دورية أكاديمية

MYCT1 controls environmental sensing in human haematopoietic stem cells.

التفاصيل البيبلوغرافية
العنوان: MYCT1 controls environmental sensing in human haematopoietic stem cells.
المؤلفون: Aguadé-Gorgorió J; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. julia.aguade@gmail.com.; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. julia.aguade@gmail.com., Jami-Alahmadi Y; Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA.; Pfizer, Cambridge, MA, USA., Calvanese V; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.; Laboratory for Molecular Cell Biology, University College London, London, UK.; Josep Carreras Leukaemia Research Institute, Barcelona, Spain., Kardouh M; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Oakland University William Beaumont School of Medicine, Rochester, MI, USA., Fares I; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Kite Pharma, Santa Monica, CA, USA., Johnson H; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Department of Laboratory Medicine, University of California San Francisco, San Francisco, CA, USA., Rezek V; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.; UCLA AIDS Institute, University of California Los Angeles, Los Angeles, CA, USA., Ma F; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Institute for Genomics and Proteomics, University of California Los Angeles, Los Angeles, CA, USA.; Amgen, Thousand Oaks, CA, USA., Magnusson M; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA.; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.; Division of Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, Lund, Sweden., Wang Y; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA., Shin JE; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA., Nance KJ; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA., Goodridge HS; David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.; Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA., Liebscher S; Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany., Schenke-Layland K; Institute of Biomedical Engineering, Department for Medical Technologies and Regenerative Medicine, Eberhard Karls University, Tübingen, Germany.; NMI Natural and Medical Sciences Institute at the University Tübingen, Reutlingen, Germany., Crooks GM; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA.; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA., Wohlschlegel JA; Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA., Mikkola HKA; Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA, USA. hmikkola@mcdb.ucla.edu.; Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA, USA. hmikkola@mcdb.ucla.edu.; Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA. hmikkola@mcdb.ucla.edu.; Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA. hmikkola@mcdb.ucla.edu.
المصدر: Nature [Nature] 2024 Jun; Vol. 630 (8016), pp. 412-420. Date of Electronic Publication: 2024 Jun 05.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
أسماء مطبوعة: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd.
مواضيع طبية MeSH: Cell Self Renewal* , Hematopoietic Stem Cells*/cytology , Hematopoietic Stem Cells*/metabolism , Nuclear Proteins*/metabolism, Animals ; Female ; Humans ; Male ; Mice ; Cells, Cultured ; Endocytosis ; Endosomes/metabolism ; Endothelial Cells/cytology ; Endothelial Cells/metabolism ; Fetal Blood/cytology ; Gene Knockdown Techniques ; Liver/cytology ; Liver/metabolism ; Liver/embryology ; Mitochondria/metabolism ; Signal Transduction ; Proto-Oncogene Proteins c-ets/genetics ; Proto-Oncogene Proteins c-ets/metabolism ; Single-Cell Gene Expression Analysis
مستخلص: The processes that govern human haematopoietic stem cell (HSC) self-renewal and engraftment are poorly understood and challenging to recapitulate in culture to reliably expand functional HSCs 1-3 . Here we identify MYC target 1 (MYCT1; also known as MTLC) as a crucial human HSC regulator that moderates endocytosis and environmental sensing in HSCs. MYCT1 is selectively expressed in undifferentiated human haematopoietic stem and progenitor cells (HSPCs) and endothelial cells but becomes markedly downregulated during HSC culture. Lentivirus-mediated knockdown of MYCT1 prevented human fetal liver and cord blood (CB) HSPC expansion and engraftment. By contrast, restoring MYCT1 expression improved the expansion and engraftment of cultured CB HSPCs. Single-cell RNA sequencing of human CB HSPCs in which MYCT1 was knocked down or overexpressed revealed that MYCT1 governs important regulatory programmes and cellular properties essential for HSC stemness, such as ETS factor expression and low mitochondrial activity. MYCT1 is localized in the endosomal membrane in HSPCs and interacts with vesicle trafficking regulators and signalling machinery. MYCT1 loss in HSPCs led to excessive endocytosis and hyperactive signalling responses, whereas restoring MYCT1 expression balanced culture-induced endocytosis and dysregulated signalling. Moreover, sorting cultured CB HSPCs on the basis of lowest endocytosis rate identified HSPCs with preserved MYCT1 expression and MYCT1-regulated HSC stemness programmes. Our work identifies MYCT1-moderated endocytosis and environmental sensing as essential regulatory mechanisms required to preserve human HSC stemness. Our data also pinpoint silencing of MYCT1 as a cell-culture-induced vulnerability that compromises human HSC expansion.
(© 2024. The Author(s).)
References: Ballen, K. K., Gluckman, E. & Broxmeyer, H. E. Umbilical cord blood transplantation: the first 25 years and beyond. Blood 122, 491–498 (2013). (PMID: 23673863395263310.1182/blood-2013-02-453175)
Gragert, L. et al. HLA match likelihoods for hematopoietic stem-cell grafts in the U.S. Registry. N. Engl. J. Med. 371, 339–348 (2014). (PMID: 25054717596569510.1056/NEJMsa1311707)
Ng, A. P. & Alexander, W. S. Haematopoietic stem cells: past, present and future. Cell Death Discov. 3, 17002 (2017). (PMID: 28180000529277010.1038/cddiscovery.2017.2)
Pineault, N. & Abu-Khader, A. Advances in umbilical cord blood stem cell expansion and clinical translation. Exp. Hematol. 43, 498–513 (2015). (PMID: 2597061010.1016/j.exphem.2015.04.011)
Cohen, S. et al. Hematopoietic stem cell transplantation using single UM171-expanded cord blood: a single-arm, phase 1–2 safety and feasibility study. Lancet Haematol. 7, e134–e145 (2020). (PMID: 3170426410.1016/S2352-3026(19)30202-9)
Dahlberg, A., Delaney, C. & Bernstein, I. D. Ex vivo expansion of human hematopoietic stem and progenitor cells. Blood 117, 6083–6090 (2011). (PMID: 21436068312293610.1182/blood-2011-01-283606)
Fares, I., Calvanese, V. & Mikkola, H. K. A. Decoding human hematopoietic stem cell self-renewal. Curr. Stem Cell Rep. https://doi.org/10.1007/s40778-022-00209-w (2022).
Kumar, S. & Geiger, H. HSC niche biology and HSC expansion ex vivo. Trends Mol. Med. 23, 799–819 (2017). (PMID: 28801069560032210.1016/j.molmed.2017.07.003)
Magnusson, M. et al. Expansion on stromal cells preserves the undifferentiated state of human hematopoietic stem cells despite compromised reconstitution ability. PLoS ONE 8, e53912 (2013). (PMID: 23342037354705010.1371/journal.pone.0053912)
Calvanese, V. et al. MLLT3 governs human haematopoietic stem-cell self-renewal and engraftment. Nature 576, 281–286 (2019). (PMID: 31776511727827510.1038/s41586-019-1790-2)
Bai, T. et al. Expansion of primitive human hematopoietic stem cells by culture in a zwitterionic hydrogel. Nat. Med. 25, 1566–1575 (2019). (PMID: 3159159410.1038/s41591-019-0601-5)
Nakahara, F. et al. Engineering a haematopoietic stem cell niche by revitalizing mesenchymal stromal cells. Nat. Cell Biol. 21, 560–567 (2019). (PMID: 30988422649964610.1038/s41556-019-0308-3)
Butler, J. M. et al. Development of a vascular niche platform for expansion of repopulating human cord blood stem and progenitor cells. Blood 120, 1344–1347 (2012). (PMID: 22709690341872310.1182/blood-2011-12-398115)
Boitano, A. E. et al. Aryl hydrocarbon receptor antagonists promote the expansion of human hematopoietic stem cells. Science 329, 1345–1348 (2010). (PMID: 20688981303334210.1126/science.1191536)
Fares, I. et al. Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal. Science 345, 1509–1512 (2014). (PMID: 25237102437233510.1126/science.1256337)
Sakurai, M. et al. Chemically defined cytokine-free expansion of human haematopoietic stem cells. Nature 615, 127–133 (2023). (PMID: 3681396610.1038/s41586-023-05739-9)
Rentas, S. et al. Musashi-2 attenuates AHR signalling to expand human haematopoietic stem cells. Nature 532, 508–511 (2016). (PMID: 27121842488045610.1038/nature17665)
Fares, I. et al. EPCR expression marks UM171-expanded CD34 + cord blood stem cells. Blood 129, 3344–3351 (2017). (PMID: 2840845910.1182/blood-2016-11-750729)
Tomellini, E. et al. Integrin-α3 is a functional marker of ex vivo expanded human long-term hematopoietic stem cells. Cell Rep. 28, 1063–1073.e5 (2019). (PMID: 3134014410.1016/j.celrep.2019.06.084)
Grey, W. et al. Activation of the receptor tyrosine kinase RET improves long-term hematopoietic stem cell outgrowth and potency. Blood 136, 2535–2547 (2020). (PMID: 32589703771409610.1182/blood.2020006302)
Lehnertz, B. et al. HLF expression defines the human hematopoietic stem cell state. Blood 138, 2642–2654 (2021). (PMID: 3449971710.1182/blood.2021010745)
Calvanese, V. et al. Mapping human haematopoietic stem cells from haemogenic endothelium to birth. Nature 604, 534–540 (2022). (PMID: 35418685964581710.1038/s41586-022-04571-x)
Goyama, S. et al. Evi-1 is a critical regulator for hematopoietic stem cells and transformed leukemic cells. Cell Stem Cell 3, 207–220 (2008). (PMID: 1868224210.1016/j.stem.2008.06.002)
Vannini, N. et al. Specification of haematopoietic stem cell fate via modulation of mitochondrial activity. Nat. Commun. 7, 13125 (2016). (PMID: 27731316506401610.1038/ncomms13125)
Papa, L. et al. Limited mitochondrial activity coupled with strong expression of CD34, CD90 and EPCR determines the functional fitness of ex vivo expanded human hematopoietic stem cells. Front. Cell Dev. Biol. 8, 592348 (2020). (PMID: 33384995776987610.3389/fcell.2020.592348)
Chua, B. A. & Signer, R. A. J. Hematopoietic stem cell regulation by the proteostasis network. Curr. Opin. Hematol. 27, 254 (2020). (PMID: 32452878735784310.1097/MOH.0000000000000591)
Chua, B. A. et al. Hematopoietic stem cells preferentially traffic misfolded proteins to aggresomes and depend on aggrephagy to maintain protein homeostasis. Cell Stem Cell 30, 460–472.e6 (2023). (PMID: 369481861016441310.1016/j.stem.2023.02.010)
García-Prat, L. et al. TFEB-mediated endolysosomal activity controls human hematopoietic stem cell fate. Cell Stem Cell 28, 1838–1850.e10 (2021). (PMID: 3434349210.1016/j.stem.2021.07.003)
Novershtern, N. et al. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144, 296–309 (2011). (PMID: 21241896304986410.1016/j.cell.2011.01.004)
Prashad, S. L. et al. GPI-80 defines self-renewal ability in hematopoietic stem cells during human development. Cell Stem Cell 16, 80–87 (2015). (PMID: 2546511410.1016/j.stem.2014.10.020)
Bagger, F. O., Kinalis, S. & Rapin, N. BloodSpot: a database of healthy and malignant haematopoiesis updated with purified and single cell mRNA sequencing profiles. Nucleic Acids Res. 47, D881–D885 (2019). (PMID: 3039530710.1093/nar/gky1076)
Laurenti, E. et al. CDK6 levels regulate quiescence exit in human hematopoietic stem cells. Cell Stem Cell 16, 302–313 (2015). (PMID: 25704240435905510.1016/j.stem.2015.01.017)
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl Acad. Sci. USA 102, 15545–15550 (2005). (PMID: 16199517123989610.1073/pnas.0506580102)
Cao, J. et al. A human cell atlas of fetal gene expression. Science 370, eaba7721 (2020). (PMID: 33184181778012310.1126/science.aba7721)
Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 14, e8041 (2018). (PMID: 29545397585237310.15252/msb.20178041)
Hay, S. B., Ferchen, K., Chetal, K., Grimes, H. L. & Salomonis, N. The Human Cell Atlas bone marrow single-cell interactive web portal. Exp. Hematol. 68, 51–61 (2018). (PMID: 30243574629622810.1016/j.exphem.2018.09.004)
Ciau-Uitz, A., Wang, L., Patient, R. & Liu, F. ETS transcription factors in hematopoietic stem cell development. Blood Cells Mol. Dis. 51, 248–255 (2013). (PMID: 2392796710.1016/j.bcmd.2013.07.010)
Chen, L. et al. Transcriptional diversity during lineage commitment of human blood progenitors. Science 345, 1251033 (2014). (PMID: 25258084425474210.1126/science.1251033)
Chan, D. C. H. et al. Arhgef2 regulates mitotic spindle orientation in hematopoietic stem cells and is essential for productive hematopoiesis. Blood Adv. 5, 3120–3133 (2021). (PMID: 34406376840518410.1182/bloodadvances.2020002539)
Lv, K. et al. HectD1 controls hematopoietic stem cell regeneration by coordinating ribosome assembly and protein synthesis. Cell Stem Cell 28, 1275–1290.e9 (2021). (PMID: 33711283825475910.1016/j.stem.2021.02.008)
Che, J. L. C. et al. Identification and characterization of in vitro expanded hematopoietic stem cells. EMBO Rep. 23, e55502 (2022). (PMID: 35971894953576710.15252/embr.202255502)
Holmfeldt, P. et al. Functional screen identifies regulators of murine hematopoietic stem cell repopulation. J. Exp. Med. 213, 433–449 (2016). (PMID: 26880577481366810.1084/jem.20150806)
McIntosh, B. E. et al. Nonirradiated NOD,B6.SCID Il2rγ−/−Kit W41/W41 (NBSGW) mice support multilineage engraftment of human hematopoietic cells. Stem Cell Reports 4, 171–180 (2015). (PMID: 25601207432519710.1016/j.stemcr.2014.12.005)
Hu, Y. & Smyth, G. K. ELDA: extreme limiting dilution analysis for comparing depleted and enriched populations in stem cell and other assays. J. Immunol. Methods 347, 70–78 (2009). (PMID: 1956725110.1016/j.jim.2009.06.008)
Yin, X., Grove, L., Rogulski, K. & Prochownik, E. V. Myc target in myeloid cells-1, a novel c-Myc target, recapitulates multiple c-Myc phenotypes. J. Biol. Chem. 277, 19998–20010 (2002). (PMID: 1190986510.1074/jbc.M200860200)
Rogulski, K. R., Cohen, D. E., Corcoran, D. L., Benos, P. V. & Prochownik, E. V. Deregulation of common genes by c-Myc and its direct target, MT-MC1. Proc. Natl Acad. Sci. USA 102, 18968–18973 (2005). (PMID: 16365299132317610.1073/pnas.0507902102)
Wu, S. et al. Transmembrane domain is crucial to the subcellular localization and function of Myc target 1. J. Cell. Mol. Med. 20, 471–481 (2016). (PMID: 2671096410.1111/jcmm.12747)
Käll, L., Krogh, A. & Sonnhammer, E. L. L. Advantages of combined transmembrane topology and signal peptide prediction—the Phobius web server. Nucleic Acids Res. 35, W429–W432 (2007). (PMID: 17483518193324410.1093/nar/gkm256)
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
Varadi, M. et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50, D439–D444 (2022). (PMID: 3479137110.1093/nar/gkab1061)
Szklarczyk, D. et al. STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47, D607–D613 (2019). (PMID: 3047624310.1093/nar/gky1131)
Reider, A. & Wendland, B. Endocytic adaptors—social networking at the plasma membrane. J. Cell Sci. 124, 1613–1622 (2011). (PMID: 21536832308543410.1242/jcs.073395)
Murphy, J. E., Padilla, B. E., Hasdemir, B., Cottrell, G. S. & Bunnett, N. W. Endosomes: a legitimate platform for the signaling train. Proc. Natl Acad. Sci. USA 106, 17615–17622 (2009). (PMID: 19822761276491510.1073/pnas.0906541106)
Sorkin, A. & von Zastrow, M. Endocytosis and signalling: intertwining molecular networks. Nat. Rev. Mol. Cell Biol. 10, 609–622 (2009). (PMID: 19696798289542510.1038/nrm2748)
Wiredja, D. D., Koyutürk, M. & Chance, M. R. The KSEA App: a web-based tool for kinase activity inference from quantitative phosphoproteomics. Bioinformatics 33, 3489–3491 (2017). (PMID: 28655153586016310.1093/bioinformatics/btx415)
Krug, K. et al. A curated resource for phosphosite-specific signature analysis. Mol. Cell. Proteomics 18, 576–593 (2019). (PMID: 3056384910.1074/mcp.TIR118.000943)
Cruse, G. et al. The CD20 homologue MS4A4 directs trafficking of KIT toward clathrin-independent endocytosis pathways and thus regulates receptor signaling and recycling. Mol. Biol. Cell 26, 1711–1727 (2015). (PMID: 25717186443678210.1091/mbc.E14-07-1221)
Wu, F., Chen, Z., Liu, J. & Hou, Y. The Akt–mTOR network at the interface of hematopoietic stem cell homeostasis. Exp. Hematol. 103, 15–23 (2021). (PMID: 3446466110.1016/j.exphem.2021.08.009)
Kharas, M. G. et al. Constitutively active AKT depletes hematopoietic stem cells and induces leukemia in mice. Blood 115, 1406–1415 (2010). (PMID: 20008787282676210.1182/blood-2009-06-229443)
Sigismund, S., Lanzetti, L., Scita, G. & Di Fiore, P. P. Endocytosis in the context-dependent regulation of individual and collective cell properties. Nat. Rev. Mol. Cell Biol. 22, 625–643 (2021). (PMID: 3407522110.1038/s41580-021-00375-5)
Narayana, Y. V., Gadgil, C., Mote, R. D., Rajan, R. & Subramanyam, D. Clathrin-mediated endocytosis regulates a balance between opposing signals to maintain the pluripotent state of embryonic stem cells. Stem Cell Reports 12, 152–164 (2019). (PMID: 3055491810.1016/j.stemcr.2018.11.018)
Sangokoya, C. & Blelloch, R. MicroRNA-dependent inhibition of PFN2 orchestrates ERK activation and pluripotent state transitions by regulating endocytosis. Proc. Natl Acad. Sci. USA 117, 20625–20635 (2020). (PMID: 32788350745612810.1073/pnas.2002750117)
Heng, J. et al. Rab5c-mediated endocytic trafficking regulates hematopoietic stem and progenitor cell development via Notch and AKT signaling. PLoS Biol. 18, e3000696 (2020). (PMID: 32275659717629010.1371/journal.pbio.3000696)
Morales-Hernandez, A. et al. GPRASP proteins are critical negative regulators of hematopoietic stem cell transplantation. Blood 135, 1111–1123 (2020). (PMID: 320277377118811)
Sun, V. et al. The metabolic landscape of thymic T cell development in vivo and in vitro. Front. Immunol. 12, 716661 (2021). (PMID: 34394122835559410.3389/fimmu.2021.716661)
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). (PMID: 2310488610.1093/bioinformatics/bts635)
Leonard, A. et al. Low-dose busulfan reduces human CD34 + cell doses required for engraftment in c-kit mutant immunodeficient mice. Mol. Ther. Methods Clin. Dev. 15, 430–437 (2019). (PMID: 31890735690918710.1016/j.omtm.2019.10.017)
Hess, N. J. et al. Different human immune lineage compositions are generated in non-conditioned NBSGW mice depending on HSPC source. Front. Immunol. 11, 573406 (2020). (PMID: 33193358760445510.3389/fimmu.2020.573406)
Raudvere, U. et al. g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 47, W191–W198 (2019). (PMID: 31066453660246110.1093/nar/gkz369)
Ulgen, E., Ozisik, O. & Sezerman, O. U. pathfindR: an R package for comprehensive identification of enriched pathways in omics data through active subnetworks. Front. Genet. 10, 858 (2019). (PMID: 31608109677387610.3389/fgene.2019.00858)
Binns, D. et al. QuickGO: a web-based tool for Gene Ontology searching. Bioinformatics 25, 3045–3046 (2009). (PMID: 19744993277325710.1093/bioinformatics/btp536)
Mansell, E. et al. Mitochondrial potentiation ameliorates age-related heterogeneity in hematopoietic stem cell function. Cell Stem Cell 28, 241–256.e6 (2021). (PMID: 3308603410.1016/j.stem.2020.09.018)
Jami-Alahmadi, Y., Pandey, V., Mayank, A. K. & Wohlschlegel, J. A. A robust method for packing high resolution C18 RP-nano-HPLC columns. J. Vis. Exp. https://doi.org/10.3791/62380 (2021).
Cox, J. & Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372 (2008). (PMID: 1902991010.1038/nbt.1511)
Mellacheruvu, D. et al. The CRAPome: a contaminant repository for affinity purification–mass spectrometry data. Nat. Methods 10, 730–736 (2013). (PMID: 23921808377350010.1038/nmeth.2557)
Barretina, J. et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483, 603–607 (2012). (PMID: 22460905332002710.1038/nature11003)
معلومات مُعتمدة: P30 CA016042 United States CA NCI NIH HHS; T32 HL086345 United States HL NHLBI NIH HHS; United Kingdom WT_ Wellcome Trust; R01 HL162408 United States HL NHLBI NIH HHS; P30 AI152501 United States AI NIAID NIH HHS; R01 DK125097 United States DK NIDDK NIH HHS; R01 DK121557 United States DK NIDDK NIH HHS; R01 DK100959 United States DK NIDDK NIH HHS; R35 GM153408 United States GM NIGMS NIH HHS
المشرفين على المادة: 0 (MYCT1 protein, human)
0 (Nuclear Proteins)
0 (Proto-Oncogene Proteins c-ets)
تواريخ الأحداث: Date Created: 20240605 Date Completed: 20240612 Latest Revision: 20240622
رمز التحديث: 20240623
مُعرف محوري في PubMed: PMC11168926
DOI: 10.1038/s41586-024-07478-x
PMID: 38839950
قاعدة البيانات: MEDLINE
الوصف
تدمد:1476-4687
DOI:10.1038/s41586-024-07478-x