دورية أكاديمية

Prevalence and Association of Sarcopenia with Mortality in Patients with Head and Neck Cancer: A Systematic Review and Meta-Analysis.

التفاصيل البيبلوغرافية
العنوان: Prevalence and Association of Sarcopenia with Mortality in Patients with Head and Neck Cancer: A Systematic Review and Meta-Analysis.
المؤلفون: Koh JH; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore., Lim CYJ; Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand., Tan LTP; Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand., Makmur A; Department of Diagnostic Imaging, National University Hospital, Singapore, Singapore., Gao EY; Department of Otorhinolaryngology - Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore., Ho JSY; Department of Medicine, Alexandra Hospital, National University Health System, Singapore, Singapore., Tan JA; Division of Geriatric Medicine, Department of Medicine, Alexandra Hospital, National University Health System, Singapore, Singapore., See A; Department of Otorhinolaryngology - Head and Neck Surgery, Singapore General Hospital, Singapore, Singapore., Tan BKJ; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. benjamintankyejyn@u.nus.edu., Tan LF; Division of Geriatric Medicine, Department of Medicine, Alexandra Hospital, National University Health System, Singapore, Singapore., Tan BYQ; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.; Division of Neurology, Department of Medicine, National University Hospital, National University Health System, Singapore, Singapore.
المصدر: Annals of surgical oncology [Ann Surg Oncol] 2024 Sep; Vol. 31 (9), pp. 6049-6064. Date of Electronic Publication: 2024 Jun 07.
نوع المنشور: Journal Article; Systematic Review; Meta-Analysis
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: United States NLM ID: 9420840 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1534-4681 (Electronic) Linking ISSN: 10689265 NLM ISO Abbreviation: Ann Surg Oncol Subsets: MEDLINE
أسماء مطبوعة: Publication: 2005- : New York, NY : Springer
Original Publication: New York, NY : Raven Press, c1994-
مواضيع طبية MeSH: Sarcopenia*/mortality , Head and Neck Neoplasms*/mortality , Head and Neck Neoplasms*/complications , Head and Neck Neoplasms*/pathology, Humans ; Survival Rate ; Prognosis ; Prevalence
مستخلص: Background: The objective of this meta-analysis was to assess the association of sarcopenia defined on computed tomography (CT) head and neck with survival in head and neck cancer patients.
Methods: Following a PROSPERO-registered protocol, two blinded reviewers extracted data and evaluated the quality of the included studies using the Quality In Prognostic Studies (QUIPS) tool, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The quality of evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluations (GRADE) framework. A meta-analysis was conducted using maximally adjusted hazard ratios (HRs) with the random-effects model. Heterogeneity was measured using the I 2 statistic and was investigated using meta-regression and subgroup analyses where appropriate.
Results: From 37 studies (11,181 participants), sarcopenia was associated with poorer overall survival (HR 2.11, 95% confidence interval [CI] 1.81-2.45; p < 0.01), disease-free survival (HR 1.76, 95% CI 1.38-2.24; p < 0.01), disease-specific survival (HR 2.65, 95% CI 1.80-3.90; p < 0.01), progression-free survival (HR 2.24, 95% CI 1.21-4.13; p < 0.01) and increased chemotherapy or radiotherapy toxicity (risk ratio 2.28, 95% CI 1.31-3.95; p < 0.01). The observed association between sarcopenia and overall survival remained significant across different locations of cancer, treatment modality, tumor stages and geographical region, and did not differ between univariate and multivariate HRs. Statistically significant correlations were observed between the C3 and L3 cross-sectional area, skeletal muscle mass, and skeletal muscle index.
Conclusions: Among patients with head and neck cancers, CT-defined sarcopenia was consistently associated with poorer survival and greater toxicity.
(© 2024. Society of Surgical Oncology.)
References: Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169 . (PMID: 10.1093/ageing/afy169)
Chianca V, Albano D, Messina C, et al. Sarcopenia: imaging assessment and clinical application. Abdom Radiol (NY). 2022;47(9):3205–16. https://doi.org/10.1007/s00261-021-03294-3 . (PMID: 10.1007/s00261-021-03294-3)
Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, when and why. Radiol Med. 2022;127(3):228–37. https://doi.org/10.1007/s11547-022-01450-3 . (PMID: 10.1007/s11547-022-01450-38960583)
Rubbieri G, Mossello E, Di Bari M. Techniques for the diagnosis of sarcopenia. Clin Cases Miner Bone Metab. 2014;11(3):181–4. (PMID: 4269140)
Prado CM, Heymsfield SB. Lean tissue imaging: a new era for nutritional assessment and intervention. JPEN J Parenter Enteral Nutr. 2014;38(8):940–53. https://doi.org/10.1177/0148607114550189 . (PMID: 10.1177/01486071145501894361695)
Shen W, Punyanitya M, Wang Z, et al. Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol. 2004;97(6):2333–8. https://doi.org/10.1152/japplphysiol.00744.2004 . (PMID: 10.1152/japplphysiol.00744.2004)
de Bree R, Meerkerk CDA, Halmos GB, et al. Measurement of sarcopenia in head and neck cancer patients and its association with frailty. Review. Front Oncol. 2022;12:884988. (PMID: 10.3389/fonc.2022.8849889150392)
Grossberg AJ, Chamchod S, Fuller CD, et al. Association of body composition with survival and locoregional control of radiotherapy-treated head and neck squamous cell carcinoma. JAMA Oncol. 2016;2(6):782–9. https://doi.org/10.1001/jamaoncol.2015.6339 . (PMID: 10.1001/jamaoncol.2015.63395080910)
Swartz JE, Pothen AJ, Wegner I, et al. Feasibility of using head and neck CT imaging to assess skeletal muscle mass in head and neck cancer patients. Oral Oncol. 2016;62:28–33. https://doi.org/10.1016/j.oraloncology.2016.09.006 . (PMID: 10.1016/j.oraloncology.2016.09.006)
Bril SI, Wendrich AW, Swartz JE, et al. Interobserver agreement of skeletal muscle mass measurement on head and neck CT imaging at the level of the third cervical vertebra. Eur Arch Oto-Rhino-Laryngol. 2019;276(4):1175–82. https://doi.org/10.1007/s00405-019-05307-w . (PMID: 10.1007/s00405-019-05307-w)
Wong A, Zhu D, Kraus D, Tham T. Radiologically defined sarcopenia affects survival in head and neck cancer: a meta-analysis. Laryngoscope. 2021;131(2):333–41. https://doi.org/10.1002/lary.28616 . (PMID: 10.1002/lary.28616)
Ganju RG, Morse R, Hoover A, TenNapel M, Lominska CE. The impact of sarcopenia on tolerance of radiation and outcome in patients with head and neck cancer receiving chemoradiation. Radiother Oncol. 2019;137:117–24. https://doi.org/10.1016/j.radonc.2019.04.023 . (PMID: 10.1016/j.radonc.2019.04.023)
Hua X, Li WZ, Huang X, et al. Modeling sarcopenia to predict survival for patients with nasopharyngeal carcinoma receiving concurrent chemoradiotherapy. Front Oncol. 2021;11:625534. https://doi.org/10.3389/fonc.2021.625534 . (PMID: 10.3389/fonc.2021.6255347993198)
Jung AR, Roh JL, Kim JS, Choi SH, Nam SY, Kim SY. Efficacy of head and neck computed tomography for skeletal muscle mass estimation in patients with head and neck cancer. Oral Oncol. 2019;95:95–9. https://doi.org/10.1016/j.oraloncology.2019.06.009 . (PMID: 10.1016/j.oraloncology.2019.06.009)
Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. https://doi.org/10.1136/bmj.n71 . (PMID: 10.1136/bmj.n71337820578005924)
Grooten WJA, Tseli E, Äng BO, et al. Elaborating on the assessment of the risk of bias in prognostic studies in pain rehabilitation using QUIPS-aspects of interrater agreement. Diagn Progn Res. 2019;3:5. https://doi.org/10.1186/s41512-019-0050-0 . (PMID: 10.1186/s41512-019-0050-06460536)
Sedgwick P. What is publication bias in a meta-analysis? BMJ. 2015;351:h4419. https://doi.org/10.1136/bmj.h4419 . (PMID: 10.1136/bmj.h4419)
Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315(7109):629. https://doi.org/10.1136/bmj.315.7109.629 . (PMID: 10.1136/bmj.315.7109.6292127453)
Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153–60. https://doi.org/10.1136/ebmental-2019-300117 . (PMID: 10.1136/ebmental-2019-30011710231495)
Wan X, Wang W, Liu J, Tong T. Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol. 2014;14:135. https://doi.org/10.1186/1471-2288-14-135 . (PMID: 10.1186/1471-2288-14-1354383202)
Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60. https://doi.org/10.1136/bmj.327.7414.557 . (PMID: 10.1136/bmj.327.7414.557192859)
Fletcher J. What is heterogeneity and is it important? BMJ. 2007;334(7584):94–6. https://doi.org/10.1136/bmj.39057.406644.68 . (PMID: 10.1136/bmj.39057.406644.681767262)
Tufanaru C, Munn Z, Stephenson M, Aromataris E. Fixed or random effects meta-analysis? Common methodological issues in systematic reviews of effectiveness. Int J Evid Based Healthc. 2015;13(3):196–207. https://doi.org/10.1097/xeb.0000000000000065 . (PMID: 10.1097/xeb.0000000000000065)
Riley RD, Higgins JPT, Deeks JJ. Interpretation of random effects meta-analyses. BMJ. 2011;342:d549. https://doi.org/10.1136/bmj.d549 . (PMID: 10.1136/bmj.d549)
Deeks JJ, Higgins JPT, Altman DG. Analysing data and undertaking meta‐analyses. In: JPT Higgins, J Thomas, J Chandler, M Cumpston, T Li, MJ Page, VA Welch, editors. Cochrane handbook for systematic reviews of interventions. Wiley; 2019. p. 241–84. https://doi.org/10.1002/9781119536604.ch10 . (PMID: 10.1002/9781119536604.ch10)
Thompson SG, Higgins JPT. How should meta-regression analyses be undertaken and interpreted? Stat Med. 2002;21(11):1559–73. https://doi.org/10.1002/sim.1187 . (PMID: 10.1002/sim.1187)
Higgins JPT, Thompson SG. Controlling the risk of spurious findings from meta-regression. Stat Med. 2004;23(11):1663–82. https://doi.org/10.1002/sim.1752 . (PMID: 10.1002/sim.1752)
Sterne JAC, Sutton AJ, Ioannidis JPA, et al. Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ. 2011;343:d4002. https://doi.org/10.1136/bmj.d4002 . (PMID: 10.1136/bmj.d4002)
Guyatt GH, Oxman AD, Vist GE, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ. 2008;336(7650):924. https://doi.org/10.1136/bmj.39489.470347.AD . (PMID: 10.1136/bmj.39489.470347.AD2335261)
Bozkurt G, Elhassan HA, Mahmutoğlu AS, et al. Neck muscle mass index as a predictor of post-laryngectomy wound complications. Ann Otol Rhinol Laryngol. 2018;127(11):841–7. https://doi.org/10.1177/0003489418798660 . (PMID: 10.1177/0003489418798660)
Bril SI, Chargi N, Wendrich AW, et al. Validation of skeletal muscle mass assessment at the level of the third cervical vertebra in patients with head and neck cancer. Oral Oncol. 2021;123:105617. https://doi.org/10.1016/j.oraloncology.2021.105617 . (PMID: 10.1016/j.oraloncology.2021.105617)
Casasayas M, García-Lorenzo J, Gómez-Ansón B, et al. Low skeletal muscle mass assessed directly from the 3rd cervical vertebra can predict pharyngocutaneous fistula risk after total laryngectomy in the male population. Eur Arch Otorhinolaryngol. 2022;279(2):853–63. https://doi.org/10.1007/s00405-021-07127-3 . (PMID: 10.1007/s00405-021-07127-3)
Chang SW, Tsai YH, Hsu CM, et al. Masticatory muscle index for indicating skeletal muscle mass in patients with head and neck cancer. PLoS One. 2021;16(5):e0251455. https://doi.org/10.1371/journal.pone.0251455 . (PMID: 10.1371/journal.pone.02514558109770)
Endo K, Ueno T, Hirai N, et al. Low skeletal muscle mass is a risk factor for aspiration pneumonia during chemoradiotherapy. Laryngoscope. 2021;131(5):e1524–9. https://doi.org/10.1002/lary.29165 . (PMID: 10.1002/lary.29165)
Hua X, Liao JF, Huang X, et al. Sarcopenia is associated with higher toxicity and poor prognosis of nasopharyngeal carcinoma. Ther Adv Med Oncol. 2020;12:1758835920947612. https://doi.org/10.1177/1758835920947612 . (PMID: 10.1177/17588359209476127444117)
Huang C-H, Lue K-H, Chen P-R, Hsieh T-C, Chou Y-F. Association between sarcopenia and immediate complications and mortality in patients with oral cavity squamous cell carcinoma undergoing surgery. Cancers. 2022;14(3):785. https://doi.org/10.3390/cancers14030785 . (PMID: 10.3390/cancers140307858833832)
Jin W, Rich B, Yechieli R, et al. A single axial slice of the sternocleidomastoids and paravertebral muscles associated with worse local progression-free survival and severe toxicity in sarcopenic head and neck cancer patients undergoing radiotherapy. Cureus. 2022;14(2):e22463. https://doi.org/10.7759/cureus.22463 . (PMID: 10.7759/cureus.224638942181)
Karavolia E, van Rijn-Dekker MI, Van den Bosch L, et al. Impact of sarcopenia on acute radiation-induced toxicity in head and neck cancer patients. Radiother Oncol. 2022;170:122–8. https://doi.org/10.1016/j.radonc.2022.03.009 . (PMID: 10.1016/j.radonc.2022.03.009)
Lin SC, Lin YS, Kang BH, et al. Sarcopenia results in poor survival rates in oral cavity cancer patients. Clin Otolaryngol. 2020;45(3):327–33. https://doi.org/10.1111/coa.13481 . (PMID: 10.1111/coa.13481)
Lu X, Tian Y, Huang J, et al. Evaluating the prognosis of oral squamous cell carcinoma patients via L3 skeletal muscle index. Oral Dis. 2023;29(3):923–32. https://doi.org/10.1111/odi.14074 . (PMID: 10.1111/odi.14074)
McGoldrick DM, Yassin Alsabbagh A, Shaikh M, Pettit L, Bhatia SK. Masseter muscle defined sarcopenia and survival in head and neck cancer patients. Br J Oral Maxillofac Surg. 2022;60(4):454–8. https://doi.org/10.1016/j.bjoms.2021.07.020 . (PMID: 10.1016/j.bjoms.2021.07.020)
Morse RT, Ganju RG, Gan GN, et al. Sarcopenia and treatment toxicity in older adults undergoing chemoradiation for head and neck cancer: identifying factors to predict frailty. Cancers. 2022;14(9):2094. https://doi.org/10.3390/cancers14092094 . (PMID: 10.3390/cancers140920949103923)
Nagpal P, Pruthi DS, Pandey M, Yadav A, Singh H. Impact of sarcopenia in locally advanced head and neck cancer treated with chemoradiation: an Indian tertiary care hospital experience. Oral Oncol. 2021;121:105483. https://doi.org/10.1016/j.oraloncology.2021.105483 . (PMID: 10.1016/j.oraloncology.2021.105483)
Naser MA, Wahid KA, Grossberg AJ, et al. Deep learning auto-segmentation of cervical neck skeletal muscle for sarcopenia analysis using pre-therapy CT in patients with head and neck cancer. medRxiv. 2021;16:50. https://doi.org/10.1101/2021.12.19.21268063 . (PMID: 10.1101/2021.12.19.21268063)
Olson B, Edwards J, Degnin C, et al. Establishment and validation of pre-therapy cervical vertebrae muscle quantification as a prognostic marker of sarcopenia in patients with head and neck cancer. Front Oncol. 2022;12:812159. https://doi.org/10.3389/fonc.2022.812159 . (PMID: 10.3389/fonc.2022.8121598882831)
Ufuk F, Herek D, Yüksel D. Diagnosis of sarcopenia in head and neck computed tomography: cervical muscle mass as a strong indicator of sarcopenia. Clin Exp Otorhinolaryngol. 2019;12(3):317–24. https://doi.org/10.21053/ceo.2018.01613 . (PMID: 10.21053/ceo.2018.016136635710)
van Heusden HC, Chargi N, Dankbaar JW, Smid EJ, de Bree R. Masseter muscle parameters can function as an alternative for skeletal muscle mass assessments on cross-sectional imaging at lumbar or cervical vertebral levels. Quant Imaging Med Surg. 2022;12(1):15–27. https://doi.org/10.21037/qims-21-43 . (PMID: 10.21037/qims-21-438666780)
van Rijn-Dekker MI, van den Bosch L, van den Hoek JGM, et al. Impact of sarcopenia on survival and late toxicity in head and neck cancer patients treated with radiotherapy. Radiother Oncol. 2020;147:103–10. https://doi.org/10.1016/j.radonc.2020.03.014 . (PMID: 10.1016/j.radonc.2020.03.014)
Vangelov B, Bauer J, Moses D, Smee R. The effectiveness of skeletal muscle evaluation at the third cervical vertebral level for computed tomography-defined sarcopenia assessment in patients with head and neck cancer. Head Neck. 2022;44(5):1047–56. https://doi.org/10.1002/hed.27000 . (PMID: 10.1002/hed.270009305498)
Vangelov B, Bauer J, Moses D, Smee R. A prediction model for skeletal muscle evaluation and computed tomography-defined sarcopenia diagnosis in a predominantly overweight cohort of patients with head and neck cancer. Eur Arch Otorhinolaryngol. 2023;280(1):321–8. https://doi.org/10.1007/s00405-022-07545-x . (PMID: 10.1007/s00405-022-07545-x)
Wendrich AW, Swartz JE, Bril SI, et al. Low skeletal muscle mass is a predictive factor for chemotherapy dose-limiting toxicity in patients with locally advanced head and neck cancer. Oral Oncol. 2017;71:26–33. https://doi.org/10.1016/j.oraloncology.2017.05.012 . (PMID: 10.1016/j.oraloncology.2017.05.012)
Yamahara K, Mizukoshi A, Lee K, Ikegami S. Sarcopenia with inflammation as a predictor of survival in patients with head and neck cancer. Auris Nasus Larynx. 2021;48(5):1013–22. https://doi.org/10.1016/j.anl.2021.03.021 . (PMID: 10.1016/j.anl.2021.03.021)
Yoon JK, Jang JY, An YS, Lee SJ. Skeletal muscle mass at C3 may not be a strong predictor for skeletal muscle mass at L3 in sarcopenic patients with head and neck cancer. PLoS ONE. 2021;16(7):e0254844. https://doi.org/10.1371/journal.pone.0254844 . (PMID: 10.1371/journal.pone.02548448289025)
Yoshimura T, Suzuki H, Takayama H, et al. Prognostic role of preoperative sarcopenia evaluation of cervical muscles with long-term outcomes of patients with oral squamous cell carcinoma. Cancers (Basel). 2021;13(18):4725. https://doi.org/10.3390/cancers13184725 . (PMID: 10.3390/cancers131847258465585)
Yunaiyama D, Okubo M, Arizono E, et al. Sarcopenia at the infrahyoid level as a prognostic factor in patients with advanced-stage non-virus-related head and neck carcinoma. Eur Arch Otorhinolaryngol. 2022;279(6):3131–7. https://doi.org/10.1007/s00405-021-07147-z . (PMID: 10.1007/s00405-021-07147-z)
Zwart AT, van der Hoorn A, van Ooijen PMA, Steenbakkers R, de Bock GH, Halmos GB. CT-measured skeletal muscle mass used to assess frailty in patients with head and neck cancer. J Cachexia Sarcopenia Muscle. 2019;10(5):1060–9. https://doi.org/10.1002/jcsm.12443 . (PMID: 10.1002/jcsm.124436818448)
Mascarella MA, Gardiner L, Patel T, et al. Cervical paraspinal skeletal muscle index outperforms frailty indices to predict postoperative adverse events in operable head and neck cancer with microvascular reconstruction. Microsurgery. 2022;42(3):209–16. https://doi.org/10.1002/micr.30848 . (PMID: 10.1002/micr.30848)
Mascarella MA, Patel T, Vendra V, et al. Poor treatment tolerance in head and neck cancer patients with low muscle mass. Head Neck. 2022;44(4):844–50. https://doi.org/10.1002/hed.26978 . (PMID: 10.1002/hed.26978)
Haehl E, Alvino L, Rühle A, et al. MO-0477 Pretherapeutic sarcopenia predicts survival of elderly patients undergoing radiation for HNSCC. Radiother Oncol. 2022;170:S427–8. https://doi.org/10.1016/S0167-8140(22)02371-4 . (PMID: 10.1016/S0167-8140(22)02371-4)
Morelli C, Formica V, Bossi P, et al. Untailored vs. gender- and body-mass-index-tailored skeletal muscle mass index (SMI) to assess sarcopenia in advanced head and neck squamous cell carcinoma (HNSCC). Cancers. 2023;15(19):4716. https://doi.org/10.3390/cancers15194716 . (PMID: 10.3390/cancers1519471610571960)
Ohyama Y, Inaba Y, Kubota M, Kanemaru T, Hasegawa K. CT-assessed sarcopenia and prognostic nutritional index are associated with poor prognosis in oral squamous cell carcinoma. Oral Maxillofac Surg. 2023. https://doi.org/10.1007/s10006-023-01191-1 . (PMID: 10.1007/s10006-023-01191-1)
Ye Z, Saraf A, Ravipati Y, et al. Development and Validation of an Automated Image-Based Deep Learning Platform for Sarcopenia Assessment in Head and Neck Cancer. JAMA Network Open. 2023;6(8):E2328280. https://doi.org/10.1001/jamanetworkopen.2023.28280 . (PMID: 10.1001/jamanetworkopen.2023.2828010415962)
Fearon K, Strasser F, Anker SD, et al. Definition and classification of cancer cachexia: an international consensus. Lancet Oncol. 2011;12(5):489–95. https://doi.org/10.1016/s1470-2045(10)70218-7 . (PMID: 10.1016/s1470-2045(10)70218-7)
Prado CM, Lieffers JR, Bowthorpe L, Baracos VE, Mourtzakis M, McCargar LJ. Sarcopenia and physical function in overweight patients with advanced cancer. Can J Diet Pract Res. 2013;74(2):69–74. https://doi.org/10.3148/74.2.2013.69 . (PMID: 10.3148/74.2.2013.69)
Muresan BT, Juan CS, Artero A, et al. Diagnosis of pre-sarcopenia from a single selectional cross at C3 region, using CT scans before radiotherapy. Nutr Hospit. 2019. https://doi.org/10.20960/nh.02422 . (PMID: 10.20960/nh.02422)
Vangelov B, Bauer J, Kotevski D, Smee RI. The use of alternate vertebral levels to L3 in computed tomography scans for skeletal muscle mass evaluation and sarcopenia assessment in patients with cancer: a systematic review. Br J Nutr. 2022;127(5):722–35. https://doi.org/10.1017/S0007114521001446 . (PMID: 10.1017/S0007114521001446)
Hua X, Liu S, Liao J-F, et al. When the loss costs too much: a systematic review and meta-analysis of sarcopenia in head and neck cancer. Systematic review. Front Oncol. 2020;9:1561. (PMID: 10.3389/fonc.2019.015617012991)
Findlay M, White K, Stapleton N, Bauer J. Is sarcopenia a predictor of prognosis for patients undergoing radiotherapy for head and neck cancer? A meta-analysis. Clin Nutr. 2021;40(4):1711–8. https://doi.org/10.1016/j.clnu.2020.09.017 . (PMID: 10.1016/j.clnu.2020.09.017)
Villaseñor A, Ballard-Barbash R, Baumgartner K, et al. Prevalence and prognostic effect of sarcopenia in breast cancer survivors: the HEAL Study. J Cancer Surviv. 2012;6(4):398–406. https://doi.org/10.1007/s11764-012-0234-x . (PMID: 10.1007/s11764-012-0234-x3747827)
Dhillon RJ, Hasni S. Pathogenesis and management of sarcopenia. Clin Geriatr Med. 2017;33(1):17–26. https://doi.org/10.1016/j.cger.2016.08.002 . (PMID: 10.1016/j.cger.2016.08.0025127276)
Hacker UT, Hasenclever D, Baber R, et al. Modified Glasgow prognostic score (mGPS) is correlated with sarcopenia and dominates the prognostic role of baseline body composition parameters in advanced gastric and esophagogastric junction cancer patients undergoing first-line treatment from the phase III EXPAND trial. Ann Oncol. 2022;33(7):685–92. https://doi.org/10.1016/j.annonc.2022.03.274 . (PMID: 10.1016/j.annonc.2022.03.274)
Buccheri G, Ferrigno D, Tamburini M. Karnofsky and ECOG performance status scoring in lung cancer: a prospective, longitudinal study of 536 patients from a single institution. Eur J Cancer. 1996;32(7):1135–41. https://doi.org/10.1016/0959-8049(95)00664-8 . (PMID: 10.1016/0959-8049(95)00664-8)
Yamazaki H, Suzuki G, Nakamura S, et al. Radiotherapy for locally advanced resectable T3–T4 laryngeal cancer—does laryngeal preservation strategy compromise survival? J Radiat Res. 2018;59(1):77–90. https://doi.org/10.1093/jrr/rrx063 . (PMID: 10.1093/jrr/rrx063)
Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i–xii, 1–253.
Liu C, Cheng KYK, Tong X, Cheung WH, Chow SKH, Law SW, Wong RMY. The role of obesity in sarcopenia and the optimal body composition to prevent against sarcopenia and obesity. Front Endocrinol. 2023;14:1077255. (PMID: 10.3389/fendo.2023.1077255)
Tu H, McQuade JL, Davies MA, et al. Body mass index and survival after cancer diagnosis: a pan-cancer cohort study of 114 430 patients with cancer. Innovation (Camb). 2022;3(6):100344. https://doi.org/10.1016/j.xinn.2022.100344 . (PMID: 10.1016/j.xinn.2022.1003449638833)
Hobday S, Armache M, Paquin R, et al. The body mass index paradox in head and neck cancer: a systematic review and meta-analysis. Nutr Cancer. 2023;75(1):48–60. https://doi.org/10.1080/01635581.2022.2102659 . (PMID: 10.1080/01635581.2022.2102659)
Fattouh M, Chang GY, Ow TJ, et al. Association between pretreatment obesity, sarcopenia, and survival in patients with head and neck cancer. Head Neck. 2019;41(3):707–14. https://doi.org/10.1002/hed.25420 . (PMID: 10.1002/hed.25420)
Dalal S, Hui D, Bidaut L, et al. Relationships among body mass index, longitudinal body composition alterations, and survival in patients with locally advanced pancreatic cancer receiving chemoradiation: a pilot study. J Pain Symptom Manag. 2012;44(2):181–91. https://doi.org/10.1016/j.jpainsymman.2011.09.010 . (PMID: 10.1016/j.jpainsymman.2011.09.010)
Kalinkovich A, Livshits G. Sarcopenic obesity or obese sarcopenia: a cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis. Ageing Res Rev. 2017;35:200–21. https://doi.org/10.1016/j.arr.2016.09.008 . (PMID: 10.1016/j.arr.2016.09.008)
Tschann P, Weigl MP, Clemens P, et al. Sarcopenic obesity is a risk factor for worse oncological long-term outcome in locally advanced rectal cancer patients: a retrospective single-center cohort study. Nutrients. 2023;15(11):2632. https://doi.org/10.3390/nu15112632 . (PMID: 10.3390/nu1511263210255819)
Baracos VE, Arribas L. Sarcopenic obesity: hidden muscle wasting and its impact for survival and complications of cancer therapy. Ann Oncol. 2018;29:ii1–9. https://doi.org/10.1093/annonc/mdx810 . (PMID: 10.1093/annonc/mdx810)
فهرسة مساهمة: Keywords: Nutrition; Oncology; Prognostic; Radiological; Survival
تواريخ الأحداث: Date Created: 20240607 Date Completed: 20240808 Latest Revision: 20240815
رمز التحديث: 20240815
DOI: 10.1245/s10434-024-15510-7
PMID: 38847986
قاعدة البيانات: MEDLINE
الوصف
تدمد:1534-4681
DOI:10.1245/s10434-024-15510-7