دورية أكاديمية

Aerogel-Involved Triple-State Gels Resemble Natural Living Leaves in Structure and Multi-Functions.

التفاصيل البيبلوغرافية
العنوان: Aerogel-Involved Triple-State Gels Resemble Natural Living Leaves in Structure and Multi-Functions.
المؤلفون: Zhou M; College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.; Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China., Sheng Z; Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China., Ji G; College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China., Zhang X; Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China.; Division of Surgery & Interventional Science, University College London, London, NW3 2PF, UK.
المصدر: Advanced materials (Deerfield Beach, Fla.) [Adv Mater] 2024 Aug; Vol. 36 (32), pp. e2406007. Date of Electronic Publication: 2024 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 9885358 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1521-4095 (Electronic) Linking ISSN: 09359648 NLM ISO Abbreviation: Adv Mater Subsets: MEDLINE
أسماء مطبوعة: Publication: Sept. 3, 1997- : Weinheim : Wiley-VCH
Original Publication: Deerfield Beach, FL : VCH Publishers, 1989-
مواضيع طبية MeSH: Plant Leaves*/chemistry , Plant Leaves*/metabolism, Gels/chemistry ; Silicon Dioxide/chemistry ; Hydrogels/chemistry ; Photosynthesis ; Polyvinyl Alcohol/chemistry ; Hydrophobic and Hydrophilic Interactions
مستخلص: Natural plant leaves with multiple functions, for example, spectral features, transpiration, photosynthesis, etc., have played a significant role in the ecosystem, and artificial synthesis of plant leaves with multiple functions of natural ones is still a great challenge. Herein, this work presents an aerogel-involved living leaf (AL), most similar to natural ones so far, by embedding super-hydrophobic SiO 2 aerogel microparticles in polyvinyl alcohol hydrogel in the presence of hygroscopic salt and chlorophyllin copper sodium to form solid-liquid-vapor triple-state gel. The AL shows a high spectral similarity with all sampled 15 species of natural leaves and exhibits ≈4-7 times transpiration speed higher than natural leaves. More importantly, AL can achieve several times higher photosynthesis than natural leaves without the energy provided by the respiratory action of natural ones. This work demonstrates the feasibility of creating ALs with natural leaf-like triple-state gel structures and multiple functions, opening up new avenues for energy conversion, environmental engineering, and biomimetic applications.
(© 2024 Wiley‐VCH GmbH.)
References: a) T. E. Miller, T. Beneyton, T. Schwander, C. Diehl, M. Girault, R. McLean, T. Chotel, P. Claus, N. S. Cortina, J.‐C. Bare, T. J. Erb, Science 2020, 368, 649;.
b) S. Xiao, D. Zhang, D. Pan, W. Zhu, P. Liu, Y. Cai, G. Li, H. Li, Nat. Commun. 2019, 10, 1570.
Z. Yuan, H. Ye, S. Li, J. Bionic Eng. 2014, 11, 90.
a) S. Das, M. J. Hossain, S.‐F. Leung, A. Lenox, Y. Jung, K. Davis, J.‐H. He, T. Roy, Nano Energy 2019, 58, 47;.
b) T. C. Vogelman, J. N. Nishio, W. K. Smith, Trends Plant Sci. 1996, 1, 65;.
c) Z. Wang, H. Huang, H. Wang, J. Penuelas, J. Sardans, U. Niinemets, K. J. Niklas, Y. Li, J. Xie, I. J. Wright, Nat. Commun. 2022, 13, 5525.
W. Barthlott, M. Mail, B. Bhushan, K. Koch, Nano‐Micro Lett. 2017, 9, 23.
T. Y. Qu, L. J. Zuo, J. D. Chen, X. Shi, T. Zhang, L. Li, K. C. Shen, H. Ren, S. Wang, F. M. Xie, Y. Q. Li, A. K. Y. Jen, J. X. Tang, Adv. Opt. Mater. 2020, 8, 2000669.
J. Du, Y. Wang, W. Chen, M. Xu, R. Zhou, H. Shou, J. Chen, Mol. Plant 2023, 16, 809.
S. Jacquemoud, S. L. Ustin, J. Verdebout, G. Schmuck, G. Andreoli, B. Hosgood, Remote Sens. Environ. 1996, 56, 194.
H. Yu, J. Zhang, S. Zhang, Z. Han, Prog. Mater. Sci. 2023, 139, 101181.
G. Huang, J. Xu, C. N. Markides, Nat. Commun. 2023, 14, 3344.
Y. Li, X. Jin, W. Li, J. Niu, X. Han, X. Yang, W. Wang, T. Lin, Z. Zhu, Sci. China Mater. 2021, 65, 1057.
P. Wu, X. Wu, Y. Wang, H. Xu, G. Owens, Chem. Eng. J. 2022, 435, 134793.
S. Ye, W. Shi, Y. Liu, D. Li, H. Yin, H. Chi, Y. Luo, N. Ta, F. Fan, X. Wang, C. Li, J. Am. Chem. Soc. 2021, 143, 12499.
H. Wu, X. Y. Kong, X. Wen, S. P. Chai, E. C. Lovell, J. Tang, Y. H. Ng, Angew. Chem., Int. Ed. 2021, 60, 8455.
T. Cai, H. Sun, J. Qiao, L. Zhu, F. Zhang, J. Zhang, Z. Tang, X. Wei, J. Yang, Q. Yuan, W. Wang, X. Yang, H. Chu, Q. Wang, C. You, H. Ma, Y. Sun, Y. Li, C. Li, H. Jiang, Q. Wang, Y. Ma, Science 2021, 373, 1523.
Z. Jiang, X. Xu, Y. Ma, H. S. Cho, D. Ding, C. Wang, J. Wu, P. Oleynikov, M. Jia, J. Cheng, Y. Zhou, O. Terasaki, T. Peng, L. Zan, H. Deng, Nature 2020, 586, 549.
S. Wu, M. Hua, Y. Alsaid, Y. Du, Y. Ma, Y. Zhao, C. Y. Lo, C. Wang, D. Wu, B. Yao, J. Strzalka, H. Zhou, X. Zhu, X. He, Adv. Mater. 2021, 33, 2007829.
S. Aleid, M. Wu, R. Li, W. Wang, C. Zhang, L. Zhang, P. Wang, ACS Mater. Lett. 2022, 4, 511.
H. Zou, X. Meng, X. Zhao, J. Qiu, Adv. Mater. 2022, 35, 2207262.
a) D. Wang, Q. Sun, M. J. Hokkanen, C. Zhang, F.‐Y. Lin, Q. Liu, S.‐P. Zhu, T. Zhou, Q. Chang, B. He, Q. Zhou, L. Chen, Z. Wang, R. H. A. Ras, X. Deng, Nature 2020, 582, 55;.
b) Y. Yang, X. Li, X. Zheng, Z. Chen, Q. Zhou, Y. Chen, Adv. Mater. 2017, 30, 1704912.
D. Miao, X. Wang, J. Yu, B. Ding, Adv. Funct. Mater. 2021, 31, 2008705.
Y. Hou, Z. Sheng, C. Fu, J. Kong, X. Zhang, Nat. Commun. 2022, 13, 1227.
R. Li, Y. Shi, M. Wu, S. Hong, P. Wang, Nat. Sustain. 2020, 3, 636.
Z. Huang, L. Long, Y. Gao, Z. Tang, J. Zhang, K. Xu, H. Ye, M. Liu, Small 2023, 20, 2303966.
S. Miao, Z. Luo, S. Tan, T. Xu, Z. Zhou, G. Feng, G. Xu, G. Ji, Prog. Org. Coat. 2024, 186, 108074.
D. Xie, M. Zu, M. Li, D. Liu, Z. Wang, Q. Li, H. Cheng, Adv. Mater. 2023, 35, 2302973.
Q. Lu, M. Li, A. Tian, S. Fu, J. Bionic Eng. 2022, 19, 788.
Y. Wu, S. Tan, Y. Zhao, L. Liang, M. Zhou, G. Ji, Prog. Mater. Sci. 2023, 135, 101088.
a) S. Duan, C. Dall'Agnese, G. Chen, X.‐F. Wang, H. Tamiaki, Y. Yamamoto, T. Ikeuchi, S.‐i. Sasaki, ACS Energy Lett. 2018, 3, 1708;.
b) S. Duan, Q. Zhou, A. Li, X.‐F. Wang, S.‐i. Sasaki, H. Tamiaki, Sol. RRL 2020, 4, 2000162;.
c) Z. F. Rakhmankulova, Russ. J. Plant Physiol. 2019, 66, 365.
S. Yu, Y. Hou, Q. Jin, L. Zhu, S. Chen, Chem. Eng. J. 2023, 472, 145103.
Y. Tachibana, L. Vayssieres, J. R. Durrant, Nat. Photonics 2012, 6, 511.
J. Ng, S. Xu, X. Zhang, H. Y. Yang, D. D. Sun, Adv. Funct. Mater. 2010, 20, 4287.
T. N. Rahmah, F. G. Dwiyanti, M. Rafi, U. J. Siregar, I. Z. Siregar, Heliyon 2023, 9, e12488.
M. D. Morecroft, J. M. Roberts, Funct Ecol 2002, 13, 332.
Q. Wu, Y. Liu, S. Fang, P. Li, J. For. Res. (Harbin, China) 2017, 28, 909.
S. Chen, H. Yu, L. Xu, F. Fei, Y. Song, M. Dong, W. Li, Environ. Pollut. 2024, 340, 122812.
J. D. Lewis, N. G. Phillips, B. A. Logan, C. R. Hricko, D. T. Tissue, Tree Physiol. 2011, 31, 997.
S. Z. Ryang, S. Y. Woo, S. Y. Kwon, S. H. Kim, S. H. Lee, K. N. Kim, D. K. Lee, Photosynthetica 2009, 47, 19.
E. C. Lahr, R. R. Dunn, S. D. Frank, PLoS One 2018, 13, 0197866.
C. Hara, S. Inoue, H. R. Ishii, M. Okabe, M. Nakagaki, H. Kobayashi, Trees 2021, 35, 1793.
معلومات مُعتمدة: 52173052 National Natural Science Foundation of China; SYC2022125 Suzhou Municipal Science and Technology Bureau
فهرسة مساهمة: Keywords: aerogel; hyperspectral camouflage; living leaves; photosynthesis; transpiration
المشرفين على المادة: 0 (Gels)
7631-86-9 (Silicon Dioxide)
0 (Hydrogels)
9002-89-5 (Polyvinyl Alcohol)
تواريخ الأحداث: Date Created: 20240607 Date Completed: 20240808 Latest Revision: 20240808
رمز التحديث: 20240808
DOI: 10.1002/adma.202406007
PMID: 38847583
قاعدة البيانات: MEDLINE
الوصف
تدمد:1521-4095
DOI:10.1002/adma.202406007