دورية أكاديمية

An evaluation of fish and invertebrate mercury concentrations in the Caribbean Region.

التفاصيل البيبلوغرافية
العنوان: An evaluation of fish and invertebrate mercury concentrations in the Caribbean Region.
المؤلفون: Christian LD; Ministry of Foreign Affairs, Agriculture, Trade and Barbuda Affairs, St. John's, Antigua and Barbuda. Linroy.Christian@ab.gov.ag., Burton MEH; Biodiversity Research Institute, Portland, ME, USA., Mohammed A; The University of The West Indies, St. Augustine, Trinidad and Tobago., Nelson W; Institute of Marine Affairs, Chaguaramas, Trinidad and Tobago., Shah TA; Biodiversity Research Institute, Portland, ME, USA., Bertide-Josiah L; Ministry of Foreign Affairs, Agriculture, Trade and Barbuda Affairs, St. John's, Antigua and Barbuda., Yurek HG; Biodiversity Research Institute, Portland, ME, USA., Evers DC; Biodiversity Research Institute, Portland, ME, USA.
المصدر: Ecotoxicology (London, England) [Ecotoxicology] 2024 Jul; Vol. 33 (4-5), pp. 397-414. Date of Electronic Publication: 2024 Jun 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic Publishers Country of Publication: United States NLM ID: 9885956 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-3017 (Electronic) Linking ISSN: 09639292 NLM ISO Abbreviation: Ecotoxicology Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : Boston : Kluwer Academic Publishers
Original Publication: London : Chapman & Hall,
مواضيع طبية MeSH: Mercury*/analysis , Fishes* , Water Pollutants, Chemical*/analysis , Invertebrates* , Environmental Monitoring*, Caribbean Region ; Animals ; Food Contamination/analysis
مستخلص: Mercury is a ubiquitous pollutant of global concern but the threat of exposure is not homogenously distributed at local, regional, or global scales. The primary route of human exposure to mercury is through consumption of aquatic foods, which are culturally and economically important in the wider Caribbean Region, especially for Small Island Developing States (SIDS). We compiled more than 1600 samples of 108 unique species of fish and aquatic invertebrates collected between 2005 and 2023 from eleven countries or territories in the wider Caribbean Region. There was wide variability in total mercury concentrations with 55% of samples below the 0.23 µg/g wet weight (ww) guideline from the U.S. FDA/EPA (2022) for 2 or 3 weekly servings and 26% exceeding the 0.46 µg/g ww guideline consistent with adverse effects on human health from continual consumption, particularly for sensitive populations. Significant relationships were found between total mercury concentrations and taxonomic family, sampling country, fish length, and trophic level. The data analyzed here support the need for further sampling with concrete geospatial data to better understand patterns and mechanisms in mercury concentrations and allow for more informed decision making on the consumption of fish and invertebrates from the wider Caribbean Region as well as supporting efforts to evaluate the effectiveness of national, regional, and international mercury policies.
(© 2024. The Author(s).)
References: Ackerman JT, Eagles-Smith CA, Herzog MP (2016) Avian mercury exposure and toxicological risk across western North America: A synthesis. Sci Total Environ 568:749–769. (PMID: 10.1016/j.scitotenv.2016.03.071)
Adams DH, McMichael Jr RH, Henderson GE (2003) Mercury levels in marine and estuarine fishes of Florida 1989–2001. Florida Marine Research Institute Technical Report TR-9. 2nd ed. rev. 57.
AMAP/UN Environment (2019) Technical Background Report for the Global Mercury Assessment 2018. Arctic Monitoring and Assessment Programme/UN Environment Programme, Chemicals and Health Branch, Oslo, Norway, Geneva, Switzerland, including E-Annexes. pp viii–426.
Amos HM, Jacob DJ, Streets DG, Sunderland EM (2013) Legacy impacts of all‐time anthropogenic emissions on the global mercury cycle. Global Biogeochemical Cycles 27(2):410–421. (PMID: 10.1002/gbc.20040)
Asner GP, Llactayo W, Tupayachi R, Luna ER (2013) Elevated rates of gold mining in the Amazon revealed through high-resolution monitoring. Proc Natl Acad Sci 110(46):18454–18459. (PMID: 10.1073/pnas.1318271110)
Balogh SJ, Meyer ML, Johnson DK (1998) Transport of mercury in three contrasting river basins. Environ Sci Technol 32(4):456–462. (PMID: 10.1021/es970506q)
Bastos WR, Dórea JG, Bernardi JVE, Lauthartte LC, Mussy MH, Lacerda LD, Malm O (2015) Mercury in fish of the Madeira river (temporal and spatial assessment), Brazilian Amazon. Environ Res 140:191–197. (PMID: 10.1016/j.envres.2015.03.029)
Basu N, Horvat M, Evers DC, Zastenskaya I, Weihe P, Tempowski J (2018) A state-of-the-science review of mercury biomarkers in human populations worldwide between 2000 and 2018. Environ Health Perspect 126(10):106001. (PMID: 10.1289/EHP3904)
Bates D, Maechler B, Bolker, Walker S (2015) Fitting linear mixed effects models using lme4. J Stat Softw 67(1):1–48. (PMID: 10.18637/jss.v067.i01)
BCRC-Caribbean (2021) Antigua and Barbuda Minamata Initial Assessment Report. BCRC-Caribbean. Port-of-Spain, Trinidad.
Beltrán Turriago C, Mateo J, Blanc PP, del Rio Poza A (2023) The mahi-mahi value chain in the Dominican Republic: Summary Report. FAO, Rome.
Bloom NS (1992) On the chemical form of mercury in edible fish and marine invertebrate tissue. Can J Fish Aquat Sci 49:1010–1017. (PMID: 10.1139/f92-113)
Braaten HFV, Fjeld E, Rognerud S, Lund E, Larssen T (2014) Seasonal and year‐to‐year variation of mercury concentration in perch (Perca fluviatilis) in boreal lakes. Environ Toxicol Chem 33(12):2661–2670. (PMID: 10.1002/etc.2733)
Braaten HFV, de Wit HA, Larssen T, Poste AE (2018) Mercury in fish from Norwegian lakes: the complex influence of aqueous organic carbon. Sci Total Environ 627:341–348. (PMID: 10.1016/j.scitotenv.2018.01.252)
Braaten HFV, Åkerblom S, Kahilainen KK, Rask M, Vuorenmaa J, Mannio J, Malinen T, Lydersen E, Poste AE, Amundsen PA, Kashulin N (2019) Improved environmental status: 50 years of declining fish mercury levels in boreal and subarctic Fennoscandia. Environ Sci Technol 53(4):1834–1843. (PMID: 10.1021/acs.est.8b06399)
Bodaly RA, Jansen WA, Majewski AR, Fudge RJ, Strange NE, Derksen AJ, Green DJ (2007) Postimpoundment time course of increased mercury concentrations in fish in hydroelectric reservoirs of northern Manitoba, Canada. Arch Environ Contamination Toxicol 53:379–389.
Boettiger C, Lang DT, Wainwright PC (2012) rfishbase: exploring, manipulating and visualizing FishBase data from R. J Fish Biol 81(6):2030–2039. https://doi.org/10.1111/j.1095-8649.2012.03464.x. (PMID: 10.1111/j.1095-8649.2012.03464.x)
Caballero Espejo J, Messinger M, Román-Dañobeytia F, Ascorra C, Fernandez LE, Silman M (2018) Deforestation and forest degradation due to gold mining in the Peruvian Amazon: A 34-year perspective. Remote Sensing 10(12):1903. (PMID: 10.3390/rs10121903)
Cartagena Convention on the Protection and Development of the Marine Environment of the Wider Caribbean Region (1983).
Carvan MJ, Kalluvila TA, Klingler RH, Larson JK, Pickens M, Mora-Zamorano FX, Connaughton VP, Sadler-Riggleman I, Beck D, Skinner MK (2017) Mercury-induced epigenetic transgenerational inheritance of abnormal neurobehavior is correlated with sperm epimutations in zebrafish. PLoS ONE 12:e0176155. (PMID: 10.1371/journal.pone.0176155)
Chen CY, Dionne M, Mayes BM, Ward DM, Sturup S, Jackson BP (2009) Mercury Bioavailability and Bioaccumulation in Estuarine Food Webs in the Gulf of Maine. Env Sci Technol 43(6):1804–1810. (PMID: 10.1021/es8017122)
Chen CY, Buckman KL, Shaw A, Curtis A, Taylor M, Montesdeoca M, Driscoll C (2021) The influence of nutrient loading on methylmercury availability in Long Island estuaries. Environ Pollut 268:115510. (PMID: 10.1016/j.envpol.2020.115510)
Côté IM, Green SJ, Hixon MA (2013) Predatory fish invaders: insights from Indo-Pacific lionfish in the western Atlantic and Caribbean. Biol Conserv 164:50–61. (PMID: 10.1016/j.biocon.2013.04.014)
Crespo-Lopez ME, Augusto-Oliveira M, Lopes-Araújo A, Santos-Sacramento L, Takeda PY, de Matos Macchi B, do Nascimento JL, Maia CS, Lima RR, Arrifano GP (2021) Mercury: What can we learn from the Amazon? Environ Int 146:106223. (PMID: 10.1016/j.envint.2020.106223)
CRFM (2021) CRFM Statistics and Information Report – 2020. Belize, Belize, p 92.
Dang F, Wang W-X (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut 163:192–198. (PMID: 10.1016/j.envpol.2011.12.026)
Depew DC, Basu N, Burgess NM, Campbell LM, Devlin EW, Drevnick PE, Hammerschmidt CR, Murphy CA, Sandheinrich MB, Wiener JG (2012) Toxicity of dietary methylmercury to fish: derivation of ecologically meaningful threshold concentrations. Environ Toxicol Chem 31(7):1536–1547. (PMID: 10.1002/etc.1859)
Dijkstra JA, Buckman KL, Ward D, Evans DW, Dionne M, Chen CY (2013) Experimental and natural warming elevates mercury concentrations in estuarine fish. PloS One 8(3):e58401. (PMID: 10.1371/journal.pone.0058401)
Diringer SE, Berky AJ, Marani M, Ortiz EJ, Karatum O, Plata DL, Pan WK, Hsu-Kim H (2020) Deforestation due to artisanal and small-scale gold mining exacerbates soil and mercury mobilization in Madre de Dios, Peru. Environ Sci Technol 54(1):286–296. (PMID: 10.1021/acs.est.9b06620)
Driscoll CT, Chen CY, Hammerschmidt CR, Mason RP, Gilmour CC, Sunderland EM, Greenfield BK, Buckman KL, Lamborg CH (2012) Nutrient supply and mercury dynamics in marine ecosystems: A conceptual model. Environ Res 119:118–131. (PMID: 10.1016/j.envres.2012.05.002)
Driscoll CT, Mason RP, Chan HM, Jacob DJ, Pirrone N (2013) Mercury as a global pollutant: sources, pathways, and effects. Environ Sci Technol 47(10):4967–4983. (PMID: 10.1021/es305071v)
Dulvy NK, Fowler SL, Musick JA, Cavanagh RD, Kyne PM, Harrison LR, Carlson JK, Davidson LN, Fordham SV, Francis MP, Pollock CM (2014) Extinction risk and conservation of the world’s sharks and rays. elife 3:e00590. (PMID: 10.7554/eLife.00590)
Eagles‐Smith CA, Ackerman JT, Adelsbach TL, Takekawa JY, Miles AK, Keister RA (2008) Mercury correlations among six tissues for four waterbird species breeding in San Francisco Bay, California, USA. Environ Toxicol Chem 27(10):2136–2153. (PMID: 10.1897/08-038.1)
Eagles-Smith CA, Ackerman JT (2009) Rapid changes in small fish mercury concentrations in estuarine wetlands: implications for wildlife risk and monitoring programs. Environ Sci Technol 43(22):8658–8664. (PMID: 10.1021/es901400c)
Eagles-Smith CA, Wiener JG, Eckley CS, Willacker JJ, Evers DC, Marvin-DiPasquale M, Obrist D, Fleck JA, Aiken GR, Lepak JM, Jackson AK (2016) Mercury in western North America: A synthesis of environmental contamination, fluxes, bioaccumulation, and risk to fish and wildlife. Sci Total Environ 568:1213–1226. (PMID: 10.1016/j.scitotenv.2016.05.094)
Eagles-Smith CA, Silbergeld EK, Basu N, Bustamante P, Diaz-Barriga F, Hopkins WA, Kidd KA, Nyland JF (2018) Modulators of mercury risk to wildlife and humans in the context of rapid global change. Ambio 47(2):170–197. https://doi.org/10.1007/s13280-017-1011-x. (PMID: 10.1007/s13280-017-1011-x)
Evers DC (2018) The effects of methylmercury on wildlife: a comprehensive review and approach for interpretation. Encyclopedia Anthropocene 5:181–194. (PMID: 10.1016/B978-0-12-809665-9.09985-7)
FAO/WHO Expert Committee on Food Additives. Meeting (67th: 2006: Rome, Italy), World Health Organization & Food and Agriculture Organization of the United Nations. (2007). Evaluation of certain food additives and contaminants: sixty-seventh report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organization.
FAO (2010) The State of World Fisheries and aquaculture 2010. Rome.
FAO (2020) The State of World Fisheries and Aquaculture 2020. Sustainability in Action, Rome.
FAO (2022) The State of World Fisheries and Aquaculture 2022. Towards Blue Transformation. FAO, Rome, 10.4060/cc0461en.
Froese R, Pauly D, Editors (2023) FishBase. World Wide Web electronic publication. www.fishbase.org , version (02/2023).
Gerson JR, Szponar N, Zambrano AA, Bergquist B, Broadbent E, Driscoll CT, Erkenswick G, Evers DC, Fernandez LE, Hsu-Kim H, Inga G (2022) Amazon forests capture high levels of atmospheric mercury pollution from artisanal gold mining. Nat Commun 13(1):559. (PMID: 10.1038/s41467-022-27997-3)
Gilmour CC, Podar M, Bullock AL (2013) Mercury methylation by novel microorganisms from new environments. Environ Sci Technol 47:11810–11820. (PMID: 10.1021/es403075t)
Girvan AST (2021) Examination of public policy and private sector purchasing practices to improve consumption and intra-region trade of seafood for the Caribbean small-scale fisheries sector. CANARI, Barataria, Trinidad.
Government of Suriname (2020) Suriname Minamata Initial Assessment Report 2020.
Goyanna FAA, Fernandes MB, de Silva GB, de Lacerda LD (2023) Mercury in oceanic upper trophic level sharks and bony fishes-A systematic review. Environ Pollut 318:120821. (PMID: 10.1016/j.envpol.2022.120821)
Grieb TM, Driscoll C, Gloss S, Schofield C, Bowie G, Porcella D (1990) Factors affecting mercury accumulation in fish in the Upper Michigan Peninsula. Environ Toxicol Chem 9:919–930. (PMID: 10.1002/etc.5620090710)
Grieb TM, Fisher NS, Karimi R, Levin L (2020) An assessment of temporal trends in mercury concentrations in fish. Ecotoxicology 29:1739–1749. (PMID: 10.1007/s10646-019-02112-3)
Gustin M, Evers DC, Bank MS, Hammerschmidt CR, Pierce A, Basu N, Blum J, Bustamante P, Chen C, Driscoll CT, Horvat M (2016) Importance of integration and implementation of emerging and future mercury research into the Minamata Convention. Environ Sci Technol 50:2767–2770. (PMID: 10.1021/acs.est.6b00573)
Hall BD, Bodaly RA, Fudge RJP, Rudd JWM, Rosenberg DM (1997) Food as the dominant pathway of methylmercury uptake by fish. Water Air Soil Pollut 100:13–24. (PMID: 10.1023/A:1018071406537)
Hammerschmidt CR, Fitzgerald WF (2006) Bioaccumulation and trophic transfer of methylmercury in Long Island Sound. Arch Environ Contamination Toxicol 51:416–424. (PMID: 10.1007/s00244-005-0265-7)
Harris RC, Bodaly RA (1998) Temperature, growth and dietary effects on fish mercury dynamics in two Ontario lakes. Biogeochemistry 40(2-3):175–87. (PMID: 10.1023/A:1005986505407)
Hsu-Kim H, Kucharzyk KH, Zhang T, Deshusses MA (2013) Mechanisms regulating mercury bioavailability for methylating microorganisms in the aquatic environment: a critical review. Environ Sci Technol 47(6):2441–2456. (PMID: 10.1021/es304370g)
Hsu-Kim H, Eckley CS, Achá D, Feng X, Gilmour CC, Jonsson S, Mitchell CP (2018) Challenges and opportunities for managing aquatic mercury pollution in altered landscapes. Ambio 47:141–169. (PMID: 10.1007/s13280-017-1006-7)
Huge DH, Schofield PJ, Jacoby CA, Frazer TK (2014) Total mercury concentrations in lionfish (Pterois volitans/miles) from the Florida Keys National Marine Sanctuary, USA. Marine Pollut Bull 78(1-2):51–55. (PMID: 10.1016/j.marpolbul.2013.11.019)
Integrated Taxonomic Information System (ITIS) (2023) www.itis.gov , CC0. https://doi.org/10.5066/F7KH0KBK.
Karagas MR, Choi AL, Oken E, Horvat M, Schoeny R, Kamai E, Cowell W, Grandjean P, Korrick S (2012) Evidence on the human health effects of low-level methylmercury exposure. Environ Health Perspect 120(6):799–806. (PMID: 10.1289/ehp.1104494)
Karimi R, Chen CY, Folt CL (2016) Comparing nearshore benthic and pelagic prey as mercury sources to lake fish: the importance of prey quality and mercury content. Sci Total Environ 565:211–221. (PMID: 10.1016/j.scitotenv.2016.04.162)
Kocman D, Horvat M, Pirrone N, Cinnirella S (2013) Contribution of contaminated sites to the global mercury budget. Environ Res 125:160–170. (PMID: 10.1016/j.envres.2012.12.011)
Kocman D, Wilson SJ, Amos HM, Telmer KH, Steenhuisen F, Sunderland EM, Mason RP, Outridge P, Horvat M (2017) Toward an assessment of the global inventory of present-day mercury releases to freshwater environments. Int J Environ Res Public Health 14(2):138. (PMID: 10.3390/ijerph14020138)
Koenig CC, Coleman FC, Eklund AM, Schull J, Ueland J (2007) Mangroves as essential nursery habitat for goliath grouper (Epinephelus itajara). Bull Marine Sci 80(3):567–585.
Lenth R (2023) emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.8.4-1, https://CRAN.R-project.org/package=emmeans.
Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394. (PMID: 10.1021/es403103t)
Lescord GL, Johnston TA, Branfireun BA, Gunn JM (2018) Percentage of methylmercury in the muscle tissue of freshwater fish varies with body size and age and among species. Environ Toxicol Chem 37:2682–2691. (PMID: 10.1002/etc.4233)
Liu M, Zhang Q, Maavara T, Liu S, Wang X, Raymond PA (2021) Rivers as the largest source of mercury to coastal oceans worldwide. Nat Geosci 14(9):672–677. (PMID: 10.1038/s41561-021-00793-2)
Maldonado JH, Sánchez RDPM, Morales MEV, Leguízamo E (2022) Livelihoods characterization of a small-scale fishing community in the Colombian caribbean. Marine Fishery Sci 35(2):181–210.
Malinowski CR (2019) High mercury concentrations in Atlantic Goliath Grouper: spatial analysis of a vulnerable species. Marine Poll Bull 143:81–91. (PMID: 10.1016/j.marpolbul.2019.04.006)
Mason RP, Abbott ML, Bodaly RA, Bullock Jr OR, Driscoll CT, Evers DC, Lindberg SE, Murray M, Swain EB (2005) Monitoring the response to changing mercury deposition. Environ Sci Technol 39(1):14A–22A. (PMID: 10.1021/es053155l)
Mohammed A, Mohammed T (2017) Mercury, arsenic, cadmium and lead in two commercial shark species (Sphyrna lewini and Caraharinus porosus) in Trinidad and Tobago. Marine Pollut Bull 119(2):214–218. (PMID: 10.1016/j.marpolbul.2017.04.025)
Obrist D, Kirk JL, Zhang L, Sunderland EM, Jiskra M, Selin NE (2018) A review of global environmental mercury processes in response to human and natural perturbations: Changes of emissions, climate, and land use. Ambio 47(2):116–140. (PMID: 10.1007/s13280-017-1004-9)
Outridge PM, Mason RP, Wang F, Guerrero S, Heimburger-Boavida LE (2018) Updated global and oceanic mercury budgets for the United Nations Global Mercury Assessment 2018. Environ Sci Technol 52(20):11466–11477.
Pereira G, Josupeit H (2017) The world lobster market. In Globefish Research Programme; Food and Agricultural Organization: Rome, Italy, 2017; Volume 123, 41p.
Petre SJ, Sackett DK, Aday DD (2012) Do national advisories serve local consumers: an assessment of mercury in economically important North Carolina fish. J Environ Monit 14(5):1410–1416. (PMID: 10.1039/c2em30024a)
Piraino MN, Taylor DL (2009) Bioaccumulation and trophic transfer of mercury in striped bass (Morone saxatilis) and tautog (Tautoga onitis) from the Narragansett Bay (Rhode Island, USA). Marine Environ Res 67(3):117–128. (PMID: 10.1016/j.marenvres.2008.12.006)
Podar M, Gilmour CC, Brandt CC, Soren A, Brown SD, Crable BR, Palumbo AV, Somenahally AC, Elias DA (2015) Global prevalence and distribution of genes and microorganisms involved in mercury methylation. Sci Adv 1(9):e1500675. (PMID: 10.1126/sciadv.1500675)
Pusack TJ, Benkwitt CE, Cure K, Kindinger TL (2016) Invasive Red Lionfish (Pterois volitans) grow faster in the Atlantic Ocean than in their native Pacific range. Environ Biol Fishes 99:571–579. (PMID: 10.1007/s10641-016-0499-4)
R Core Team (2023) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, https://www.R-project.org/.
Rice KM, Walker Jr EM, Wu M, Gillette C, Blough ER (2014) Environmental mercury and its toxic effects. J Prevent Med Public Health 47(2):74. (PMID: 10.3961/jpmph.2014.47.2.74)
Richter W, Skinner LC (2020) Mercury in the fish of New Yorkʼs Great Lakes: A quarter century of near stability. Ecotoxicology 29(10):1721–1738. (PMID: 10.1007/s10646-019-02130-1)
Ricketts P, Basu N, Fletcher H, Voutchkov M, Bassaw B (2016) Assessment of fish consumption and mercury exposure among pregnant women in Jamaica and Trinidad & Tobago. Chemosphere 164:462–468. (PMID: 10.1016/j.chemosphere.2016.08.054)
Rojas de Astudillo L, Chang Yen I, Bekele I (2005) Heavy metals in sediments, mussels and oysters from Trinidad and Venezuela. Revista de biología tropical 53:41–51.
Rolfhus KR, Hall BD, Monson BA, Paterson MJ, Jeremiason JD (2011) Assessment of mercury bioaccumulation within the pelagic food web of lakes in the western Great Lakes region. Ecotoxicology 20(7):1520–1529. (PMID: 10.1007/s10646-011-0733-y)
Roué-Legall A, Lucotte M, Carreau J, Canuel R, Garcia E (2005) Development of an ecosystem sensitivity model regarding mercury levels in fish using a preference modeling methodology: Application to the Canadian boreal system. Environ Sci Technol 39(24):9412–9423. (PMID: 10.1021/es048220q)
Roulet M, Lucotte M, Canuel R, Farella N, Courcelles M, Guimaraes JR, Mergler D, Amorim M (2000) Increase in mercury contamination recorded in lacustrine sediments following deforestation in the central Amazon. Chem Geology 165(3-4):243–266. (PMID: 10.1016/S0009-2541(99)00172-2)
Sackett DK, Cope WG, Rice JA, Aday DD (2013) The influence of fish length on tissue mercury dynamics: implications for natural resource management and human health risk. Int J Environ Res Public Health 10(2):638–659. (PMID: 10.3390/ijerph10020638)
Scheuhammer AM, Basu N, Evers DC, Heinz G, Sandheinrich MB, Bank MS (2012) Ecotoxicology of mercury in fish and wildlife: Recent advances. In: Bank M (ed) Mercury in the Environment: Pattern and Process. University of California Press, Berkeley CA, p 223–238. (PMID: 10.1525/california/9780520271630.003.0011)
Scheuhammer A, Braune B, Chan HM, Frouin H, Krey A, Letcher R, Loseto L, Noël M, Ostertag S, Ross P, Wayland M (2015) Recent progress on our understanding of the biological effects of mercury in fish and wildlife in the Canadian Arctic. Sci Total Environ 509:91–103. (PMID: 10.1016/j.scitotenv.2014.05.142)
Scudder BC, Chasar LC, DeWeese LR, Brigham ME, Wentz DA, Brumbaugh WG (2008) Procedures for collecting and processing aquatic invertebrates and fish for analysis of mercury as part of the National Water-Quality Assessment Program: U.S. Geological Survey Open-File Report 2008–1208, 34 p.
Shanley JB, Moore R, Smith RA, Miller EK, Simcox A, Kamman N, Nacci D, Robinson K, Johnston JM, Hughes MM, Johnston C (2012) MERGANSER: an empirical model to predict fish and loon mercury in New England lakes. Environ Sci Technol 46(8):4641–4648. (PMID: 10.1021/es300581p)
Simoneau M, Lucotte M, Garceau S, Laliberté D (2005) Fish growth rates modulate mercury concentrations in walleye (Sander vitreus) from eastern Canadian lakes. Environ Res 98(1):73–82. (PMID: 10.1016/j.envres.2004.08.002)
Somers KM, Jackson DA (1993) Adjusting mercury concentration for fish-size covariation: a multivariate alternative to bivariate regression. Can J Fish Aquatic Sci 50(11):2388–2396. (PMID: 10.1139/f93-263)
Spanier E, Lavalli KL, Goldstein JS, Groeneveld JC, Jordaan GL, Jones CM, Phillips BF, Bianchini ML, Kibler RD, Díaz D, Mallol S (2015) A concise review of lobster utilization by worldwide human populations from prehistory to the modern era. ICES J Marine Sci 72(suppl_1):i7–21. (PMID: 10.1093/icesjms/fsv066)
Stephen AL, Murray P (2008) International trade and fisheries: Implications for fisheries management and development of small vulnerable Caribbean states. Proceedings of the 61st Gulf and Caribbean Fisheries Institute 61.
Streets DG, Horowitz HM, Jacob DJ, Lu Z, Levin L, Ter Schure AF, Sunderland EM (2017) Total mercury released to the environment by human activities. Environ Sci Technol 51(11):5969–5977. (PMID: 10.1021/acs.est.7b00451)
Sunderland EM (2007) Mercury exposure from domestic and imported estuarine and marine fish in the U.S. seafood market. Environ Health Perspect 115(2):235–242. https://doi.org/10.1289/ehp.9377. (PMID: 10.1289/ehp.9377)
Sunderland EM, Li M, Bullard K (2018) Decadal changes in the edible supply of seafood and methylmercury exposure in the United States. Environ Health Perspect 126(1):017006. (PMID: 10.1289/EHP2644)
Swenson JJ, Carter CE, Domec JC, Delgado CI (2011) Gold mining in the Peruvian Amazon: global prices, deforestation, and mercury imports. PloS One 2011 6(4):e18875. (PMID: 10.1371/journal.pone.0018875)
Taylor VF, Buckman KL, Seelen EA, Mazrui NM, Balcom PH, Mason RP, Chen CY (2019) Organic carbon content drives methylmercury levels in the water column and in estuarine food webs across latitudes in the Northeast United States. Environ Pollut 246:639–649. https://doi.org/10.1016/j.envpol.2018.12.064. (PMID: 10.1016/j.envpol.2018.12.064)
Teh LC, Ota Y, Cisneros‐Montemayor AM, Harrington L, Swartz W (2020) Are fishers poor? Getting to the bottom of marine fisheries income statistics. Fish Fisheries 21(3):471–482. (PMID: 10.1111/faf.12441)
Tewfik A, Babcock EA, Phillips M (2020) Spiny lobster fisheries status across time and a mosaic of spatial management regimes. ICES J Marine Sci 77(3):1002–1016. (PMID: 10.1093/icesjms/fsaa008)
Travnikov O, Angot H, Artaxo P, Bencardino M, Bieser J, d’Amore F, Dastoor A, De Simone F, Diéguez MDC, Dommergue A, Ebinghaus R (2017) Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation. Atmos Chem Phys 17(8):5271–5295. (PMID: 10.5194/acp-17-5271-2017)
Trudel M, Rasmussen JB (2006) Bioenergetics and mercury dynamics in fish: a modelling perspective. Can J Fish Aquatic Sci 63(8):1890–1902. (PMID: 10.1139/f06-081)
United Nations Environment Programme (UNEP) (2013) Minamata convention on mercury: Texts and annexes. UNEP Chemicals Branch, Geneva, Switzerland.
United Nations Environment Programme (UNEP) (2019) Global Mercury Assessment 2018. UN Environment Programme. Chemicals and Health Branch, Geneva, Switzerland.
U.S. EPA (1998) Method 7473 (SW-846): Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry. Revision 0. Washington, DC.
U.S. EPA (2000) Guidance for assessing chemical contaminant data for use in fish advisories. Fish Sampling and Analysis, 3rd edition volume 1. U.S. Environmental Protection Agency, Office of Science and Technology, Office of Water, U.S. Environmental Protection Agency, Washington, DC.
U.S. FDA / EPA (2022) Technical Information on Development of FDA/EPA Advice about Eating Fish for Those Who Might Become or Are Pregnant or Breastfeeding and Children Ages 1-11 Years. https://www.fda.gov/food/metals-and-your-food/technical-information-development-fdaepa-advice-about-eating-fish-those-who-might-become-or-are.
Van Walleghem JL, Blanchfield PJ, Hintelmann H (2007) Elimination of mercury by yellow perch in the wild. Environ Sci Technol 41(16):5895–5901. (PMID: 10.1021/es070395n)
Vander Zanden MJ, Rasmussen JB (1996) A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecol Monogr 66(4):451–477. (PMID: 10.2307/2963490)
Walters DM, Blocksom KA, Lazorchak JM, Jicha T, Angradi TR, Bolgrien DW (2010) Mercury contamination in fish in midcontinent great rivers of the United States: Importance of species traits and environmental factors. Environ Sci Technol 44(8):2947–2953. (PMID: 10.1021/es903754d)
Ward DM, Nislow KH, Chen CY, Folt CL (2010) Rapid, efficient growth reduces mercury concentrations in stream-dwelling Atlantic salmon. Trans Am Fish Soc 139(1):1–10. (PMID: 10.1577/T09-032.1)
Webber HM, Haines TA (2003) Mercury effects on predator avoidance behavior of a forage fish golden shiner (Notemigonus crysoleucas). Environ Toxicol Chem 22:1556–1561. (PMID: 10.1002/etc.5620220718)
Weiner J, Krabbenhoft D, Heinz G, Scheuhammer AM (2003) Ecotoxicology of Mercury. In: Hoffman DJ, Rattner BA, Burton GAJ, Cairns JJ editors Handbook of Ecotoxicology. CRC Press, New York, NY, USA, p 409–463.
Winemiller KO, Rose KA (1991) Patterns of life-history diversification in North American fishes: implications for population regulation. Can J Fish Aquatic Sci 49(10):2196–2218. (PMID: 10.1139/f92-242)
WHO (2020) 10 chemicals of public health concern.
Wu P, Kainz MJ, Bravo AG, Åkerblom S, Sonesten L, Bishop K (2019) The importance of bioconcentration into the pelagic food web base for methylmercury biomagnification: A meta-analysis. Sci Total Environ 646:357–367. (PMID: 10.1016/j.scitotenv.2018.07.328)
Wyn B, Kidd KA, Burgess NM, Curry RA, Munkittrick KR (2010) Increasing mercury in yellow perch at a hotspot in Atlantic Canada, Kejimkujik National Park. Environ Sci Technol 44(23):9176–9181. (PMID: 10.1021/es1018114)
Yoshimura A, Suemasu K, Veiga MM (2021) Estimation of mercury losses and gold production by artisanal and small-scale gold mining (ASGM). J Sustain Metallurgy 7:1045–1059. (PMID: 10.1007/s40831-021-00394-8)
فهرسة مساهمة: Keywords: Biomonitoring; Caribbean; Contaminants; Fish; Invertebrates; Mercury
المشرفين على المادة: FXS1BY2PGL (Mercury)
0 (Water Pollutants, Chemical)
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240628 Latest Revision: 20240701
رمز التحديث: 20240701
مُعرف محوري في PubMed: PMC11213769
DOI: 10.1007/s10646-024-02754-y
PMID: 38836941
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-3017
DOI:10.1007/s10646-024-02754-y