho LM, Faccini JV, Queiroz JH, Araújo JV (2014) Statistical experimental design to assess the influence of enzymes of nematophagous fungi versus helminths. Res Vet Sci 97:527–532. https://doi.org/10.1016/j.rvsc.2014.09.005. (PMID: 10.1016/j.rvsc.2014.09.00525267285)
Braga FR, Soares FEF, Giuberti TZ, Lopes ADCG, Lacerda T, Ayupe TH, Queiroz PV, Gouveia AS, Pinheiro L, Araújo AL, Queiroz JH, Araújo JV (2015) Nematocidal activity of extracellular enzymes produced by the nematophagous fungus Duddingtonia flagrans on cyathostomin infective larvae. Vet Parasitol 212:214–218. https://doi.org/10.1016/j.vetpar.2015.08.018. (PMID: 10.1016/j.vetpar.2015.08.01826319197)
Braga FR, Ferraz CM, Silva EM, Araújo JV (2020) Efficiency of the Bioverm ® (Duddingtonia flagrans) fungal formulation to control in vivo and in vitro of Haemonchus contortus and Strongyloides papillosus in sheep. 3 Biotech 10:62. https://doi.org/10.1007/s13205-019-2042-8.
Burke JM, Miller JE (2020) Sustainable approaches to parasite control in ruminant livestock. Vet Clin Food Anim 36:89–107. https://doi.org/10.1016/j.cvfa.2019.11.007. (PMID: 10.1016/j.cvfa.2019.11.007)
Castro LS, Martins IVS, Alves VMT, Vieira FPR, Tavares GP, Araújo JV (2020) Effect of the enzymatic fungal extract of Pochonia chlamydosporia on the viability of Fasciola hepatica eggs. J Adv Vet Res 10:135–140.
Cruz DG, Costa LM, Rocha LO, Retamal CA, Vieira RAM, Seabra SH, Silva CP, Matta RA, Santos CP (2015) Serine proteases activity is important for the interaction of nematophagous fungus Duddingtonia flagrans with infective larvae of trichostrongylides and free-living nematodes Panagrellus spp. Fungal Biol 119:672–678. https://doi.org/10.1016/j.funbio.2015.03.005. (PMID: 10.1016/j.funbio.2015.03.00526228558)
Degenkolb T, Vilcinskas A (2016) Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi. Appl Microbiol Biotechnol 100:3813–3824. https://doi.org/10.1007/s00253-015-7234-5. (PMID: 10.1007/s00253-015-7234-5267280164824808)
Esteves BP, Belkis P, Atkins SD, Magan N, Kerry B (2009) Production of extracellular enzymes by different isolates of Pochonia Chlamydosporia. Mycol Res 113:867–876. https://doi.org/10.1016/j.mycres.2009.04.005. (PMID: 10.1016/j.mycres.2009.04.00519422912)
Fausto GC, Fausto MC, Vieira IS, Freitas SG, Carvalho LM, Oliveira IC, Silva PT, Campos AK, Araújo JV (2021) Formulation of the nematophagous fungus Duddingtonia flagrans in the control of equine gastrointestinal parasitic nematodes. Vet Parasitol 295:109458. https://doi.org/10.1016/j.vetpar.2021.109458. (PMID: 10.1016/j.vetpar.2021.10945834029852)
Fernández S, Zegbi S, Sagues F, Iglesias L, Guerrero I, Saumell C (2023) Trapping Behaviour of Duddingtonia flagrans against gastrointestinal nematodes of cattle under year-round grazing conditions. Pathogens 12:401. https://doi.org/10.3390/pathogens12030401. (PMID: 10.3390/pathogens120304013698632210055868)
Ferraz CM, Silva LPC, Soares FEF, Souza RLO, Tobias FL, Araújo JV, Veloso FBR, Laviola FP, Endringer DC, Mendoza-de-Gives P, Braga FR (2020) Effect of silver nanoparticles (AgNP’s) from Duddingtonia flagrans on cyathostomins larvae (subfamily: cyathostominae). J Invertebr Pathol 174:107395. https://doi.org/10.1016/j.jip.2020.107395. (PMID: 10.1016/j.jip.2020.10739532433916)
Ferraz CM, Oliveira MLC, Assis JPB, Silva LPC, Tobias FL, Lima TF, Soares FEF, Vilela VLR, Araújo JV, Braga FR (2022) In vitro evaluation of the nematicidal effect of Duddingtonia flagrans silver nanoparticles against strongylid larvae (L 3 ). Biocontrol Sci Technol 32:905–909. https://doi.org/10.1080/09583157.2021.2013772. (PMID: 10.1080/09583157.2021.2013772)
Ferreira GF, Freitas TM, Gonçalves CL, Mendes JF, Vieira JN, Villareal JP, Nascente PF (2016) Antiparasitic drugs: in vitro tests against nematophagous fungi. Braz J Biol 76:990–993. https://doi.org/10.1590/1519-6984.05615. (PMID: 10.1590/1519-6984.0561527224732)
Ferreira SR, Machado ART, Furtado LF, Gomes JHS, Almeida RM, Mendes TO, Maciel VN, Barbosa FS, Carvalho LM, Bueno LL, Bartolomeu DC, Araújo JV, Rabelo EML, Pádua RM, Pimenta LPS, Fujiwara RT (2020) Ketamine can be produced by Pochonia chlamydosporia: an old molecule and a new anthelmintic? Parasit Vectors 13:27. https://doi.org/10.1186/s13071-020-04402-w. (PMID: 10.1186/s13071-020-04402-w)
Genier HLA, Queiroz JH, Braga FR, Soares FEF, Araújo JV, Pinheiro IR (2016) Nematicidal activity of Paecilomyces marquandii proteases on infective larvae of Ancylostoma spp. Braz Arch Biol Technol 59:e16160218. https://doi.org/10.1590/1678-4324-2016160218. (PMID: 10.1590/1678-4324-2016160218)
Gong S, Meng Q, Qiao J, Huang Y, Zhong W, Zhang G, Zhang K, Li N, Shang Y, Li Z, Cai X (2022) Biological characteristics of recombinant arthrobotrys oligospora chitinase AO-801. Korean J Parasitol 60:345–352. https://doi.org/10.3347/kjp.2022.60.5.345. (PMID: 10.3347/kjp.2022.60.5.345363201119633153)
Grabley S, Hammann P, Thiericke R, Wink J, Philips S, Zeeck A (1993) Secondary metabolites by chemical screening. Clonostachydiol, a novel anthelmintic macrodiolide from the fungus Clonostachys Cylindrospora (strain FH-A 6607). J Antibiot 46:343–345. https://doi.org/10.7164/antibiotics.46.343. (PMID: 10.7164/antibiotics.46.343)
Hofstätter BDM, Fonseca AOS, Maia Filho FS, Silveira JS, Persici BM, Pötter L, Silveira A, Antoniolli ZI, Pereira DIB (2017) Effect of Paecilomyces Lilacinus, Trichoderma Harzianum and Trichoderma virens fungal extracts on the hatchability of Ancylostoma eggs. Rev Iberoam Micol 34:28–31. https://doi.org/10.1016/j.riam.2016.04.004.
Huang X, Zhao N, Zhang K (2004) Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Res Microbiol 155:811–816. https://doi.org/10.1016/j.resmic.2004.07.003. (PMID: 10.1016/j.resmic.2004.07.00315567274)
Jiang X, Xiang M, Liu X (2017) Nematode-trapping Fungi. https://doi.org/10.1128/microbiolspec.funk-0022-2016 . Microbiol Spectr 5.
Joo HS, Chang CS (2005) Production of protease from a new alkalophilic Bacillus sp. I-312 grown on soybean meal: optimization and some properties. Process Biochem 40:1263–1270. https://doi.org/10.1016/j.procbio.2004.05.010. (PMID: 10.1016/j.procbio.2004.05.010)
Junwei W, Qingling M, Jun Q, Weisheng W, Shuangqing C, Jianxun L, Chunguang Z, Fu CC (2013) The recombinant serine protease XAoz1 of Arthrobotrys oligospora exhibits potent nematicidal activity against Caenorhabditis elegans and Haemonchus contortus. FEMS Microbiol Lett 344:53–59. https://doi.org/10.1111/1574-6968.12154.
Li S, Wang D, Gong J, Zhang Y (2022) Individual and combined application of Nematophagous Fungi as Biological control agents against gastrointestinal nematodes in domestic animals. Pathogens 11:172. https://doi.org/10.3390/pathogens11020172. (PMID: 10.3390/pathogens11020172352151178879429)
Madakka M, Jayaraju N, Rajesh N (2018) Mycosynthesis of silver nanoparticles and their characterization. MethodsX 5:20–29. https://doi.org/10.1016/j.mex.2017.12.003. (PMID: 10.1016/j.mex.2017.12.003306197206314273)
Mendes LQ, Ferraz CM, Ribeiro NRC, Ulfeldt KB, Ribeiro JCC, Merizio MF, Rossi GAM, Aguiar AARM, Araújo JV, Soares FEF, Vilela VLR, Braga FR (2023) Efficacy of Duddingtonia flagrans (Bioverm®) on the biological control of buffalo gastrointestinal nematodes. Exp Parasitol 253:108592. https://doi.org/10.1016/j.exppara.2023.108592. (PMID: 10.1016/j.exppara.2023.10859237549824)
Mendoza-de-Gives P, Braga FR, Araújo JV (2022) Nematophagous fungi, an extraordinary tool for controlling ruminant parasitic nematodes and other biotechnological applications. Biocontrol Sci Technol 32:777–793. https://doi.org/10.1080/09583157.2022.2028725. (PMID: 10.1080/09583157.2022.2028725)
Nunes GT, Corrêa DC, Chitolina MB, Rosa G, Pereira RCF, Cargnelutti JF, Vogel FSF (2013) Efficacy evaluation of a commercial formulation with Duddingtonia flagrans in equine gastrointestinal nematodes. J Equine Vet Sci 131:104930. https://doi.org/10.1016/j.jevs.2023.104930. (PMID: 10.1016/j.jevs.2023.104930)
Oliveira LSSCB, Dias FGS, Melo ALT, Carvalho LM, Silva EN, Araújo JV (2021) Bioverm® in the control of nematodes in beef cattle raised in the Central West Region of Brazil. Pathogens 10:548. https://doi.org/10.3390/pathogens10050548. (PMID: 10.3390/pathogens10050548340627988147340)
Ōmura S, Miyadera H, Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Harder A, Kölbl H, Namikoshi M, Miyoshi H, Sakamoto K, Kita K (2001) An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria. Proc Acad Natl Sci USA 98:60–62. https://doi.org/10.1073/pnas.98.1.60. (PMID: 10.1073/pnas.98.1.60)
Ovais M, Khalil AT, Islam NU, Ahmad I, Ayaz M, Saravanan M, Shinwari ZK, Mukherjee S (2018) Role of plant phytochemicals and microbial enzymes in biosynthesis of metallic nanoparticles. Appl Microbiol Biotechnol 102:6799–6814. https://doi.org/10.1007/s00253-018-9146-7. (PMID: 10.1007/s00253-018-9146-729882162)
Page MJ, Mckenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Moher D (2021) Updating guidance for reporting systematic reviews: development of the PRISMA 2020 statement. J Clin Epidemiol 134:103–112. https://doi.org/10.1016/j.jclinepi.2021.02.003. (PMID: 10.1016/j.jclinepi.2021.02.00333577987)
Plackett RL, Burman JP (1946) The design of optimum multifactorial experiments. Biometrika 33:305–325. https://doi.org/10.1093/biomet/33.4.305. (PMID: 10.1093/biomet/33.4.305)
Poloczek E, Webster J (1994) Conidial traps in Nematoctonus (nematophagous Basidiomycetes). Nova Hedwig 59:201–205.
Ribeiro GB, Moura IA, Silva AR, Araújo JV, Monteiro CMO, Fonseca JS, Oliveira APD, Perinotto WMS (2023) Efficiency of experimental formulation containing Duddingtonia flagrans and Pochonia chlamydosporia against Moniezia expansa eggs. Pathogens 12:1028. https://doi.org/10.3390/pathogens12081028. (PMID: 10.3390/pathogens120810283762398810459153)
Rodrigues JA, Roque FL, Alvares FBV, Silva ALP, Lima EF, Silva Filho GM, Feitosa TF, Araújo JV, Braga FR, Vilela VLR (2021) Efficacy of a commercial fungal formulation containing Duddingtonia flagrans (Bioverm®) for controlling bovine gastrointestinal nematodes. Rev Bras Parasitol Vet 30:1–10. https://doi.org/10.1590/S1984-29612021025. (PMID: 10.1590/S1984-29612021025)
Rodrigues JA, Roque FL, Lima BA, Silva Filho GM, Oliveira CSM, Sousa LC, Silva ALP, Lima EF, Feitosa TF, Braga FR, Araújo JV, Vilela VLR (2022) Control of sheep gastrointestinal nematodes on pasture in the tropical semiarid region of Brazil, using Bioverm® (Duddingtonia flagrans). Trop Anim Health Prod 54:179–182. https://doi.org/10.1007/s11250-022-03181-z. (PMID: 10.1007/s11250-022-03181-z35511381)
Roque FL, Silva Filho GM, Oliveira CSM, Rodrigues JA, Feitosa TF, Braga FR, Araújo JV, Vilela VLR (2023) Evaluation of the fungus Duddingtonia flagrans (Bioverm®) on Ascaris suum eggs and infective larvae of Oesophagostomum spp. and Hyostrongylus rubidus from swine. Semina: Ciênc Agrár 44:1587–1596. https://doi.org/10.5433/1679-0359.2023v44n4p1587.
Ryder LS, Talbot NJ (2015) Regulation of appressorium development in pathogenic fungi. Curr Opin Plant Biol 26:8–13. https://doi.org/10.1016/j.pbi.2015.05.013. (PMID: 10.1016/j.pbi.2015.05.013260434364781897)
Shiomi K, Ui H, Suzuki H, Hatano H, Nagamitsu T, Takano D, Miyadera H, Yamashita T, Kita K, Miyoshi H, Harder A, Tomoda H, Ōmura S (2005) A γ-lactone form nafuredin, nafuredin-γ, also inhibits helminth complex I. J Antibiot 58:50–55. https://doi.org/10.1038/ja.2005.5. (PMID: 10.1038/ja.2005.5)
Silva LPC, OliveirA JP, Keijok WJ, Silva AR, Aguiar AR, Guimarães MCC, Ferraz CM, Araújo JV, Tobias FL, Braga FR (2017) Extracellular biosynthesis of silver nanoparticles using the cell-free filtrate of nematophagous fungus Duddingtonia flagrans. Int J Nanomed 12:6373–6381. https://doi.org/10.2147/IJN.S137703. (PMID: 10.2147/IJN.S137703)
Silva WI, Feitosa TF, Vilela VLR (2023) A systematic review and meta-analysis on the global status of Platynosomum sp. (Trematoda – Dicrocoelidae) infecting domestic cats (Felis catus). Vet Parasitol 322:110031. https://doi.org/10.1016/j.vetpar.2023.110031. (PMID: 10.1016/j.vetpar.2023.11003137742530)
Soares FEF, Braga FR, Araújo JV, Lima WS, Mozzer LR, Queiroz JH (2012) In vitro activity of a serine protease from Monacrosporium thaumasium fungus against first-stage larvae of Angiostrongylus Vasorum. Parasitol Res 110:2423–2427. https://doi.org/10.1007/s00436-011-2781-x. (PMID: 10.1007/s00436-011-2781-x22231264)
Soares FEF, Braga FR, Araújo JV, Lima WS, Mozzer LR, Queiroz JH (2013) Optimization of protease production by the fungus monacrosporium thaumasium and its action against Angiostrongylus vasorum larvae. Rev Bras Parasitol Vet 22:285–288. https://doi.org/10.1590/S1984-29612013000200048. (PMID: 10.1590/S1984-2961201300020004823856736)
Soares FEF, Queiróz JH, Braga FR, Tavela AO (2014a) Action of the nematophagous fungus Pochonia chlamydosporia on Dioctophyma renale eggs. Biocontrol Sci Technol 24:399–406. https://doi.org/10.1080/09583157.2013.863828. (PMID: 10.1080/09583157.2013.863828)
Soares FEF, Queiróz JH, Braga FR, Lima WS, Zamprogno TT, Araújo JV (2014b) Proteolytic activity of the nematophagous fungus Arthrobotrys sinensis on Angiostrongylus vasorum larvae. BMC Res Notes 7:811. https://doi.org/10.1186/1756-0500-7-811. (PMID: 10.1186/1756-0500-7-811)
Soares FEF, Braga FR, Araújo JV, Lima WS, Queiroz JH (2015a) The nematophagous fungus Monacrosporium Thaumasium and its nematicidal activity on Angiostrongylus Vasorum. Rev Iberoam Micol 32:51–53. https://doi.org/10.1016/j.riam.2013.09.005. (PMID: 10.1016/j.riam.2013.09.00524071638)
Soares FEF, Queiroz JH, Araújo JV, Maria GRR (2015b) Action of proteases of the nematophagous fungi Pochonia chlamydosporia on Ascaris suum eggs of collared peccary (Pecari tajacu). Afr J Microbiol Res 9:1883–1886. https://doi.org/10.5897/AJMR2015.7650. (PMID: 10.5897/AJMR2015.7650)
Soares FEF, Ferreira JM, Genier HLA, Al-Ani LKT, Aguilar-Marcelino L (2023) Biological control 2.0: use of nematophagous fungi enzymes for nematode control. J Nat Pestic Res 4:100025. https://doi.org/10.1016/j.napere.2023.100025. (PMID: 10.1016/j.napere.2023.100025)
Souza DC, Silva AC, Silva AT, Castro CRS, Albuquerque LB, Moreira TF, Araújo JV, Braga FR, Soares FEF (2023) Compatibility study of Duddingtonia flagrans conidia and its crude proteolytic extract. Vet Parasitol 322:110030. https://doi.org/10.1016/j.vetpar.2023.110030. (PMID: 10.1016/j.vetpar.2023.11003037729830)
Ui H, Shiomi K, Yamaguchi Y, Masuma R, Nagamitsu T, Takano D, Sunazuka T, Namikoshi M, Ōmura S (2001) Nafuredin, a novel inhibitor of NADH-fumarate reductase, produced by Aspergillus Niger FT-0554. J Antibiot 54:234–238. https://doi.org/10.7164/antibiotics.54.234. (PMID: 10.7164/antibiotics.54.234)
Vieira ÍS, Castro IO, Freitas SG, Campos AK, Araújo JV (2020) Arthrobotrys cladodes and pochonia chlamydosporia in the biological control of nematodiosis in extensive bovine production system. Parasitol 147:699–705. https://doi.org/10.1017/S0031182020000098. (PMID: 10.1017/S0031182020000098)
Waller PJ (2004) Management and control of nematode parasites of small ruminants in the face of total anthelmintic failure. Trop Biomed 21:7–13. (PMID: 16493393)
Yang J, Tian B, Liang L, Zhang K (2007) Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl Microbiol Biotechnol 75:21–31. https://doi.org/10.1007/s00253-007-0881-4. (PMID: 10.1007/s00253-007-0881-417318531)
Zhang F, Boonmee S, Bhat JD, Xiao W, Yang XY (2022) New Arthrobotrys Nematode-Trapping species (Orbiliaceae) from terrestrial soils and freshwater sediments in China. J Fungi (Basel) 8(7):671. https://doi.org/10.3390/jof8070671. (PMID: 10.3390/jof807067135887428)
Zhao H, Qiao J, Meng Q, Gong S, Chen C, Liu T, Tian L, Cai X, Luo J, Chen CF (2015) Expression of serine proteinase P186 of Arthrobotrys oligospora and analysis of its nematode-degrading activity. Antonie Van Leeuwenhoek 108:1485–1494. https://doi.org/10.1007/s10482-015-0595-z. (PMID: 10.1007/s10482-015-0595-z26419902)
Zhong W, Chen Y, Gong S, Qiao J, Meng Q, Zhang Z, Wang X, Huang Y, Tian l, Niu Y (2019) Enzymological Properties and Nematode-Degrading activity of recombinant chitinase AO-379 of Arthrobotrys oligospora. Kafkas Univ Vet Fak Derg 25:435–444. https://doi.org/10.9775/kvfd.2018.20603. (PMID: 10.9775/kvfd.2018.20603)
معلومات مُعتمدة: Scholarship to J.A.R. Fundação de Apoio à Pesquisa do Estado da Paraíba
فهرسة مساهمة: Keywords: Biological control; Biotechnology; Enzymes; Metabolites; Parasitic diseases
المشرفين على المادة: 0 (Biological Control Agents)
EC 3.4.- (Serine Proteases)
3M4G523W1G (Silver)
تواريخ الأحداث: Date Created: 20240531 Date Completed: 20240531 Latest Revision: 20240621
رمز التحديث: 20240621
DOI: 10.1007/s11274-024-04036-5
PMID: 38822201
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-0972
DOI:10.1007/s11274-024-04036-5