دورية أكاديمية

Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials.

التفاصيل البيبلوغرافية
العنوان: Effect of household pipe materials on formation and chlorine resistance of the early-stage biofilm: various interspecific interactions exhibited by the same microbial biofilm in different pipe materials.
المؤلفون: Shan L; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China., Zheng W; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China., Xu S; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China.; Department of Transportation of Jiangxi Province, Comprehensive Transportation Development Research Center of Jiangxi Provincial, Nanchang, PR China., Zhu Z; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China. zhuzebing@ecjtu.edu.cn.; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China. zhuzebing@ecjtu.edu.cn., Pei Y; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China., Bao X; School of Civil Engineering and Architecture, East China Jiao Tong University, Nanchang, 330013, PR China., Yuan Y; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, PR China.
المصدر: Archives of microbiology [Arch Microbiol] 2024 Jun 10; Vol. 206 (7), pp. 295. Date of Electronic Publication: 2024 Jun 10.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 0410427 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-072X (Electronic) Linking ISSN: 03028933 NLM ISO Abbreviation: Arch Microbiol Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin, New York, Springer-Verlag.
مواضيع طبية MeSH: Biofilms*/drug effects , Biofilms*/growth & development , Chlorine*/pharmacology , Bacteria*/drug effects , Bacteria*/genetics , Bacteria*/isolation & purification , Bacteria*/classification , Drinking Water*/microbiology, Copper/pharmacology ; Water Microbiology ; Stainless Steel ; Polypropylenes ; Water Supply ; Halogenation ; Corrosion ; Disinfectants/pharmacology
مستخلص: Microbial community biofilm exists in the household drinking water system and would pose threat to water quality. This paper explored biofilm formation and chlorination resistance of ten dual-species biofilms in three typical household pipes (stainless steel (SS), polypropylene random (PPR), and copper), and investigated the role of interspecific interaction. Biofilm biomass was lowest in copper pipes and highest in PPR pipes. A synergistic or neutralistic relationship between bacteria was evident in most biofilms formed in SS pipes, whereas four groups displayed a competitive relationship in biofilms formed in copper pipe. Chlorine resistance of biofilms was better in SS pipes and worse in copper pipes. It may be helped by interspecific relationships, but was more dependent on bacteria and resistance mechanisms such as more stable extracellular polymeric substance. The corrosion sites may also protect bacteria from chlorination. The findings provide useful insights for microbial control strategies in household drinking water systems.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Akinbobola AB, Amaeze NJ, Mackay WG, Ramage G, Williams C (2021) Secondary biofilms’ could cause failure of peracetic acid high-level disinfection of endoscopes. J Hosp Infect 107:67–75. https://doi.org/10.1016/j.jhin.2020.09.028. (PMID: 10.1016/j.jhin.2020.09.02833098959)
Aziz G, Fakhar H, Rahman SU, Tariq M, Zaidi A (2019) An assessment of the aggregation and probiotic characteristics of Lactobacillus species isolated from native (desi) chicken gut. J Appl Poult Res 28:846–857. https://doi.org/10.3382/japr/pfz042. (PMID: 10.3382/japr/pfz042)
Bimakr F, Ginige MP, Kaksonen AH, Sutton DC, Puzon GJ, Cheng KY (2018) Assessing graphite and stainless-steel for electrochemical sensing of biofilm growth in chlorinated drinking water systems. Sens Actuators B-Chemical 277:526–534. https://doi.org/10.1016/j.snb.2018.09.005. (PMID: 10.1016/j.snb.2018.09.005)
Bridier A, Briandet R, Thomas V, Dubois-Brissonnet F (2011) Resistance of bacterial biofilms to disinfectants: a review. Biofouling 27:1017–1032. https://doi.org/10.1080/08927014.2011.626899. (PMID: 10.1080/08927014.2011.62689922011093)
Burmolle M, Webb JS, Rao D, Hansen LH, Sorensen SJ, Kjelleberg S (2006) Enhanced biofilm formation and increased resistance to antimicrobial agents and bacterial invasion are caused by synergistic interactions in multispecies biofilms. Appl Environ Microbiol 72:3916–3923. https://doi.org/10.1128/aem.03022-05. (PMID: 10.1128/aem.03022-05167514971489630)
Chen W, Westerhoff P, Leenheer JA, Booksh K (2003) Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ Sci Technol 37:5701–5710. https://doi.org/10.1021/es034354c. (PMID: 10.1021/es034354c14717183)
Clara Tarifa M, Ines Brugnoni L, Enrique Lozano J (2013) Role of hydrophobicity in adhesion of wild yeast isolated from the ultrafiltration membranes of an apple juice processing plant. Biofouling 29:841–853. https://doi.org/10.1080/08927014.2013.808628. (PMID: 10.1080/08927014.2013.808628)
Cloete TE (2003) Resistance mechanisms of bacteria to antimicrobial compounds. Int Biodeterior Biodegrad 51:277–282. (PMID: 10.1016/S0964-8305(03)00042-8)
Das MC et al (2022) Vitexin alters Staphylococcus aureus surface hydrophobicity to obstruct biofilm formation. Microbiol Res 263. https://doi.org/10.1016/j.micres.2022.127126. (PMID: 10.1016/j.micres.2022.127126)
Douterelo I, Husband S, Boxall JB (2014) The bacteriological composition of biomass recovered by flushing an operational drinking water distribution system. Water Res 54:100–114. https://doi.org/10.1016/j.watres.2014.01.049. (PMID: 10.1016/j.watres.2014.01.04924565801)
Fish KE et al (2015) Characterisation of the physical composition and Microbial Community structure of Biofilms within a model full-scale drinking water distribution system. PLoS ONE 10. https://doi.org/10.1371/journal.pone.0115824.
Grass G, Rensing C, Solioz M (2011) Metallic copper as an Antimicrobial Surface. Appl Environ Microbiol 77:1541–1547. https://doi.org/10.1128/aem.02766-10. (PMID: 10.1128/aem.02766-1021193661)
Hemdan A, Azab El-Liethy B, El-Taweel M GE (2020) The destruction of Escherichia coli adhered to pipe surfaces in a model drinking water distribution system via various antibiofilm agents. Water Environ Res 92:2155–2167. https://doi.org/10.1002/wer.1388. (PMID: 10.1002/wer.1388)
Hu D et al (2021) A comprehensive investigation of the microbial risk of secondary water supply systems in residential neighborhoods in a large city. Water Res 205. https://doi.org/10.1016/j.watres.2021.117690.
Hynen AL et al (2021) Multiple holins contribute to extracellular DNA release in Pseudomonas aeruginosa biofilms. https://doi.org/10.1099/mic.0.000990 . Microbiology-Sgm 167.
Jathar S et al (2021) Identification and characterization of chlorine-resistant bacteria from water distribution sites of Mumbai. Arch Microbiol 203:5241–5248. https://doi.org/10.1007/s00203-021-02503-3. (PMID: 10.1007/s00203-021-02503-334368885)
Jeong D, Lee C-H, Lee S, Bae H (2019) Intermittent chlorination shifts the marine biofilm population on reverse osmosis membranes. Membrane Water Treat 10:395–404. https://doi.org/10.12989/mwt.2019.10.6.395. (PMID: 10.12989/mwt.2019.10.6.395)
Kilb B, Lange B, Schaule G, Flemming H-C, Wingender J (2003) Contamination of drinking water by coliforms from biofilms grown on rubber-coated valves. Int J Hyg Environ Health 206:563–573. https://doi.org/10.1078/1438-4639-00258. (PMID: 10.1078/1438-4639-0025814626903)
Learbuch KLG, Smidt H, van der Wielen PWJJ (2021) Influence of pipe materials on the microbial community in unchlorinated drinking water and biofilm. Water Res 194. https://doi.org/10.1016/j.watres.2021.116922.
Lehtola MJ et al (2004) Microbiology, chemistry and biofilm development in a pilot drinking water distribution system with copper and plastic pipes. Water Res 38:3769–3779. https://doi.org/10.1016/j.watres.2004.06.024. (PMID: 10.1016/j.watres.2004.06.02415350429)
Li Y et al (2020) Extraction and biological activity of exopolysaccharide produced by Leuconostoc mesenteroides SN-8. Int J Biol Macromol 157:36–44. https://doi.org/10.1016/j.ijbiomac.2020.04.150. (PMID: 10.1016/j.ijbiomac.2020.04.15032339581)
Lindsay D, Brozel VS, Mostert JF, von Holy A (2002) Differential efficacy of a chlorine dioxide-containing sanitizer against single species and binary biofilms of a dairy-associated Bacillus cereus and a Pseudomonas fluorescens isolate. J Appl Microbiol 92:352–361. https://doi.org/10.1046/j.1365-2672.2002.01538.x. (PMID: 10.1046/j.1365-2672.2002.01538.x11849365)
Liu R, Yu Z, Guo H, Liu M, Zhang H, Yang M (2012) Pyrosequencing analysis of eukaryotic and bacterial communities in faucet biofilms. Sci Total Environ 435:124–131. https://doi.org/10.1016/j.scitotenv.2012.07.022. (PMID: 10.1016/j.scitotenv.2012.07.02222846772)
Liu R et al (2014) Molecular analysis of long-term biofilm formation on PVC and cast iron surfaces in drinking water distribution system. J Environ Sci 26:865–874. https://doi.org/10.1016/s1001-0742(13)60481-7. (PMID: 10.1016/s1001-0742(13)60481-7)
Liu L et al (2017) Chlorination-mediated EPS excretion shapes early-stage biofilm formation in drinking water systems. Process Biochem 55:41–48. https://doi.org/10.1016/j.procbio.2016.12.029. (PMID: 10.1016/j.procbio.2016.12.029)
Liu G et al (2018) Assessing the origin of bacteria in tap water and distribution system in an unchlorinated drinking water system by SourceTracker using microbial community fingerprints. Water Res 138:86–96. https://doi.org/10.1016/j.watres.2018.03.043. (PMID: 10.1016/j.watres.2018.03.04329573632)
Maddela NR, Meng F (2020) Discrepant roles of a quorum quenching bacterium (Rhodococcus sp. BH4) in growing dual-species biofilms. Sci Total Environ 713. https://doi.org/10.1016/j.scitotenv.2019.136402. (PMID: 10.1016/j.scitotenv.2019.136402)
Makris KC, Andra SS, Botsaris G (2014) Pipe scales and biofilms in drinking-water distribution systems: undermining Finished Water Quality. Crit Rev Environ Sci Technol 44:1477–1523. https://doi.org/10.1080/10643389.2013.790746. (PMID: 10.1080/10643389.2013.790746)
Muhammad MH et al (2020) Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.00928. (PMID: 10.3389/fmicb.2020.00928)
Mushak P (2007) Hormesis and its place in nonmonotonic dose-response relationships: some scientific reality checks. Environ Health Perspect 115:500–506. https://doi.org/10.1289/ehp.9619. (PMID: 10.1289/ehp.9619174502151852676)
Odeyemi OA (2017) Microtiter plate assay methods of classification of bacterial biofilm formation. Food Control 73:245–246. https://doi.org/10.1016/j.foodcont.2016.08.049. (PMID: 10.1016/j.foodcont.2016.08.049)
Pepper IL, Rusin P, Quintanar DR, Haney C, Josephson KL, Gerba CP (2004) Tracking the concentration of heterotrophic plate count bacteria from the source to the consumer’s tap. Int J Food Microbiol 92:289–295. https://doi.org/10.1016/j.ijfoodmicro.2003.08.021. (PMID: 10.1016/j.ijfoodmicro.2003.08.02115145587)
Peterson CP, Sauer C, Chatfield CH (2018) The Extracellular Polymeric substances of Legionella pneumophila Biofilms Contain amyloid structures. Curr Microbiol 75:736–744. https://doi.org/10.1007/s00284-018-1440-1. (PMID: 10.1007/s00284-018-1440-129468303)
Pompilio A, Piccolomini R, Picciani C, D’Antonio D, Savini V, Di Bonaventura G (2008) Factors associated with adherence to and biofilm formation on polystyrene by Stenotrophomonas maltophilia: the role of cell surface hydrophobicity and motility. FEMS Microbiol Lett 287:41–47. https://doi.org/10.1111/j.1574-6968.2008.01292.x. (PMID: 10.1111/j.1574-6968.2008.01292.x18681866)
Que Thanh T, Krishna KCB, Salih A, Listowski A, Sathasivan A (2020) Biofilm growth on PVC and HDPE pipes impacts chlorine stability in the recycled water. J Environ Chem Eng 8. https://doi.org/10.1016/j.jece.2020.104476. (PMID: 10.1016/j.jece.2020.104476)
Sadiq FA et al (2021) Community-wide changes reflecting bacterial interspecific interactions in multispecies biofilms. Crit Rev Microbiol 47:338–358. https://doi.org/10.1080/1040841x.2021.1887079. (PMID: 10.1080/1040841x.2021.188707933651958)
Schiffer C, Hilgarth M, Ehrmann M, Vogel RF (2019) Bap and Cell Surface Hydrophobicity are important factors in Staphylococcus xylosus Biofilm formation. Front Microbiol 10. https://doi.org/10.3389/fmicb.2019.01387.
Shan L et al (2023) Effect of domestic pipe materials on microbiological safety of drinking water: different biofilm formation and chlorination resistance for diverse pipe materials. Process Biochem 129:11–21. https://doi.org/10.1016/j.procbio.2023.03.012. (PMID: 10.1016/j.procbio.2023.03.012)
Siddam AD et al (2021) Characterization of Biofilm formation by Mycobacterium chimaera on Medical device materials. Front Microbiol 11. https://doi.org/10.3389/fmicb.2020.586657.
Simoes LC, Simoes M, Oliveira R, Vieira MJ (2007) Potential of the adhesion of bacteria isolated from drinking water to materials. J Basic Microbiol 47:174–183. https://doi.org/10.1002/jobm.200610224. (PMID: 10.1002/jobm.20061022417440920)
Simoes M, Simoes LC, Vieira MJ (2009) Species association increases biofilm resistance to chemical and mechanical treatments. Water Res 43:229–237. https://doi.org/10.1016/j.watres.2008.10.010. (PMID: 10.1016/j.watres.2008.10.01018977505)
Slavik I, Oliveira KR, Cheung PB, Uhl W (2020) Water quality aspects related to domestic drinking water storage tanks and consideration in current standards and guidelines throughout the world - a review. J Water Health 18:439–463. https://doi.org/10.2166/wh.2020.052. (PMID: 10.2166/wh.2020.05232833673)
Steinchen W et al (2021) Dual role of a (p)ppgpp- and (p)ppapp-degrading enzyme in biofilm formation and interbacterial antagonism. Mol Microbiol 115:1339–1356. https://doi.org/10.1111/mmi.14684. (PMID: 10.1111/mmi.1468433448498)
Tan CH, Lee KWK, Burmolle M, Kjelleberg S, Rice SA (2017) All together now: experimental multispecies biofilm model systems. Environ Microbiol 19:42–53. https://doi.org/10.1111/1462-2920.13594. (PMID: 10.1111/1462-2920.1359427878947)
Uhl W, Schaule G (2004) Establishment of HPC(R2A) for regrowth control in non-chlorinated distribution systems. Int J Food Microbiol 92:317–325. https://doi.org/10.1016/j.ijfoodmicro.2003.08.010. (PMID: 10.1016/j.ijfoodmicro.2003.08.01015145590)
Vargas IT, Anguita JM, Pasten PA, Pizarro GE (2019) Chlorine reduction kinetics and its Mass Balance in Copper Premise Plumbing systems during corrosion events. Materials 12 https://doi.org/10.3390/ma12223676.
Vaz-Moreira I, Egas C, Nunes OC, Manaia CM (2013) Bacterial diversity from the source to the tap: a comparative study based on 16S rRNA gene-DGGE and culture-dependent methods. FEMS Microbiol Ecol 83:361–374. https://doi.org/10.1111/1574-6941.12002. (PMID: 10.1111/1574-6941.1200222938591)
Vornhagen J et al (2013) Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. Biofouling 29:53–68. https://doi.org/10.1080/08927014.2012.744395. (PMID: 10.1080/08927014.2012.744395231944134199578)
Wang Z et al (2015) Effects of salinity on performance, extracellular polymeric substances and microbial community of an aerobic granular sequencing batch reactor. Sep Purif Technol 144:223–231. https://doi.org/10.1016/j.seppur.2015.02.042. (PMID: 10.1016/j.seppur.2015.02.042)
Wang H, Hu C, Shen Y, Shi B, Zhao D, Xing X (2019) Response of microorganisms in biofilm to sulfadiazine and ciprofloxacin in drinking water distribution systems. Chemosphere 218:197–204. https://doi.org/10.1016/j.chemosphere.2018.11.106. (PMID: 10.1016/j.chemosphere.2018.11.10630471500)
Wang J, Li G, Yin H, An T (2020a) Bacterial response mechanism during biofilm growth on different metal material substrates: EPS characteristics, oxidative stress and molecular regulatory network analysis. Environ Res 185. https://doi.org/10.1016/j.envres.2020.109451.
Wang M et al (2020b) Detoxification of Cu(II) by the red yeast Rhodotorula mucilaginosa: from extracellular to intracellular. Appl Microbiol Biotechnol 104:10181–10190. https://doi.org/10.1007/s00253-020-10952-x. (PMID: 10.1007/s00253-020-10952-x33043391)
Wei G, Li M, Li F, Li H, Gao Z (2016) Distinct distribution patterns of prokaryotes between sediment and water in the Yellow River Estuary. Appl Microbiol Biotechnol 100:9683–9697. https://doi.org/10.1007/s00253-016-7802-3. (PMID: 10.1007/s00253-016-7802-327557722)
Xu X, Liu S, Smith K, Cui Y, Wang Z (2020) An overview on corrosion of iron and steel components in reclaimed water supply systems and the mechanisms involved. J Clean Prod 276. https://doi.org/10.1016/j.jclepro.2020.124079.
Xue Z, Sendamangalam VR, Gruden CL, Seo Y (2012) Multiple roles of Extracellular Polymeric substances on Resistance of Biofilm and detached clusters. Environ Sci Technol 46:13212–13219. https://doi.org/10.1021/es3031165. (PMID: 10.1021/es303116523167565)
Zhang L, Ren H, Ding L (2012) Comparison of extracellular polymeric substances (EPS) extraction from two different activated sludges. Water Sci Technol 66:1558–1564. https://doi.org/10.2166/wst.2012.295. (PMID: 10.2166/wst.2012.29522864444)
Zhang H, Yang Y, Li X, Liu Y, Zhao L (2018) Evaluation of biofilm development on various pipelines in the domestic hot water system. Water Sci Technology-Water Supply 18:638–647. https://doi.org/10.2166/ws.2017.138. (PMID: 10.2166/ws.2017.138)
Zhao Y et al (2020) HCAR1/MCT1 regulates Tumor Ferroptosis through the lactate-mediated AMPK-SCD1 activity and its therapeutic implications. Cell Rep 33. https://doi.org/10.1016/j.celrep.2020.108487.
Zhu Z et al (2020a) Biofilm formation potential and chlorine resistance of typical bacteria isolated from drinking water distribution systems. RSC Adv 10:31295–31304. https://doi.org/10.1039/d0ra04985a. (PMID: 10.1039/d0ra04985a355206679056398)
Zhu Z et al (2020b) Effects of interspecific interactions on biofilm formation potential and chlorine resistance: evaluation of dual-species biofilm observed in drinking water distribution systems. J Water Process Eng 38. https://doi.org/10.1016/j.jwpe.2020.101564.
Zhu Z et al (2021) Effects of bacterial community composition and structure in drinking water distribution systems on biofilm formation and chlorine resistance. Chemosphere 264. https://doi.org/10.1016/j.chemosphere.2020.128410.
Zhu Z et al (2023) Effect of outdoor pipe materials and community-intrinsic properties on biofilm formation and chlorine resistance: black sheep or team leader. J Clean Prod 411. https://doi.org/10.1016/j.jclepro.2023.137308.
معلومات مُعتمدة: GJJ2200645 Foundation of Jiangxi Educational Commission; GJJ2200652 Foundation of Jiangxi Educational Commission; 20212BAB214006 Youth Science Foundation of Jiangxi Province; 51608198 National Natural Science Foundation of China
فهرسة مساهمة: Keywords: Chlorine resistance; Dual-species biofilm; Household drinking water system; Interspecific interaction; Pipe materials
المشرفين على المادة: 4R7X1O2820 (Chlorine)
0 (Drinking Water)
789U1901C5 (Copper)
12597-68-1 (Stainless Steel)
0 (Polypropylenes)
0 (Disinfectants)
تواريخ الأحداث: Date Created: 20240610 Date Completed: 20240610 Latest Revision: 20240806
رمز التحديث: 20240806
DOI: 10.1007/s00203-024-04013-4
PMID: 38856934
قاعدة البيانات: MEDLINE
الوصف
تدمد:1432-072X
DOI:10.1007/s00203-024-04013-4