دورية أكاديمية

The Heat Shock Response as a Condensate Cascade.

التفاصيل البيبلوغرافية
العنوان: The Heat Shock Response as a Condensate Cascade.
المؤلفون: Dea A; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States., Pincus D; Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, United States; Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, United States; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL, United States. Electronic address: pincus@uchicago.edu.
المصدر: Journal of molecular biology [J Mol Biol] 2024 Jul 15; Vol. 436 (14), pp. 168642. Date of Electronic Publication: 2024 Jun 05.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Elsevier Country of Publication: Netherlands NLM ID: 2985088R Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1089-8638 (Electronic) Linking ISSN: 00222836 NLM ISO Abbreviation: J Mol Biol Subsets: MEDLINE
أسماء مطبوعة: Publication: Amsterdam : Elsevier
Original Publication: 1959- : London : Academic Press
مواضيع طبية MeSH: Heat-Shock Response*, Saccharomyces cerevisiae Proteins/metabolism ; Saccharomyces cerevisiae Proteins/genetics ; Transcription Factors/metabolism ; Transcription Factors/genetics ; HSP70 Heat-Shock Proteins/metabolism ; HSP70 Heat-Shock Proteins/genetics ; Molecular Chaperones/metabolism ; Molecular Chaperones/genetics ; Saccharomyces cerevisiae/metabolism ; Saccharomyces cerevisiae/genetics ; Heat-Shock Proteins/metabolism ; Heat-Shock Proteins/genetics ; DNA-Binding Proteins/metabolism ; DNA-Binding Proteins/genetics ; Biomolecular Condensates/metabolism ; Ribosomal Proteins/metabolism ; Ribosomal Proteins/genetics ; Heat Shock Transcription Factors/metabolism ; Heat Shock Transcription Factors/genetics ; Phosphorylation
مستخلص: The heat shock response (HSR) is a gene regulatory program controlling expression of molecular chaperones implicated in aging, cancer, and neurodegenerative disease. Long presumed to be activated by toxic protein aggregates, recent work suggests a new functional paradigm for the HSR in yeast. Rather than toxic aggregates, adaptive biomolecular condensates comprised of orphan ribosomal proteins (oRP) and stress granule components have been shown to be physiological chaperone clients. By titrating away the chaperones Sis1 and Hsp70 from the transcription factor Hsf1, these condensates activate the HSR. Upon release from Hsp70, Hsf1 forms spatially distinct transcriptional condensates that drive high expression of HSR genes. In this manner, the negative feedback loop controlling HSR activity - in which Hsf1 induces Hsp70 expression and Hsp70 represses Hsf1 activity - is embedded in the biophysics of the system. By analogy to phosphorylation cascades that transmit information via the dynamic activity of kinases, we propose that the HSR is organized as a condensate cascade that transmits information via the localized activity of molecular chaperones.
Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
References: J Cell Sci. 1997 Dec;110 ( Pt 23):2925-34. (PMID: 9359875)
Adv Exp Med Biol. 2020;1243:41-50. (PMID: 32297210)
Cell. 2018 Dec 13;175(7):1842-1855.e16. (PMID: 30449618)
Cell. 1988 Sep 9;54(6):855-64. (PMID: 3044613)
Expert Opin Ther Targets. 2009 Apr;13(4):469-78. (PMID: 19335068)
Nature. 2018 Nov;563(7731):407-411. (PMID: 30429547)
Cell. 2015 Aug 27;162(5):1066-77. (PMID: 26317470)
Nature. 2023 Jun;618(7966):849-854. (PMID: 37286597)
Nat Rev Mol Cell Biol. 2018 Jan;19(1):4-19. (PMID: 28852220)
Genes Dev. 1998 Mar 1;12(5):654-66. (PMID: 9499401)
Elife. 2018 Feb 02;7:. (PMID: 29393852)
Cell Rep. 2022 Nov 8;41(6):111629. (PMID: 36351392)
Nature. 2016 Dec 22;540(7634):593-596. (PMID: 27951587)
J Cell Biol. 2021 Mar 1;220(3):. (PMID: 33382395)
Nat Cell Biol. 2022 Mar;24(3):340-352. (PMID: 35256776)
Nat Cell Biol. 2023 Nov;25(11):1691-1703. (PMID: 37845327)
Mol Cell. 2016 Apr 7;62(1):63-78. (PMID: 27052732)
Cell. 1991 May 3;65(3):363-6. (PMID: 2018972)
Science. 2018 Jul 27;361(6400):. (PMID: 29930091)
Nature. 2014 Oct 2;514(7520):117-21. (PMID: 25119046)
EMBO J. 2020 Jul 15;39(14):e104096. (PMID: 32490574)
J Cell Biol. 2018 Nov 5;217(11):3809-3816. (PMID: 30131327)
Cell. 2020 May 14;181(4):818-831.e19. (PMID: 32359423)
J Cell Biol. 2021 Jan 4;220(1):. (PMID: 33326013)
Cancer Cell. 2021 Feb 8;39(2):174-192. (PMID: 33417833)
PLoS Biol. 2010 Jul 06;8(7):e1000415. (PMID: 20625545)
Nat Methods. 2022 Jun;19(6):679-682. (PMID: 35637307)
Nat Rev Mol Cell Biol. 2017 May;18(5):285-298. (PMID: 28225081)
Cell Rep. 2019 Aug 20;28(8):2096-2110.e8. (PMID: 31433985)
Annu Rev Genet. 1988;22:631-77. (PMID: 2853609)
J Cell Biol. 2017 May 1;216(5):1231-1241. (PMID: 28400444)
Mol Cell Biol. 2015 Jul;35(14):2530-40. (PMID: 25963659)
Nat Commun. 2017 Feb 13;8:14405. (PMID: 28194040)
Elife. 2016 Nov 10;5:. (PMID: 27831465)
Annu Rev Biochem. 2011;80:1089-115. (PMID: 21417720)
Cell Rep. 2020 Jun 2;31(9):107680. (PMID: 32492414)
Science. 2009 Apr 10;324(5924):218-23. (PMID: 19213877)
Cell. 2007 Sep 21;130(6):1005-18. (PMID: 17889646)
J Mol Biol. 1961 Jun;3:318-56. (PMID: 13718526)
J Cell Sci. 2020 Aug 5;133(15):. (PMID: 32661089)
Trends Cell Biol. 2021 Oct;31(10):801-813. (PMID: 34001402)
Mol Cell. 2022 Nov 17;82(22):4386-4399.e7. (PMID: 36327976)
Mol Biol Cell. 2021 Sep 1;32(19):1800-1806. (PMID: 34191586)
Nature. 2008 Aug 28;454(7208):1088-95. (PMID: 18756251)
Mol Cell. 2022 Nov 17;82(22):4290-4306.e11. (PMID: 36272412)
Trends Biochem Sci. 2020 Nov;45(11):961-977. (PMID: 32684431)
Elife. 2019 Mar 07;8:. (PMID: 30843788)
Nat Microbiol. 2020 Nov;5(11):1374-1389. (PMID: 32719507)
Cell. 2013 Jul 3;154(1):134-45. (PMID: 23791384)
Cell Rep. 2018 Mar 20;22(12):3099-3106. (PMID: 29562166)
Elife. 2020 Aug 07;9:. (PMID: 32762843)
Mol Cell. 2019 Aug 8;75(3):549-561.e7. (PMID: 31398323)
Nat Cell Biol. 2021 Oct;23(10):1085-1094. (PMID: 34616026)
Science. 2020 Oct 2;370(6512):56-60. (PMID: 33004511)
J Cell Biol. 2018 Jun 4;217(6):2019-2032. (PMID: 29653997)
J Mol Biol. 2015 Apr 10;427(7):1564-74. (PMID: 25681695)
J Mol Biol. 1990 Dec 5;216(3):611-31. (PMID: 2175361)
Dev Cell. 2020 Oct 12;55(1):45-68. (PMID: 33049211)
Mol Cell. 2022 Feb 17;82(4):741-755.e11. (PMID: 35148816)
Nature. 1989 Sep 14;341(6238):125-30. (PMID: 2528694)
Mol Biol Cell. 2000 Dec;11(12):4241-57. (PMID: 11102521)
Nat Rev Mol Cell Biol. 2021 Mar;22(3):196-213. (PMID: 33510441)
Cell Rep. 2019 Jan 2;26(1):18-28.e5. (PMID: 30605674)
Curr Opin Cell Biol. 2009 Dec;21(6):855-63. (PMID: 19796927)
Nature. 1989 Feb 16;337(6208):620-5. (PMID: 2645524)
Elife. 2019 May 24;8:. (PMID: 31124783)
J Biol Chem. 2013 Apr 26;288(17):12197-213. (PMID: 23447536)
Mol Cell. 2022 Jul 21;82(14):2544-2556. (PMID: 35662398)
Cell. 2015 Sep 10;162(6):1286-98. (PMID: 26359986)
Elife. 2021 Jul 05;10:. (PMID: 34223816)
Elife. 2023 May 09;12:. (PMID: 37158601)
Cell. 2017 Mar 9;168(6):1028-1040.e19. (PMID: 28283059)
Nature. 2013 Mar 28;495(7442):467-73. (PMID: 23455423)
Cell. 1989 Dec 1;59(5):807-13. (PMID: 2686840)
EMBO Rep. 2017 Mar;18(3):377-391. (PMID: 28193623)
J Biol Chem. 2022 Nov;298(11):102476. (PMID: 36096201)
Annu Rev Biochem. 2017 Jun 20;86:97-122. (PMID: 28489421)
Nat Commun. 2020 Dec 8;11(1):6271. (PMID: 33293525)
Trends Biochem Sci. 2022 Mar;47(3):218-234. (PMID: 34810080)
Nat Commun. 2024 Apr 11;15(1):3127. (PMID: 38605014)
Nat Cell Biol. 2013 Oct;15(10):1231-43. (PMID: 24036477)
Nat Rev Drug Discov. 2011 Dec 01;10(12):930-44. (PMID: 22129991)
Trends Biochem Sci. 1999 Nov;24(11):437-40. (PMID: 10542411)
Cold Spring Harb Perspect Biol. 2019 Apr 1;11(4):. (PMID: 30420555)
Elife. 2019 Sep 25;8:. (PMID: 31552827)
Cell. 1991 Feb 8;64(3):585-93. (PMID: 1899357)
Nat Cell Biol. 2020 Feb;22(2):151-158. (PMID: 32015439)
J Biol Chem. 2019 Aug 9;294(32):12191-12202. (PMID: 31239354)
Science. 2020 Jun 19;368(6497):1386-1392. (PMID: 32554597)
Funct Integr Genomics. 2002 Sep;2(4-5):181-92. (PMID: 12192591)
J Biol Chem. 2019 May 3;294(18):7151-7159. (PMID: 30877200)
Annu Rev Biochem. 1986;55:1151-91. (PMID: 2427013)
Nat Cell Biol. 2023 May;25(5):699-713. (PMID: 37081164)
EMBO J. 2015 Mar 12;34(6):778-97. (PMID: 25672362)
Annu Rev Genet. 2019 Dec 3;53:171-194. (PMID: 31430179)
Cell Rep. 2019 Dec 24;29(13):4593-4607.e8. (PMID: 31875563)
معلومات مُعتمدة: R01 GM138689 United States GM NIGMS NIH HHS
فهرسة مساهمة: Keywords: Condensate; Heat shock; Hsf1; Hsp70; Signaling cascade
المشرفين على المادة: 0 (Saccharomyces cerevisiae Proteins)
0 (Transcription Factors)
0 (HSP70 Heat-Shock Proteins)
0 (Molecular Chaperones)
0 (Heat-Shock Proteins)
0 (DNA-Binding Proteins)
0 (HSF1 protein, S cerevisiae)
0 (Ribosomal Proteins)
0 (Heat Shock Transcription Factors)
تواريخ الأحداث: Date Created: 20240607 Date Completed: 20240627 Latest Revision: 20240701
رمز التحديث: 20240701
مُعرف محوري في PubMed: PMC11214683
DOI: 10.1016/j.jmb.2024.168642
PMID: 38848866
قاعدة البيانات: MEDLINE
الوصف
تدمد:1089-8638
DOI:10.1016/j.jmb.2024.168642