دورية أكاديمية

Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.

التفاصيل البيبلوغرافية
العنوان: Curcumin suppresses colorectal cancer by induction of ferroptosis via regulation of p53 and solute carrier family 7 member 11/glutathione/glutathione peroxidase 4 signaling axis.
المؤلفون: Ming T; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Lei J; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Peng Y; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Wang M; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Liang Y; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Tang S; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Tao Q; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Wang M; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Tang X; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., He Z; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Liu X; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China., Xu H; State Key Laboratory of Southwestern Chinese Medicine Resources, Department of Pharmacology, School of Pharmaceutical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
المصدر: Phytotherapy research : PTR [Phytother Res] 2024 Aug; Vol. 38 (8), pp. 3954-3972. Date of Electronic Publication: 2024 Jun 04.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8904486 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-1573 (Electronic) Linking ISSN: 0951418X NLM ISO Abbreviation: Phytother Res Subsets: MEDLINE
أسماء مطبوعة: Publication: : Chichester : Wiley
Original Publication: London : Heyden & Son, c1987-
مواضيع طبية MeSH: Ferroptosis*/drug effects , Colorectal Neoplasms*/drug therapy , Colorectal Neoplasms*/metabolism , Colorectal Neoplasms*/pathology , Phospholipid Hydroperoxide Glutathione Peroxidase*/metabolism , Tumor Suppressor Protein p53*/metabolism , Amino Acid Transport System y+*/metabolism , Curcumin*/pharmacology, Humans ; Animals ; Mice ; Cell Line, Tumor ; Signal Transduction/drug effects ; Reactive Oxygen Species/metabolism ; Glutathione/metabolism ; Mice, Nude ; Mice, Inbred BALB C ; Xenograft Model Antitumor Assays ; Lipid Peroxidation/drug effects ; Glutathione Peroxidase/metabolism ; Male ; Molecular Docking Simulation ; Cell Proliferation/drug effects
مستخلص: Driven by iron-dependent lipid peroxidation, ferroptosis is regulated by p53 and solute carrier family 7 member 11 (SLC7A11)/glutathione/glutathione peroxidase 4 (GPX4) axis in colorectal cancer (CRC). This study aimed to investigate the influence of curcumin (CUR) on ferroptosis in CRC. The efficacies of CUR on the malignant phenotype of CRC cells were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide, wound healing, and clonogenic assays. The effects of CUR on ferroptosis of CRC cells were evaluated by transmission electron microscopy, lactate dehydrogenase release assay, Fe 2+ staining, and analyses of reactive oxygen species, lipid peroxide, malondialdehyde, and glutathione levels. CUR's targets in ferroptosis were predicted by network pharmacological study and molecular docking. With SW620 xenograft tumors, the efficacy of CUR on CRC was investigated, and the effects of CUR on ferroptosis were assessed by detection of Fe 2+ , malondialdehyde, and glutathione levels. The effects of CUR on expressions of p53, SLC7A11, and GPX4 in CRC cells and tumors were analyzed by quantitative reverse transcription-polymerase chain reaction, western blotting, and immunohistochemistry. CUR suppressed the proliferation, migration, and clonogenesis of CRC cells and xenograft tumor growth by causing ferroptosis, with enhanced lactate dehydrogenase release and Fe 2+ , reactive oxygen species, lipid peroxide, and malondialdehyde levels, but attenuated glutathione level in CRC. In silico study indicated that CUR may bind p53, SLC7A11, and GPX4, consolidated by that CUR heightened p53 but attenuated SLC7A11 and GPX4 mRNA and protein levels in CRC. CUR may exert an inhibitory effect on CRC by inducing ferroptosis via regulation of p53 and SLC7A11/glutathione/GPX4 axis.
(© 2024 John Wiley & Sons Ltd.)
References: Battaglia, A. M., Chirillo, R., Aversa, I., Sacco, A., Costanzo, F., & Biamonte, F. (2020). Ferroptosis and cancer: Mitochondria meet the “iron maiden” cell death. Cells, 9(6), 1505. https://doi.org/10.3390/cells9061505.
Bhatt, H. D., McClain, S. A., Lee, H. M., Zimmerman, T., Deng, J., Johnson, F., Gu, Y., & Golub, L. M. (2022). The maximum‐tolerated dose and pharmacokinetics of a novel chemically modified curcumin in rats. Journal of Experimental Pharmacology, 14, 73–85. https://doi.org/10.2147/JEP.S341927.
Cao, X., Li, Y., Wang, Y., Yu, T., Zhu, C., Zhang, X., & Guan, J. (2022). Curcumin suppresses tumorigenesis by ferroptosis in breast cancer. PLoS One, 17(1), e0261370. https://doi.org/10.1371/journal.pone.0261370.
Chen, H., Li, Z., Xu, J., Zhang, N., Chen, J., Wang, G., & Zhao, Y. (2023). Curcumin induces ferroptosis in follicular thyroid cancer by upregulating HO‐1 expression. Oxidative Medicine and Cellular Longevity, 2023, 6896790. https://doi.org/10.1155/2023/6896790.
Chen, H., Wang, C., Liu, Z., He, X., Tang, W., He, L., Feng, Y., Liu, D., Yin, Y., & Li, T. (2022). Ferroptosis and its multifaceted role in cancer: Mechanisms and therapeutic approach. Antioxidants (Basel), 11(8), 1504. https://doi.org/10.3390/antiox11081504.
Chen, L., He, M., Zhang, M., Sun, Q., Zeng, S., Zhao, H., Yang, H., Liu, M., Ren, S., Meng, X., & Xu, H. (2021). The role of non‐coding RNAs in colorectal cancer, with a focus on its autophagy. Pharmacology & Therapeutics, 226, 107868. https://doi.org/10.1016/j.pharmthera.2021.107868.
Chen, M., Tan, A. H., & Li, J. (2023). Curcumin represses colorectal cancer cell proliferation by triggering ferroptosis via PI3K/Akt/mTOR signaling. Nutrition and Cancer, 75(2), 726–733. https://doi.org/10.1080/01635581.2022.2139398.
Chen, X., Kang, R., Kroemer, G., & Tang, D. (2021). Broadening horizons: The role of ferroptosis in cancer. Nature Reviews. Clinical Oncology, 18(5), 280–296. https://doi.org/10.1038/s41571-020-00462-0.
Du, R., Cheng, X., Ji, J., Lu, Y., Xie, Y., Wang, W., Xu, Y., & Zhang, Y. (2023). Mechanism of ferroptosis in a rat model of premature ovarian insufficiency induced by cisplatin. Scientific Reports, 13(1), 4463. https://doi.org/10.1038/s41598-023-31712-7.
Fan, W. H., Wang, F. C., Jin, Z., Zhu, L., & Zhang, J. X. (2022). Curcumin synergizes with cisplatin to inhibit colon cancer through targeting the microRNA‐137‐glutaminase axis. Current Medical Science, 42(1), 108–117. https://doi.org/10.1007/s11596-021-2469-0.
Feltrin, F. D. S., Agner, T., Sayer, C., & Lona, L. M. F. (2022). Curcumin encapsulation in functional PLGA nanoparticles: A promising strategy for cancer therapies. Advances in Colloid and Interface Science, 300, 102582. https://doi.org/10.1016/j.cis.2021.102582.
Ferreira, L. G., Dos Santos, R. N., Oliva, G., & Andricopulo, A. D. (2015). Molecular docking and structure‐based drug design strategies. Molecules, 20(7), 13384–13421. https://doi.org/10.3390/molecules200713384.
Firouzjaei, A. A., Aghaee‐Bakhtiari, S. H., Tafti, A., Sharifi, K., Abadi, M., Rezaei, S., & Mohammadi‐Yeganeh, S. (2023). Impact of curcumin on ferroptosis‐related genes in colorectal cancer: Insights from in‐silico and in‐vitro studies. Cell Biochemistry and Function, 41(8), 1488–1502. https://doi.org/10.1002/cbf.3889.
Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein‐ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051.
Giordano, A., & Tommonaro, G. (2019). Curcumin and cancer. Nutrients, 11(10), 2376. https://doi.org/10.3390/nu11102376.
Guo, J., Xu, B., Han, Q., Zhou, H., Xia, Y., Gong, C., Dai, X., Li, Z., & Wu, G. (2018). Ferroptosis: A novel anti‐tumor action for cisplatin. Cancer Research and Treatment, 50(2), 445–460. https://doi.org/10.4143/crt.2016.572.
Hanggi, K., & Ruffell, B. (2023). Cell death, therapeutics, and the immune response in cancer. Trends in Cancer, 9(5), 381–396. https://doi.org/10.1016/j.trecan.2023.02.001.
Hossain, M. S., Karuniawati, H., Jairoun, A. A., Urbi, Z., Ooi, J., John, A., Lim, Y. C., Kibria, K. M. K., Mohiuddin, A. K. M., Ming, L. C., Goh, K. W., & Hadi, M. A. (2022). Colorectal cancer: A review of carcinogenesis, global epidemiology, current challenges, risk factors, preventive and treatment strategies. Cancers (Basel), 14(7), 1732. https://doi.org/10.3390/cancers14071732.
Hsin, K. Y., Ghosh, S., & Kitano, H. (2013). Combining machine learning systems and multiple docking simulation packages to improve docking prediction reliability for network pharmacology. PLoS One, 8(12), e83922. https://doi.org/10.1371/journal.pone.0083922.
Huang, L., Li, W., Lu, Y., Ju, Q., & Ouyang, M. (2023). Iron metabolism in colorectal cancer. Frontiers in Oncology, 13, 1098501. https://doi.org/10.3389/fonc.2023.1098501.
Iranshahy, M., Hanafi‐Bojd, M. Y., Aghili, S. H., Iranshahi, M., Nabavi, S. M., Saberi, S., Filosa, R., Nezhad, I. F., & Hasanpour, M. (2023). Curcumin‐loaded mesoporous silica nanoparticles for drug delivery: Synthesis, biological assays and therapeutic potential ‐ A review. RSC Advances, 13(32), 22250–22267. https://doi.org/10.1039/d3ra02772d.
Jiang, L., Kon, N., Li, T., Wang, S. J., Su, T., Hibshoosh, H., Baer, R., & Gu, W. (2015). Ferroptosis as a p53‐mediated activity during tumour suppression. Nature, 520(7545), 57–62. https://doi.org/10.1038/nature14344.
Joshi, P., Bisht, A., Paliwal, A., Dwivedi, J., & Sharma, S. (2023). Recent updates on clinical developments of curcumin and its derivatives. Phytotherapy Research, 37(11), 5109–5158. https://doi.org/10.1002/ptr.7974.
Kang, R., Kroemer, G., & Tang, D. (2019). The tumor suppressor protein p53 and the ferroptosis network. Free Radical Biology & Medicine, 133, 162–168. https://doi.org/10.1016/j.freeradbiomed.2018.05.074.
Lewerenz, J., Ates, G., Methner, A., Conrad, M., & Maher, P. (2018). Oxytosis/ferroptosis‐(re‐) emerging roles for oxidative stress‐dependent non‐apoptotic cell death in diseases of the central nervous system. Frontiers in Neuroscience, 12, 214. https://doi.org/10.3389/fnins.2018.00214.
Li, F. J., Long, H. Z., Zhou, Z. W., Luo, H. Y., Xu, S. G., & Gao, L. C. (2022). System X(c) (−)/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug‐resistant solid tumor therapy. Frontiers in Pharmacology, 13, 910292. https://doi.org/10.3389/fphar.2022.910292.
Li, G., Fang, S., Shao, X., Li, Y., Tong, Q., Kong, B., Chen, L., Wang, Y., Yang, J., Yu, H., Xie, X., & Zhang, J. (2021). Curcumin reverses NNMT‐induced 5‐fluorouracil resistance via increasing ROS and cell cycle arrest in colorectal cancer cells. Biomolecules, 11(9), 1295. https://doi.org/10.3390/biom11091295.
Li, L., Wang, X., Xu, H., Liu, X., & Xu, K. (2022). Perspectives and mechanisms for targeting ferroptosis in the treatment of hepatocellular carcinoma. Frontiers in Molecular Biosciences, 9, 947208. https://doi.org/10.3389/fmolb.2022.947208.
Li, R., Zhang, J., Zhou, Y., Gao, Q., Wang, R., Fu, Y., Zheng, L., & Yu, H. (2020). Transcriptome investigation and in vitro verification of curcumin‐induced HO‐1 as a feature of ferroptosis in breast cancer cells. Oxidative Medicine and Cellular Longevity, 2020, 3469840. https://doi.org/10.1155/2020/3469840.
Lin, H., Chen, X., Zhang, C., Yang, T., Deng, Z., Song, Y., Huang, L., Li, F., Li, Q., Lin, S., & Jin, D. (2021). EF24 induces ferroptosis in osteosarcoma cells through HMOX1. Biomedicine & Pharmacotherapy, 136, 111202. https://doi.org/10.1016/j.biopha.2020.111202.
Liu, M. R., Zhu, W. T., & Pei, D. S. (2021). System xc(−): A key regulatory target of ferroptosis in cancer. Investigational New Drugs, 39(4), 1123–1131. https://doi.org/10.1007/s10637-021-01070-0.
Liu, X., Tuerxun, H., Li, Y., Li, Y., He, Y., & Zhao, Y. (2022). Ferroptosis: Reviewing CRC with the third eye. Journal of Inflammation Research, 15, 6801–6812. https://doi.org/10.2147/JIR.S389290.
Liu, Y., & Gu, W. (2022). p53 in ferroptosis regulation: The new weapon for the old guardian. Cell Death and Differentiation, 29(5), 895–910. https://doi.org/10.1038/s41418-022-00943-y.
Liu, Z., Ma, H., & Lai, Z. (2023). The role of ferroptosis and cuproptosis in curcumin against hepatocellular carcinoma. Molecules, 28(4), 1623. https://doi.org/10.3390/molecules28041623.
Ming, T., Tao, Q., Tang, S., Zhao, H., Yang, H., Liu, M., Ren, S., & Xu, H. (2022). Curcumin: An epigenetic regulator and its application in cancer. Biomedicine & Pharmacotherapy, 156, 113956. https://doi.org/10.1016/j.biopha.2022.113956.
Miyazaki, K., Xu, C., Shimada, M., & Goel, A. (2023). Curcumin and andrographis exhibit anti‐tumor effects in colorectal cancer via activation of ferroptosis and dual suppression of glutathione peroxidase‐4 and ferroptosis suppressor protein‐1. Pharmaceuticals (Basel), 16(3), 383. https://doi.org/10.3390/ph16030383.
Moghtaderi, H., Sepehri, H., Delphi, L., & Attari, F. (2018). Gallic acid and curcumin induce cytotoxicity and apoptosis in human breast cancer cell MDA‐MB‐231. BioImpacts: BI, 8(3), 185–194. https://doi.org/10.15171/bi.2018.21.
Moradi‐Marjaneh, R., Hassanian, S. M., Rahmani, F., Aghaee‐Bakhtiari, S. H., Avan, A., & Khazaei, M. (2018). Phytosomal curcumin elicits anti‐tumor properties through suppression of angiogenesis, cell proliferation and induction of oxidative stress in colorectal cancer. Current Pharmaceutical Design, 24(39), 4626–4638. https://doi.org/10.2174/1381612825666190110145151.
Nair, A. B., & Jacob, S. (2016). A simple practice guide for dose conversion between animals and human. Journal of Basic and Clinical Pharmacy, 7(2), 27–31. https://doi.org/10.4103/0976-0105.177703.
Ojo, O. A., Adeyemo, T. R., Rotimi, D., Batiha, G. E., Mostafa‐Hedeab, G., Iyobhebhe, M. E., Elebiyo, T. C., Atunwa, B., Ojo, A. B., Lima, C. M. G., & Conte‐Junior, C. A. (2022). Anticancer properties of curcumin against colorectal cancer: A review. Frontiers in Oncology, 12, 881641. https://doi.org/10.3389/fonc.2022.881641.
Ou, Y., Wang, S. J., Li, D., Chu, B., & Gu, W. (2016). Activation of SAT1 engages polyamine metabolism with p53‐mediated ferroptotic responses. Proceedings of the National Academy of Sciences of the United States of America, 113(44), E6806–E6812. https://doi.org/10.1073/pnas.1607152113.
Owen, J. B., & Butterfield, D. A. (2010). Measurement of oxidized/reduced glutathione ratio. Methods in Molecular Biology, 648, 269–277. https://doi.org/10.1007/978-1-60761-756-3_18.
Pashirzad, M., Johnston, T. P., & Sahebkar, A. (2021). Therapeutic effects of polyphenols on the treatment of colorectal cancer by regulating Wnt beta‐catenin signaling pathway. Journal of Oncology, 2021, 3619510. https://doi.org/10.1155/2021/3619510.
Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A., & Jemal, A. (2023). Colorectal cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(3), 233–254. https://doi.org/10.3322/caac.21772.
Silvestre, F., Santos, C., Silva, V., Ombredane, A., Pinheiro, W., Andrade, L., Garcia, M., Pacheco, T., Joanitti, G., Luz, G., & Carneiro, M. (2023). Pharmacokinetics of curcumin delivered by nanoparticles and the relationship with antitumor efficacy: A systematic review. Pharmaceuticals (Basel), 16(7), 943. https://doi.org/10.3390/ph16070943.
Stockwell, B. R., Friedmann Angeli, J. P., Bayir, H., Bush, A. I., Conrad, M., Dixon, S. J., Fulda, S., Gascón, S., Hatzios, S. K., Kagan, V. E., Noel, K., Jiang, X., Linkermann, A., Murphy, M. E., Overholtzer, M., Oyagi, A., Pagnussat, G. C., Park, J., Ran, Q., … Zhang, D. D. (2017). Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell, 171(2), 273–285. https://doi.org/10.1016/j.cell.2017.09.021.
Sun, Q., Tao, Q., Ming, T., Tang, S., Zhao, H., Liu, M., Yang, H., Ren, S., Lei, J., Liang, Y., Peng, Y., Wang, M., & Xu, H. (2023). Berberine is a suppressor of hedgehog signaling cascade in colorectal cancer. Phytomedicine, 114, 154792. https://doi.org/10.1016/j.phymed.2023.154792.
Tang, D., Chen, X., Kang, R., & Kroemer, G. (2021). Ferroptosis: Molecular mechanisms and health implications. Cell Research, 31(2), 107–125. https://doi.org/10.1038/s41422-020-00441-1.
Tang, X., Ding, H., Liang, M., Chen, X., Yan, Y., Wan, N., Chen, Q., Zhang, J., & Cao, J. (2021). Curcumin induces ferroptosis in non‐small‐cell lung cancer via activating autophagy. Thoracic Cancer, 12(8), 1219–1230. https://doi.org/10.1111/1759-7714.13904.
Wang, Y., Zhang, Z., Sun, W., Zhang, J., Xu, Q., Zhou, X., & Mao, L. (2022). Ferroptosis in colorectal cancer: Potential mechanisms and effective therapeutic targets. Biomedicine & Pharmacotherapy, 153, 113524. https://doi.org/10.1016/j.biopha.2022.113524.
Xi, Y., & Xu, P. (2021). Global colorectal cancer burden in 2020 and projections to 2040. Translational Oncology, 14(10), 101174. https://doi.org/10.1016/j.tranon.2021.101174.
Yan, H., Talty, R., Aladelokun, O., Bosenberg, M., & Johnson, C. H. (2023). Ferroptosis in colorectal cancer: A future target? British Journal of Cancer, 128(8), 1439–1451. https://doi.org/10.1038/s41416-023-02149-6.
Yang, W. S., SriRamaratnam, R., Welsch, M. E., Shimada, K., Skouta, R., Viswanathan, V. S., Cheah, J. H., Clemons, P. A., Shamji, A. F., Clish, C. B., Brown, L. M., Girotti, A. W., Cornish, V. W., Schreiber, S. L., & Stockwell, B. R. (2014). Regulation of ferroptotic cancer cell death by GPX4. Cell, 156(1–2), 317–331. https://doi.org/10.1016/j.cell.2013.12.010.
Yang, Z. J., Huang, S. Y., Zhou, D. D., Xiong, R. G., Zhao, C. N., Fang, A. P., Zhang, Y. J., Li, H. B., & Zhu, H. L. (2022). Effects and mechanisms of curcumin for the prevention and management of cancers: An updated review. Antioxidants (Basel), 11(8), 1481. https://doi.org/10.3390/antiox11081481.
Yin, J., Wang, L., Wang, Y., Shen, H., Wang, X., & Wu, L. (2019). Curcumin reverses oxaliplatin resistance in human colorectal cancer via regulation of TGF‐beta/Smad2/3 signaling pathway. Oncotargets and Therapy, 12, 3893–3903. https://doi.org/10.2147/OTT.S199601.
Zhang, Y., Rauf Khan, A., Fu, M., Zhai, Y., Ji, J., Bobrovskaya, L., & Zhai, G. (2019). Advances in curcumin‐loaded nanopreparations: Improving bioavailability and overcoming inherent drawbacks. Journal of Drug Targeting, 27(9), 917–931. https://doi.org/10.1080/1061186X.2019.1572158.
Zhao, H., Ming, T., Tang, S., Ren, S., Yang, H., Liu, M., Tao, Q., & Xu, H. (2022). Wnt signaling in colorectal cancer: Pathogenic role and therapeutic target. Molecular Cancer, 21(1), 144. https://doi.org/10.1186/s12943-022-01616-7.
Zhao, H., Ren, S., Yang, H., Tang, S., Guo, C., Liu, M., Tao, Q., Ming, T., & Xu, H. (2022). Peppermint essential oil: Its phytochemistry, biological activity, pharmacological effect and application. Biomedicine & Pharmacotherapy, 154, 113559. https://doi.org/10.1016/j.biopha.2022.113559.
Zhao, H., Tang, S., Tao, Q., Ming, T., Lei, J., Liang, Y., Peng, Y., Wang, M., Liu, M., Yang, H., Ren, S., & Xu, H. (2023). Ursolic acid suppresses colorectal cancer by down‐regulation of Wnt/beta‐catenin signaling pathway activity. Journal of Agricultural and Food Chemistry, 71(9), 3981–3993. https://doi.org/10.1021/acs.jafc.2c06775.
Zhao, Y., Li, Y., Zhang, R., Wang, F., Wang, T., & Jiao, Y. (2020). The role of erastin in ferroptosis and its prospects in cancer therapy. Oncotargets and Therapy, 13, 5429–5441. https://doi.org/10.2147/ott.S254995.
معلومات مُعتمدة: 81573813 National Natural Science Foundation of China; 2023NSFSC0653 The Science & Technology Department of Sichuan Province of China; 2021XYCZ007 Sichuan Provincial Administration of Traditional Chinese Medicine of China; 2021MS447 Sichuan Provincial Administration of Traditional Chinese Medicine of China; 21PJ107 Health Commission of Sichuan Province of China; GJJJ2021003 Excellent Talent Program of Chengdu University of Traditional Chinese Medicine of China
فهرسة مساهمة: Keywords: GPX4; SLC7A11; colorectal cancer; curcumin; ferroptosis; p53
المشرفين على المادة: EC 1.11.1.12 (Phospholipid Hydroperoxide Glutathione Peroxidase)
0 (Tumor Suppressor Protein p53)
0 (Amino Acid Transport System y+)
IT942ZTH98 (Curcumin)
0 (SLC7A11 protein, human)
0 (Reactive Oxygen Species)
GAN16C9B8O (Glutathione)
0 (TP53 protein, human)
EC 1.11.1.9 (Glutathione Peroxidase)
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240813 Latest Revision: 20240924
رمز التحديث: 20240924
DOI: 10.1002/ptr.8258
PMID: 38837315
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-1573
DOI:10.1002/ptr.8258