دورية أكاديمية

Leishmaniinae: Evolutionary inferences based on protein expression profiles (PhyloQuant) congruent with phylogenetic relationships among Leishmania, Endotrypanum, Porcisia, Zelonia, Crithidia, and Leptomonas.

التفاصيل البيبلوغرافية
العنوان: Leishmaniinae: Evolutionary inferences based on protein expression profiles (PhyloQuant) congruent with phylogenetic relationships among Leishmania, Endotrypanum, Porcisia, Zelonia, Crithidia, and Leptomonas.
المؤلفون: Mule SN; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Alemán EV; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Rosa-Fernandes L; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Saad JS; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., de Oliveira GS; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Martins D; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Angeli CB; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Brandt-Almeida D; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Cortez M; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Larsen MR; Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, DK, Denmark., Shaw JJ; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Teixeira MMG; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil., Palmisano G; Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
المصدر: Proteomics [Proteomics] 2024 Jun 08, pp. e2100313. Date of Electronic Publication: 2024 Jun 08.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Country of Publication: Germany NLM ID: 101092707 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1615-9861 (Electronic) Linking ISSN: 16159853 NLM ISO Abbreviation: Proteomics Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim, Germany : Wiley-VCH,
مستخلص: Evolutionary relationships among parasites of the subfamily Leishmaniinae, which comprises pathogen agents of leishmaniasis, were inferred based on differential protein expression profiles from mass spectrometry-based quantitative data using the PhyloQuant method. Evolutionary distances following identification and quantification of protein and peptide abundances using Proteome Discoverer and MaxQuant software were estimated for 11 species from six Leishmaniinae genera. Results clustered all dixenous species of the genus Leishmania, subgenera L. (Leishmania), L. (Viannia), and L. (Mundinia), sister to the dixenous species of genera Endotrypanum and Porcisia. Placed basal to the assemblage formed by all these parasites were the species of genera Zelonia, Crithidia, and Leptomonas, so far described as monoxenous of insects although eventually reported from humans. Inferences based on protein expression profiles were congruent with currently established phylogeny using DNA sequences. Our results reinforce PhyloQuant as a valuable approach to infer evolutionary relationships within Leishmaniinae, which is comprised of very tightly related trypanosomatids that are just beginning to be phylogenetically unraveled. In addition to evolutionary history, mapping of species-specific protein expression is paramount to understand differences in infection processes, tissue tropisms, potential to jump from insects to vertebrates including humans, and targets for species-specific diagnostic and drug development.
(© 2024 Wiley‐VCH GmbH.)
References: Mule, S. N., Costa‐Martins, A. G., Rosa‐Fernandes, L., De Oliveira, G. S., Rodrigues, C. M. F., Quina, D., Rosein, G. E., Teixeira, M. M. G., & Palmisano, G. (2021). PhyloQuant approach provides insights into Trypanosoma cruzi evolution using a systems‐wide mass spectrometry‐based quantitative protein profile. Communications Biology, 4, 324.
Hamilton, P. B., Teixeira, M. M., & Stevens, J. R. (2012). The evolution of Trypanosoma cruzi: The ‘bat seeding’ hypothesis. Trends in Parasitology, 28, 136–141.
Jirku, M., Yurchenko, V. Y., Lukes, J., & Maslov, D. A. (2012). New species of insect trypanosomatids from Costa Rica and the proposal for a new subfamily within the Trypanosomatidae. The Journal of Eukaryotic Microbiology, 59, 537–547.
Espinosa, O. A., Serrano, M. G., Camargo, E. P., Teixeira, M. M. G., & Shaw, J. J. (2018). An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology, 145, 430–442.
Kostygov, A. Y., Karnkowska, A., Votýpka, J., Tashyreva, D., Maciszewski, K., Yurchenko, V., & Lukeš, J. (2021). Euglenozoa: Taxonomy, diversity and ecology, symbioses and viruses. Open Biology, 11, 200407.
World Health Organization. (2023). Leishmaniasis. Retrieved August 29, 2023, from https://www.who.int/news‐room/fact‐sheets/detail/leishmaniasis.
Lainson, R., & Shaw, J. J. (1987). Evolution, classification and geographical distribution. In: Peters, W; Killick‐Kendrick, R. The leishmaniases in biology and medicine, v. 1 ‐ Biology and epidemiology, Academic Press Inc, London, p. 1–120.
Desbois, N., Pratlong, F., Quist, D., & Dedet, J.‐P. (2014). Leishmania (Leishmania) martiniquensis n. sp. (Kinetoplastida: Trypanosomatidae), description of the parasite responsible for cutaneous leishmaniasis in Martinique Island (French West Indies). Parasite (Paris, France), 21, 12.
Kwakye‐Nuako, G., Mosore, M.‐T., Duplessis, C., Bates, M. D., Puplampu, N., Mensah‐Attipoe, I., Desewu, K., Afegbe, G., Asmah, R. H., Jamjoom, M. B., Ayeh‐Kumi, P. F., Boakye, D. A., & Bates, P. A. (2015). First isolation of a new species of Leishmania responsible for human cutaneous leishmaniasis in Ghana and classification in the Leishmania enriettii complex. International Journal for Parasitology, 45, 679–684.
Jariyapan, N., Daroontum, T., Jaiwong, K., Chanmol, W., Intakhan, N., Sor‐suwan, S., Siriyasatien, P., Somboon, P., Bates, M. D., & Bates, P. A. (2018). Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasites & Vectors, 11, 351.
Sereno, D. (2019). Leishmania (Mundinia) spp.: From description to emergence as new human and animal Leishmania pathogens. New Microbes and New Infections, 30, 100540.
Mendes Junior, A. A. V., Filgueira, C. P. B., Miranda, L. D. F. C., De Almeida, A. B., Cantanhêde, L. M., Fagundes, A., Pereira, S. A., Menezes, R. C., & Cupolillo, E. (2023). First report of Leishmania (Mundinia) martiniquensis in South American territory and confirmation of Leishbunyavirus infecting this parasite in a mare. Memorias do Instituto Oswaldo Cruz, 118, e220220.
Shaw, J. J. (1964). A possible vector of endotrypanum schaudinni of the sloth choloepus hoffmanni, in panama. Nature, 201, 417–418.
Christensen, H. A., & Herrer, A. (1976). Neotropical sand flies (Diptera: Psychodidae), invertebrate hosts of Endotrypanum schaudinni (Kinetoplastida: Trypanosomatidae). Journal of Medical Entomology, 13, 299–303.
Kreutzer, R. D., Corredor, A., Grimaldi, G., Jr., Grogl, M., Rowton, E. D., Young, D. G., Morales, A., McMahon‐Pratt, D., Guzman, H., & Tesh, R. B. (1991). Characterization of Leishmania colombiensis sp. n (Kinetoplastida: Trypanosomatidae), a new parasite infecting humans, animals, and phlebotomine sand flies in Colombia and Panama. The American Journal of Tropical Medicine and Hygiene, 44, 662–675.
Cupolillo, E., Medina‐Acosta, E., Noyes, H., Momen, H., & Grimaldi, G., Jr. (2000). A revised classification for Leishmania and Endotrypanum. Parasitology Today (Personal ed.), 16, 142–144.
Sadlova, J., Bacikova, D., Becvar, T., Vojtkova, B., England, M., Shaw, J., & Volf, P. (2022). Porcisia transmission by prediuresis of sand flies. Frontiers in Cellular and Infection Microbiology, 12, 981071.
Barratt, J., Kaufer, A., Peters, B., Craig, D., Lawrence, A., Roberts, T., Lee, R., McAuliffe, G., Stark, D., & Ellis, J. (2017). Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) provides support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. PLoS Neglected Tropical Diseases, 11, e0005215.
Ghosh, S., Banerjee, P., Sarkar, A., Datta, S., & Chatterjee, M. (2012). Coinfection of Leptomonas seymouri and Leishmania donovani in Indian leishmaniasis. Journal of Clinical Microbiology, 50, 2774–2778.
Selvapandiyan, A., Ahuja, K., Puri, N., & Krishnan, A. (2015). Implications of co‐infection of Leptomonas in visceral leishmaniasis in India. Parasitology, 142, 1657–1662.
Ghobakhloo, N., Motazedian, M. H., Naderi, S., & Ebrahimi, S. (2019). Isolation of Crithidia spp. from lesions of immunocompetent patients with suspected cutaneous leishmaniasis in Iran. Tropical Medicine & International Health, 24, 116–126.
Thakur, L., Kushwaha, H. R., Negi, A., Jain, A., & Jain, M. (2020). Leptomonas seymouri co‐infection in cutaneous Leishmaniasis cases caused by Leishmania donovani from Himachal Pradesh, India. Frontiers in Cellular and Infection Microbiology, 10, 345.
Maruyama, S. R., de Santana, A. K. M., Takamiya, N. T., Takahashi, T. Y., Rogerio, L. A., Oliveira, C. A. B., Milanezi, C. M., Trombela, V. A., Cruz, A. K., Jesus, A. R., Barreto, A. S., da Silva, A. M., Almeida, R. P., Ribeiro, J. M., & Silva, J. S. (2019). Non‐Leishmania parasite in fatal visceral leishmaniasis‐like disease, Brazil. Emerging Infectious Diseases, 25, 2088–2092.
Rogerio, L. A., Takahashi, T. Y., Cardoso, L., Takamiya, N. T., de Melo, E. V., de Jesus, A. R., de Oliveira, F. A., Forrester, S., Jeffares, D. C., da Silva, J. S., Ribeiro, J. M., Almeida, R. P., & Maruyama, S. R. (2023). Co‐infection of Leishmania infantum and a Crithidia‐related species in a case of refractory relapsed visceral leishmaniasis with non‐ulcerated cutaneous manifestation in Brazil. International Journal of Infectious Diseases: Official Publication of the International Society for Infectious Diseases, 133, 85–88.
Mule, S. N., Saad, J. S., Sauter, I. P., Fernandes, L. R., De Oliveira, G. S., Quina, D., Tano, F. T., Brandt‐Almeida, D., Padrón, G., Stolf, B. S., Larsen, M. R., Cortez, M., & Palmisano, G. (2024). The protein map of the protozoan parasite Leishmania (Leishmania) amazonensis, Leishmania (Viannia) braziliensis and Leishmania (Leishmania) infantum during growth phase transition and temperature stress. Journal of Proteomics, 295, 105088.
Perez‐Riverol, Y., Bai, J., Bandla, C., García‐Seisdedos, D., Hewapathirana, S., Kamatchinathan, S., Kundu, D. J., Prakash, A., Frericks‐Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A., & Vizcaíno, J. A. (2022). The PRIDE database resources in 2022: A hub for mass spectrometry‐based proteomics evidences. Nucleic Acids Research, 50, D543–d552.
Cox, J., & Mann, M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.‐range mass accuracies and proteome‐wide protein quantification. Nature Biotechnology, 26, 1367–1372.
Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M., & Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13, 731–740.
Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.
Swofford, D. L., & Jack, S. (2003). Phylogeny inference based on parsimony and other methods using PAUP*. The phylogenetic handbook: a practical approach to DNA and protein phylogeny, 160–206.
Stamatakis, A. (2006). RAxML‐VI‐HPC: Maximum likelihood‐based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England), 22, 2688–2690.
Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics (Oxford, England), 17, 754–755.
Gouy, M., Guindon, S., & Gascuel, O. (2009). SeaView Version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27, 221–224.
Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Research, 27, 209–220.
Paradis, E., Claude, J., & Strimmer, K. (2004). APE: Analyses of phylogenetics and evolution in R language. Bioinformatics (Oxford, England), 20, 289–290.
Ishemgulova, A., Butenko, A., Kortišová, L., Boucinha, C., Grybchuk‐Ieremenko, A., Morelli, K. A., Tesařová, M., Kraeva, N., Grybchuk, D., Pánek, T., Flegontov, P., Lukeš, J., Votýpka, J., Pavan, M. G., Opperdoes, F. R., Spodareva, V., d'Avila‐Levy, C. M., Kostygov, A. Y., & Yurchenko, V. (2017). Molecular mechanisms of thermal resistance of the insect trypanosomatid Crithidia thermophila. PLoS ONE, 12, e0174165.
Kaufer, A., Ellis, J., Stark, D., & Barratt, J. (2017). The evolution of trypanosomatid taxonomy. Parasites & Vectors, 10, 287.
Maslov, D. A., Yurchenko, V. Y., Jirku, M., & Lukes, J. (2010). Two new species of trypanosomatid parasites isolated from Heteroptera in Costa Rica. The Journal of Eukaryotic Microbiology, 57, 177–188.
Votýpka, J., Kment, P., Yurchenko, V., & Lukes, J. (2020). Endangered monoxenous trypanosomatid parasites: A lesson from island biogeography. Biodiversity and Conservation, 29, 3635–3667.
Kraeva, N., Butenko, A., Hlav‐Cová, J., Kostygov, A., Myskova, J., Grybchuk, D., Lestinová, T., Votýpka, J., Volf, P., Opperdoes, F., Flegontov, P., Lukes, J., & Yurchenko, V. (2015). Leptomonas seymouri: Adaptations to the dixenous life cycle analyzed by genome sequencing, transcriptome profiling and co‐infection with Leishmania donovani. PLoS Pathogens, 11, e1005127.
Yao, C., Donelson, J. E., & Wilson, M. E. (2003). The major surface protease (MSP or GP63) of Leishmania sp. biosynthesis, regulation of expression, and function. Molecular and Biochemical Parasitology, 132, 1–16.
Forestier, C. L., Gao, Q., & Boons, G. J. (2014). Leishmania lipophosphoglycan: How to establish structure‐activity relationships for this highly complex and multifunctional glycoconjugate? Frontiers in Cellular and Infection Microbiology, 4, 193.
Kumari, D., Mahajan, S., Kour, P., & Singh, K. (2022). Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sciences, 306, 120829.
Valdivia, H. O., Scholte, L. L. S., Oliveira, G., Gabaldón, T., & Bartholomeu, D. C. (2015). The Leishmania metaphylome: A comprehensive survey of Leishmania protein phylogenetic relationships. BMC Genomics, 16, 887.
Sanchiz, Á., Morato, E., Rastrojo, A., Camacho, E., González‐de la Fuente, S. G., Marina, A., Aguado, B., & Requena, J. M. (2020). The experimental proteome of Leishmania infantum promastigote and its usefulness for improving gene annotations. Genes, 11, 1036.
Pinho, N., Wisniewski, J. R., Dias‐Lopes, G., Saboia‐Vahia, L., Bombaça, A. C. S., Mesquita‐Rodrigues, C., Menna‐Barreto, R., Cupolillo, E., De Jesus, J. B., Padrón, G., & Cuervo, P. (2020). In‐depth quantitative proteomics uncovers specie‐specific metabolic programs in Leishmania (Viannia) species. PLoS Neglected Tropical Diseases, 14, e0008509.
Singh, N., Goel, R., & Jain, E. (2018). Differential metabolic pathway analysis of the proteomes of Leishmania donovani and Leptomonas seymouri. Proteomics. Clinical Applications, 12, e1600087.
Flegontov, P., Butenko, A., Firsov, S., Kraeva, N., Eliáš, M., Field, M. C., Filatov, D., Flegontova, O., Gerasimov, E. S., Hlaváčová, J., Ishemgulova, A., Jackson, A. P., Kelly, S., Kostygov, A. Y., Logacheva, M. D., Maslov, D. A., Opperdoes, F. R., O'Reilly, A., Sádlová, J., … Lukeš, J. (2016). Genome of Leptomonas pyrrhocoris: A high‐quality reference for monoxenous trypanosomatids and new insights into evolution of Leishmania. Scientific Reports, 6, 23704.
Maruyama, S. R., Rogerio, L. A., Freitas, P. D., Teixeira, M. M. G., & Ribeiro, J. M. C. (2021). Total Ortholog Median Matrix as an alternative unsupervised approach for phylogenomics based on evolutionary distance between protein coding genes. Scientific Reports, 11, 3791.
Albanaz, A. T. S., Gerasimov, E. S., Shaw, J. J., Sádlová, J., Lukeš, J., Volf, P., Opperdoes, F. R., Kostygov, A. Y., Butenko, A., & Yurchenko, V. (2021). Genome analysis of Endotrypanum and Porcisia spp., closest phylogenetic relatives of Leishmania, highlights the role of amastins in shaping pathogenicity. Genes, 12, 444.
Shaw, J. J., & Bird, R. G. (1969). The endoerythrocytic habitat of a member of the Trypanosomatidae, Endotrypanum schaudinni, Mesnil and Brimont, 1908. Zeitschrift fur Tropenmedizin und Parasitologie, 20, 144–150.
Shaw, J. J., & Bird, R. G. (1964). The intracellular habitat of Endotrypanum schaudinni. Transactions of the Royal Society of Tropical Medicine and Hygiene, 58, 2–2.
Tullume‐Vergara, P. O., Caicedo, K. Y. O., Tantalean, J. F. C., Serrano, M. G., Buck, G. A., Teixeira, M. M. G., Shaw, J. J., & Alves, J. M. P. (2023). Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of multigene families in Leishmaniinae parasites that are close relatives of Leishmania spp. Pathogens, 12(12), 1409.
معلومات مُعتمدة: Conselho Nacional de Desenvolvimento Científico e Tecnológico; 2016/23689-2 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2017/04032-5 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/13283-4 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/15549-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/18257-1 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2020/04923-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2020/13562-0 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2021/14179-9 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2021/14751-4 Fundação de Amparo à Pesquisa do Estado de São Paulo
فهرسة مساهمة: Keywords: Leishmaniinae; PhyloQuant; Trypanosomatidae; evolution; leishmaniasis; proteome; taxonomy; tropical diseases
تواريخ الأحداث: Date Created: 20240608 Latest Revision: 20240608
رمز التحديث: 20240609
DOI: 10.1002/pmic.202100313
PMID: 38850190
قاعدة البيانات: MEDLINE
الوصف
تدمد:1615-9861
DOI:10.1002/pmic.202100313