دورية أكاديمية

Comparative study of antioxidant activities of Allium sativum (a novel variety, HG17) and Allium ampeloprasum (SMG): Revealing the higher potential of HG17 and analyzing its phytochemicals.

التفاصيل البيبلوغرافية
العنوان: Comparative study of antioxidant activities of Allium sativum (a novel variety, HG17) and Allium ampeloprasum (SMG): Revealing the higher potential of HG17 and analyzing its phytochemicals.
المؤلفون: Monika M; Department of Zoology, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India., Dua A; Cell Biology Lab, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India., Sharma S; Chemistry lab, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India., Gupta S; Cell Biology Lab, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India., Mittal A; Cell Biology Lab, Institute of Integrated and Honors Studies, Kurukshetra University, Kurukshetra, Haryana, India.
المصدر: Journal of food science [J Food Sci] 2024 Jul; Vol. 89 (7), pp. 4250-4275. Date of Electronic Publication: 2024 Jun 03.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Wiley on behalf of the Institute of Food Technologists Country of Publication: United States NLM ID: 0014052 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1750-3841 (Electronic) Linking ISSN: 00221147 NLM ISO Abbreviation: J Food Sci Subsets: MEDLINE
أسماء مطبوعة: Publication: Malden, Mass. : Wiley on behalf of the Institute of Food Technologists
Original Publication: Champaign, Ill. Institute of Food Technologists
مواضيع طبية MeSH: Antioxidants*/pharmacology , Antioxidants*/analysis , Garlic*/chemistry , Plant Extracts*/pharmacology , Plant Extracts*/chemistry , Phytochemicals*/pharmacology , Phytochemicals*/analysis , Phenols*/analysis , Phenols*/pharmacology , Flavonoids*/analysis , Flavonoids*/pharmacology , Allium*/chemistry, Chromatography, High Pressure Liquid/methods
مستخلص: Garlic, belonging to the genus Allium, is renowned for its rich antioxidant potential. Snow Mountain garlic (SMG) (Allium ampeloprasum) has been traditionally used for medicinal purposes because of its higher antioxidant potential. Considering its potential in medical therapies, we compared the antioxidant activity of SMG with a novel variety of Allium sativum, Hisar garlic 17 (HG17). Comparative antioxidant activity data (2,2-diphenyl-1-picrylhydrazyl and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) revealed the higher antioxidant activity of HG17 than SMG, which prompted us to conduct a comprehensive phytochemical investigation to elucidate the factors contributing to antioxidant potential of HG17. To get a detailed antioxidant and phytoconstituents profiling, we differentially extracted HG17 by processing it in different forms (fresh, dry, heated, and aged) with two solvents (50% methanol and n-butanol). Our data (antioxidant activities, total phenolics, and flavonoids) showed that dry garlic methanolic extract (DgM) had maximum potential than other HG17 forms/solvents, which concludes that different extraction techniques had direct impact on the phenolics/flavonoids and antioxidant potential of the extracts. Further, phytochemical analysis of HG17 extracts by high resolution liquid chromatograph mass spectrometer quadrupole time of flight validated the maximum potential of DgM. LCMS revealed the presence of garcimangosone C, osmanthuside A, and protoaphin aglucone polyphenols exclusively in DgM compared to other HG17 extracts, which possibly contributing in its high antioxidant potential. The overall differential extraction and LCMS data of HG17 strongly depict that it may be used as an alternative of SMG under diverse medical applications. HG17 higher antioxidant potential and rich array of unique phytochemicals make it valuable for food and pharmaceutical industries to integrate into functional foods/therapeutics. PRACTICAL APPLICATION: Garlic unique phytochemical composition and its remarkable ability to scavenge different radicals make it valuable therapeutic asset to mitigate diseases associated with oxidative stress. SMG is well known for its anti-arthritic and anti-inflammatory properties. HG17 showed higher antioxidant potential than SMG and can be used as an alternative of SMG for anti-arthritic properties.
(© 2024 Institute of Food Technologists.)
References: Alide, T., Wangila, P., & Kiprop, A. (2020). Effect of cooking temperature and time on total phenolic content, total flavonoid content and total in vitro antioxidant activity of garlic. BMC Research Notes, 13(1), 564. https://doi.org/10.1186/s13104‐020‐05404‐8.
Al‐Taai, I. H., Al‐Fekaiki, D. F., & Jamail, R. (2019). Diagnosing the bioactive compounds in Iraqi garlic (Allium sativum) by GC‐MS and HPLC. Journal of Physics: Conference Series, 1294, 062066.
Anderson, R. A., Broadhurst, C. L., Polansky, M. M., Schmidt, W. F., Khan, A., Flanagan, V. P., Schoene, N. W., & Graves, D. J. (2004). Isolation and characterization of polyphenol type‐A polymers from cinnamon with insulin‐like biological activity. Journal of Agricultural and Food Chemistry, 52(1), 65–70. https://doi.org/10.1021/jf034916b.
Appendino, G., Maxia, L., Bascope, M., Houghton, P. J., Sanchez‐Duffhues, G., Muñoz, E., & Sterner, O. (2006). A meroterpenoid NF‐kappaB inhibitor and drimane sesquiterpenoids from Asafetida. Journal of Natural Products, 69(7), 1101–1104. https://doi.org/10.1021/np0600954.
Arreola, R., Quintero‐Fabián, S., López‐Roa, R. I., Flores‐Gutiérrez, E. O., Reyes‐Grajeda, J. P., Carrera‐Quintanar, L., & Ortuño‐Sahagún, D. (2015). Immunomodulation and anti‐inflammatory effects of garlic compounds. Journal of Immunology Research, 2015, 401630. https://doi.org/10.1155/2015/401630.
Awan, K. A., Butt, M. S., Ul Haq, I., & Suleria, H. A. R. (2019). Investigating the antioxidant potential of garlic (Allium sativum) extracts through different extraction modes. Current Bioactive Compounds, 15(1), 45–50. https://doi.org/10.2174/1573407213666171024121712.
Bae, S. E., Cho, S. Y., Won, Y. D., Lee, S. H., & Park, H. J. (2012). A comparative study of the different analytical methods for analysis of S‐allyl cysteine in black garlic by HPLC. LWT—Food Science and Technology, 46(2), 532–535. https://doi.org/10.1016/j.lwt.2011.11.013.
Bae, S. E., Cho, S. Y., Won, Y. D., Lee, S. H., & Park, H. J. (2014). Changes in S‐allyl cysteine contents and physicochemical properties of black garlic during heat treatment. LWT—Food Science and Technology, 55(1), 397–402. https://doi.org/10.1016/j.lwt.2013.05.006.
Bakht, J., Muhammad, T., Ali, H., Islam, A., & Shafi, M. (2011). Effect of different solvent extracted sample of Allium sativum (Linn) on bacteria and fungi. African Journal of Biotechnology, 10, 5910–5915.
Beato, V. M., Orgaz, F., Mansilla, F., & Montaño, A. (2011). Changes in phenolic compounds in garlic (Allium sativum L.) owing to the cultivar and location of growth. Plant Foods for Human Nutrition, 66(3), 218–223. https://doi.org/10.1007/s11130‐011‐0236‐2.
Braca, A., Fico, G., Morelli, I., De Simone, F., Tomè, F., & de Tommasi, N. (2003). Antioxidant and free radical scavenging activity of flavonol glycosides from different Aconitum species. Journal of Ethnopharmacology, 86(1), 63–67. https://doi.org/10.1016/s0378‐8741(03)00043‐6.
Brand‐Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT—Food Science and Technology, 28(1), 25–30. https://doi.org/10.1016/S0023‐6438(95)80008‐5.
Bravo, L. (1998). Polyphenols: Chemistry, dietary sources, metabolism, and nutritional significance. Nutrition Reviews, 56(11), 317–333. https://doi.org/10.1111/j.1753‐4887.1998.tb01670.x.
Brieger, K., Schiavone, S., Miller, F. J., & Krause, K. H. (2012). Reactive oxygen species: From health to disease. Swiss Medical Weekly, 142, w13659. https://doi.org/10.4414/smw.2012.13659.
Cavalcanti, V. P., Aazza, S., Bertolucci, S. K. V., Rocha, J. P. M., Coelho, A. D., Oliveira, A. J. M., Mendes, L. C., Pereira, M. M. A., Morais, L. C., Forim, M. R., Pasqual, M., & Dória, J. (2021). Solvent mixture optimization in the extraction of bioactive compounds and antioxidant activities from garlic (Allium sativum L.). Molecules (Basel, Switzerland), 26(19), 6026. https://doi.org/10.3390/molecules26196026.
Chaudhary, A., Sharma, S., Mittal, A., Gupta, S., & Dua, A. (2020). Phytochemical and antioxidant profiling of Ocimum sanctum. Journal of Food Science and Technology, 57(10), 3852–3863. https://doi.org/10.1007/s13197‐020‐04417‐2.
Chhokar, V., Sood, D. R., Wani, M. A., & Bajaj, B. K. (2009). Effect of garlic extract on human intestinal microflora. International Journal of Plant Sciences, 4, 357–360.
Chan, E. W. C., Ping Tan, Y., Jia Chin, S., Yi Gan, L., Xian Kang, K., Hong Fong, C., Qi Chang, H., & Chern How, Y. (2014). Antioxidant properties of selected fresh and processed herbs and vegetables. Free Radicals and Antioxidants, 4(1), 39–46. https://doi.org/10.5530/fra.2014.1.7.
Deresse, D. (2010). Antibacterial effect of garlic (Allium sativum) on Staphylococcus aureus: An in vitro study. Asian Journal of Medical Sciences, 2, 62.
Dua, A., Garg, G., & Mahajan, R. (2013). Polyphenols, flavonoids and antimicrobial properties of methanolic extract of fennel (Foeniculum vulgare Miller). European Journal of Experimental Biology, 3, 203–208.
Durairaj, S., Srinivasan, S., & Lakshmanaperumalsamy, P. (2009). In vitro antibacterial activity and stability of garlic extract at different pH and temperature. Electronic Journal of Biology, 5, 5–10.
El‐Refai, A. A., Ghoniem, G. A., El‐Khateeb, A. Y., & Hassaan, M. M. (2018). Eco‐friendly synthesis of metal nanoparticles using ginger and garlic extracts as biocompatible novel antioxidant and antimicrobial agents. Journal of Nanostructure in Chemistry, 8(1), 71–81. https://doi.org/10.1007/s40097‐018‐0255‐8.
El‐Saber Batiha, G., Beshbishy, A. M., Wasef, L. G., Elewa, Y. H. A., Al‐Sagan, A. A., Abd El‐Hack, M. E., Taha, A. E., Abd‐Elhakim, Y. M., & Devkota, H. P. (2020). Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A review. Nutrients, 12(3), 872. https://doi.org/10.3390/nu12030872.
El Shenawy, N. S., Soliman, M. F., & Reyad, S. I. (2008). The effect of antioxidant properties of aqueous garlic extract and Nigella sativa as anti‐schistosomiasis agents in mice. Revista do Instituto de Medicina Tropical de São Paulo, 50(1), 29–36. https://doi.org/10.1590/s0036‐46652008000100007.
Fedosov, A., Kyslychenko, A., Gudzenko, A., Semenchenko, O., & Kyslychenko, V. (2016). The determination of phenolic compounds in garlic extracts by HPLC GC/MS technique. Pharma Chemica, 8, 118–124.
Fong, S. Y., Wong, Y. F., AbuBakar, S., & See, M. L. (2015). Xanthones and benzophenones from Garcinia mangostana L. and their anticancer activities. Journal of Asian Natural Products Research, 17, 254–265.
Fujita, K., Kuge, K., Ozawa, N., Sahara, S., Zaiki, K., Nakaoji, K., Hamada, K., Takenaka, Y., Tanahashi, T., Tamai, K., Kaneda, Y., & Maeda, A. (2015). Cinnamtannin B‐1 promotes migration of mesenchymal stem cells and accelerates wound healing in mice. PLoS ONE, 10(12), e0144166. https://doi.org/10.1371/journal.pone.0144166.
Garg, S. K., Shukla, A., & Choudhary, S. (2019). Polyphenols and flavonoids. Nutraceuticals in Veterinary Medicine, 51, 187–204.
Gong, H., Wang, T., Hua, Y., Wang, W. D., Shi, C., Xu, H. X., Li, L., Zhang, D., Sun, Y., & Yu, N. N. (2022). Garlic varieties and drying methods affected the physical properties, bioactive compounds and antioxidant capacity of dried garlic powder. CyTA—Journal of Food, 20(1), 111–119. https://doi.org/10.1080/19476337.2022.2093400.
Gupta, A., & Pandey, V. (2014). Ferric reducing antioxidant power of Nymphaea nauchali Burm. Life Sciences Leaflets, 49, 31.
Hassan, H. T. (2004). Ajoene (natural garlic compound): A new anti‐leukaemia agent for AML therapy. Leukemia Research, 28(7), 667–671. https://doi.org/10.1016/j.leukres.2003.10.008.
Iqbal, S., & Bhanger, M. I. (2007). Stabilization of sunflower oil by garlic extract during accelerated storage. Food Chemistry, 100(1), 246–254. https://doi.org/10.1016/j.foodchem.2005.09.049.
Yáñez, J. A., Remsberg, C. M., Takemoto, J. K., Vegga‐Villa, K. R., Andrews, P. K., Sayre, C. L., Martinez, S. E., & Davies, N. M. (2013). Polyphenols and flavonoids: An overview. Flavonoid pharmacokinetics: Methods of analysis, preclinical and clinical pharmacokinetics, safety, and toxicology (pp. 1–69). John Wiley & Sons, Inc.
Jang, H. J., Lee, H. J., Yoon, D. K., Ji, D. S., Kim, J. H., & Lee, C. H. (2018). Antioxidant and antimicrobial activities of fresh garlic and aged garlic by‐products extracted with different solvents. Food Science and Biotechnology, 27(1), 219–225. https://doi.org/10.1007/s10068‐017‐0246‐4.
Jiang, X. Y., Liang, J. Y., Jiang, S. Y., Zhao, P., Tao, F., Li, J., Li, X. X., & Zhao, D. S. (2022). Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities. Carbohydrate Research, 518, 108599. https://doi.org/10.1016/j.carres.2022.108599.
Jiang, Z., & Brodkorb, A. (2012). Structure and antioxidant activity of Maillard reaction products from α‐lactalbumin and β‐lactoglobulin with ribose in an aqueous model system. Food Chemistry, 133(3), 960–968. https://doi.org/10.1016/j.foodchem.2012.02.016.
John, O. D., Brown, L., & Panchal, S. K. (2019). Garcinia fruits: Their potential to combat metabolic syndrome. In M. Ullah & A. Ahmad (Eds.), Nutraceuticals and natural product derivatives: Disease prevention and drug discovery (pp. 39–80). John Wiley & Sons, Inc.
Kallel, F., Driss, D., Chaari, F., Belghith, L., Bouaziz, F., Ghorbel, R., & Chaabouni, S. E. (2014). Garlic (Allium sativum L.) husk waste as a potential source of phenolic compounds: Influence of extracting solvents on its antimicrobial and antioxidant properties. Industrial Crops and Products, 62, 34–41. https://doi.org/10.1016/j.indcrop.2014.07.047.
Kasuga, S., Uda, N., Kyo, E., Ushijima, M., Morihara, N., & Itakura, Y. (2001). Pharmacologic activities of aged garlic extract in comparison with other garlic preparations. Journal of Nutrition, 131(3s), 1080S–1084S. https://doi.org/10.1093/jn/131.3.1080S.
Kaur, B., Kumar, N., Patel, M. K., Chopra, K., & Saxena, S. (2023). Validation of traditional claims of anti‐arthritic efficacy of trans‐Himalayan snow mountain garlic (Allium ampeloprasum L.) extract using adjuvant‐induced arthritis rat model: A comparative evaluation with normal garlic (Allium sativum L.) and dexamethasone. Journal of Ethnopharmacology, 303, 115939. https://doi.org/10.1016/j.jep.2022.115939.
Khan, A., Safdar, M., Ali Khan, M. M., Khattak, K. N., & Anderson, R. A. (2003). Cinnamon improves glucose and lipids of people with type 2 diabetes. Diabetes Care, 26(12), 3215–3218. https://doi.org/10.2337/diacare.26.12.3215.
Kim, J. S., Kang, O. J., & Gweon, O. C. (2013). Comparison of phenolic acids and flavonoids in black garlic at different thermal processing steps. Journal of Functional Foods, 5(1), 80–86. https://doi.org/10.1016/j.jff.2012.08.006.
Kumar, R., Chhatwal, S., Arora, S., Sharma, S., Singh, J., Singh, N., Bhandari, V., & Khurana, A. (2013). Antihyperglycemic, antihyperlipidemic, anti‐inflammatory and adenosine deaminase‐lowering effects of garlic in patients with type 2 diabetes mellitus with obesity. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 6, 49–56. https://doi.org/10.2147/DMSO.S38888.
Lawson, L. D. (1998). Garlic: A review of its medicinal effects and indicated active compounds. Blood, 179, 62.
Ledezma, E., & Apitz‐Castro, R. (2006). Ajoene the main active compound of garlic (Allium sativum): A new antifungal agent. Revista Iberoamericana de Micologia, 23(2), 75–80. https://doi.org/10.1016/S1130‐1406(06)70017‐1.
Liu, P., Weng, R., Sheng, X., Wang, X., Zhang, W., Qian, Y., & Qiu, J. (2020). Profiling of organosulfur compounds and amino acids in garlic from different regions of China. Food Chemistry, 305, 125499. https://doi.org/10.1016/j.foodchem.2019.125499.
López, J. J., Jardín, I., Salido, G. M., & Rosado, J. A. (2008). Cinnamtannin B‐1 as an antioxidant and platelet aggregation inhibitor. Life Sciences, 82(19–20), 977–982. https://doi.org/10.1016/j.lfs.2008.03.009.
Mansell, T. J. (2010). A review of garlic and other alliums: The Lore and the science. Food and Foodways, 18(3), 170–172. https://doi.org/10.1080/07409710.2010.504117.
Mansmann, H. C., Jr., Rosen, J., Ziering, R., Hampel, F., Ratner, P., Findlay, S., Kniker, W., Haddad, Z., & Daigle, A. (1991). Pentigetide nasal solution: A multicenter study evaluating efficacy and safety in patients with seasonal allergic rhinitis. Annals of Allergy, 67(4), 409–415.
Martins, N., Petropoulos, S., & Ferreira, I. C. (2016). Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre‐ and post‐harvest conditions: A review. Food Chemistry, 211, 41–50. https://doi.org/10.1016/j.foodchem.2016.05.029.
Mathew, B. C., & Biju, R. S. (2008). Neuroprotective effects of garlic A review. Libyan Journal of Medicine, 3(1), 23–33. https://doi.org/10.4176/071110.
Menshchikova, E., Zenkov, N., Tkachev, V., Potapova, O., Cherdantseva, L., & Shkurupiy, V. (2013). Oxidative stress and free‐radical oxidation in BCG granulomatosis development. Oxidative Medicine and Cellular Longevity, 2013, 452546.
Mishra, N., Tripathi, R., & Khan, Z. (2017). Physicochemical and antioxidant potential of garlic: Heat processing effects. Journal of Agricultural Engineering and Food Technology, 4, 127–133.
Morihara, N., Nishihama, T., Ushijima, M., Ide, N., Takeda, H., & Hayama, M. (2007). Garlic as an anti‐fatigue agent. Molecular Nutrition and Food Research, 51(11), 1329–1334. https://doi.org/10.1002/mnfr.200700062.
Münzel, T., Gori, T., Bruno, R. M., & Taddei, S. (2010). Is oxidative stress a therapeutic target in cardiovascular disease? European Heart Journal, 31(22), 2741–2748.
Na, M., Jang, J., Njamen, D., Mbafor, J. T., Fomum, Z. T., Kim, B. Y., Oh, W. K., & Ahn, J. S. (2006). Protein tyrosine phosphatase‐1B inhibitory activity of isoprenylated flavonoids isolated from Erythrina mildbraedii. Journal of Natural Products, 69(11), 1572–1576. https://doi.org/10.1021/np0601861.
Naznin, M. T., Akagawa, M., Okukawa, K., Maeda, T., & Morita, N. (2008). Characterization of E‐ and Z‐ajoene obtained from different varieties of garlics. Food Chemistry, 106(3), 1113–1119. https://doi.org/10.1016/j.foodchem.2007.07.041.
Nencini, C., Cavallo, F., Capasso, A., Franchi, G. G., Giorgio, G., & Micheli, L. (2007). Evaluation of antioxidative properties of Allium species growing wild in Italy. Phytotherapy Research, 21(9), 874–878. https://doi.org/10.1002/ptr.2168.
Orekhov, A. N., Tertov, V. V., Sobenin, I. A., & Pivovarova, E. M. (1995). Direct anti‐atherosclerosis‐related effects of garlic. Annals of Medicine, 27(1), 63–65. https://doi.org/10.3109/07853899509031938.
Panche, A. N., Diwan, A. D., & Chandra, S. R. (2016). Flavonoids: An overview. Journal of Nutritional Science, 5, e47. https://doi.org/10.1017/jns.2016.41.
Pazyar, N., & Feily, A. (2011). Garlic in dermatology. Dermatology Reports, 3(1), e4. https://doi.org/10.4081/dr.2011.e4.
Pedraza‐Chaverri, J., Cárdenas‐Rodríguez, N., Orozco‐Ibarra, M., & Pérez‐Rojas, J. M. (2008). Medicinal properties of mangosteen (Garcinia mangostana). Food and Chemical Toxicology, 46(10), 3227–3239. https://doi.org/10.1016/j.fct.2008.07.024.
Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice‐Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. https://doi.org/10.1016/S0891‐5849(98)00315‐3.
Rice‐Evans, C. A., Miller, N. J., Bolwell, P. G., Bramley, P. M., & Pridham, J. B. (1995). The relative antioxidant activities of plant‐derived polyphenolic flavonoids. Free Radical Research, 22(4), 375–383. https://doi.org/10.3109/10715769509145649.
Rouf, R., Uddin, S. J., Sarker, D. K., Islam, M. T., Ali, E. S., Shilpi, J. A., Nahar, L., Tiralongo, E., & Sarker, S. D. (2020). Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: A systematic update of pre‐clinical and clinical data. Trends in Food Science and Technology, 104, 219–234. https://doi.org/10.1016/j.tifs.2020.08.006.
Saha, M., & Bandyopadhyay, P. K. (2017). Phytochemical screening for identification of bioactive compound and antiprotozoan activity of fresh garlic bulb over trichodinid ciliates affecting ornamental goldfish. Aquaculture, 473, 181–190. https://doi.org/10.1016/j.aquaculture.2017.02.009.
Selen, A. (2019). Evaluation and comparison of some parameters in four garlic varieties. Journal of Institute of Science and Technology, 9, 1866–1875.
Shan, B., Cai, Y. Z., Sun, M., & Corke, H. (2005). Antioxidant capacity of 26 spice extracts and characterization of their phenolic constituents. Journal of Agricultural and Food Chemistry, 53(20), 7749–7759. https://doi.org/10.1021/jf051513y.
Singh, V., & Kumar, R. (2017). Study of phytochemical analysis and antioxidant activity of Allium sativum of Bundelkhand region. International Journal of Life‐Sciences Scientific Research, 3(6), 1451–1458. https://doi.org/10.21276/ijlssr.2017.3.6.4.
Song, K., & Milner, J. A. (2001). The influence of heating on the anticancer properties of garlic. Journal of Nutrition, 131(3s), 1054S–1057S. https://doi.org/10.1093/jn/131.3.1054S.
Songsungkan, J., & Chanthai, S. (2014). Determination of synergic antioxidant activity of the methanol/ethanol extract of allicin in the presence of total phenolics obtained from the garlic capsule compared with fresh and baked garlic clove. International Food Research Journal, 21, 2377.
Sood, D. R., Chhokar, V., & Chauhan, T. R. (2002). Analysis of garlic cloves for some of its mineral content. Journal of Dairying Foods and Home Sciences, 21, 32–35.
Souliotis, V. L., Vlachogiannis, N. I., Pappa, M., Argyriou, A., Ntouros, P. A., & Sfikakis, P. P. (2019). DNA damage response and oxidative stress in systemic autoimmunity. International Journal of Molecular Sciences, 21(1), 55.
Tahir, Z., Saeed, F., Nosheen, F., Ahmed, A., & Anjum, F. M. (2022). Comparative study of nutritional properties and antioxidant activity of raw and fermented (black) garlic. International Journal of Food Properties, 25(1), 116–127. https://doi.org/10.1080/10942912.2022.2026954.
Tao, H., Wang, L., Cui, Z., Zhao, D., & Liu, Y. (2008). Dimeric proanthocyanidins from the roots of Ephedra sinica. Planta Medica, 74(15), 1823–1825. https://doi.org/10.1055/s‐0028‐1088321.
Terahara, N. (2015). Flavonoids in foods: A review. Natural Product Communications, 10(3), 521–528. https://doi.org/10.1177/1934578X1501000334.
Thomson, M., Al‐Amin, Z. M., Al‐Qattan, K. K., Shaban, L. H., & Ali, M. (2007). Antidiabetic and hypolipidaemic properties of garlic (Allium sativum) in streptozotocin‐induced diabetic rats. International Journal of Diabetes and Metabolism, 15, 108–115.
Thomson, M., & Ali, M. (2003). Garlic [Allium sativum]: A review of its potential use as an anti‐cancer agent. Current Cancer Drug Targets, 3(1), 67–81. https://doi.org/10.2174/1568009033333736.
Tiwari, R., & Rana, C. (2015). Plant secondary metabolites: A review. International Journal of Engineering Research and General Science, 3, 661–670.
Trio, P. Z., You, S., He, X., He, J., Sakao, K., & Hou, D. X. (2014). Chemopreventive functions and molecular mechanisms of garlic organosulfur compounds. Food and Function, 5(5), 833–844. https://doi.org/10.1039/c3fo60479a.
Tsai, Y., Cole, L. L., Davis, L. E., Lockwood, S. J., Simmons, V., & Wild, G. C. (1985). Antiviral properties of garlic: In vitro effects on influenza B, herpes simplex and coxsackie viruses. Planta Medica, 51(5), 460–461. https://doi.org/10.1055/s‐2007‐969553.
Wang, S., Wang, M., Hu, J., He, Y., & Chen, L. (2020). Osmanthus fragrans flower extract and its bioactive compounds alleviate ovalbumin‐induced airway inflammation and oxidative stress via Nrf2 activation. Journal of Agricultural and Food Chemistry, 68, 7808–7818.
Wang, Z., Cui, Y., Ding, G., Zhou, M., Ma, X., Hou, Y., Jiang, M., Liu, D., & Bai, G. (2017). Mahuannin B an adenylate cyclase inhibitor attenuates hyperhidrosis via suppressing β2‐adrenoceptor/cAMP signaling pathway. Phytomedicine, 30, 18–27. https://doi.org/10.1016/j.phymed.2017.03.002.
Wijewardhana, U. S., Gunathilaka, U. G. S., & Navaratne, S. B. (2019). Determination of total phenolic content, radical scavenging activity and total antioxidant capacity of cinnamon bark, black cumin seeds and garlic. International Research Journal of Advanced Engineering and Science, 4(2), 55–57.
Wongsa, P., Bhuyar, P., Tongkoom, K., Spreer, W., & Müller, J. (2023). Influence of hot‐air drying methods on the phenolic compounds/allicin content, antioxidant activity and α‐amylase/α‐glucosidase inhibition of garlic (Allium sativum L.). European Food Research and Technology, 249(2), 523–535. https://doi.org/10.1007/s00217‐022‐04150‐4.
Worku, M., Franco, R., & Baldwin, K. (2009). Efficacy of garlic as an anthelmintic in adult Boer goats. Archives of Biological Sciences, 61(1), 135–140. https://doi.org/10.2298/ABS0901135W.
Yoshida, S., Kasuga, S., Hayashi, N., Ushiroguchi, T., Matsuura, H., & Nakagawa, S. (1987). Antifungal activity of ajoene derived from garlic. Applied and Environmental Microbiology, 53(3), 615–617. https://doi.org/10.1128/aem.53.3.615‐617.1987.
Yun, H. M., Jin, P., Park, K. R., Hwang, J., Jeong, H. S., Kim, E. C., Jung, J. K., Oh, K. W., Hwang, B. Y., Han, S. B., & Hong, J. T. (2016). Thiacremonone potentiates anti‐oxidant effects to improve memory dysfunction in an APP/PS1 transgenic mice model. Molecular Neurobiology, 53(4), 2409–2420. https://doi.org/10.1007/s12035‐015‐9208‐0.
Zhang, X., Li, N., Lu, X., Liu, P., & Qiao, X. (2016). Effects of temperature on the quality of black garlic. Journal of the Science of Food and Agriculture, 96(7), 2366–2372. https://doi.org/10.1002/jsfa.7351.
Zhou, L., Guo, X., Bi, J., Yi, J., Chen, Q., Wu, X., & Zhou, M. (2017). Drying of garlic slices (Allium sativum L.) and its effect on thiosulfinates, total phenolic compounds and antioxidant activity during infrared drying. Journal of Food Processing and Preservation, 41(1), e12734. https://doi.org/10.1111/jfpp.12734.
Zúñiga‐Martínez, M. L., Terán‐Figueroa, Y., Vértiz‐Hernández, A. A., & Alcántara‐Quintana, L. E. (2019). Effect of Snow Mountain garlic extracts on cellular count and viability in cell lines cervical cancer. International Journal of Ayurvedic and Herbal Medicine, 9, 3596–3603.
معلومات مُعتمدة: Council of Scientific and Industrial Research, India
فهرسة مساهمة: Keywords: Allium sativum; HR‐LCMS‐QTOF; antioxidant assay; total flavonoid content; total phenolic content
المشرفين على المادة: 0 (Antioxidants)
0 (Plant Extracts)
0 (Phytochemicals)
0 (Phenols)
0 (Flavonoids)
تواريخ الأحداث: Date Created: 20240603 Date Completed: 20240703 Latest Revision: 20240703
رمز التحديث: 20240703
DOI: 10.1111/1750-3841.17133
PMID: 38829746
قاعدة البيانات: MEDLINE
الوصف
تدمد:1750-3841
DOI:10.1111/1750-3841.17133