دورية أكاديمية

Development and validation of CYP26A1 inhibition assay for high-throughput screening.

التفاصيل البيبلوغرافية
العنوان: Development and validation of CYP26A1 inhibition assay for high-throughput screening.
المؤلفون: Sakamuru S; Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA., Ma D; Promega Corporation, Madison, Wisconsin, USA., Pierro JD; Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA., Baker NC; Leidos, Research Triangle Park, North Carolina, USA., Kleinstreuer N; National Toxicology Program Interagency Center for the Evaluation of Alternative Toxicological Methods, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, USA., Cali JJ; Promega Corporation, Madison, Wisconsin, USA., Knudsen TB; Center for Computational Toxicology and Exposure, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, North Carolina, USA., Xia M; Division of Pre-clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA.
المصدر: Biotechnology journal [Biotechnol J] 2024 Jun; Vol. 19 (6), pp. e2300659.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley-VCH Verlag Country of Publication: Germany NLM ID: 101265833 Publication Model: Print Cited Medium: Internet ISSN: 1860-7314 (Electronic) Linking ISSN: 18606768 NLM ISO Abbreviation: Biotechnol J Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Weinheim : Wiley-VCH Verlag, c2006-
مواضيع طبية MeSH: High-Throughput Screening Assays*/methods , Retinoic Acid 4-Hydroxylase*/metabolism , Retinoic Acid 4-Hydroxylase*/genetics, Humans ; Tretinoin/pharmacology ; Tretinoin/metabolism ; Cytochrome P-450 Enzyme Inhibitors/pharmacology ; Reproducibility of Results
مستخلص: All-trans retinoic acid (atRA) is an endogenous ligand of the retinoic acid receptors, which heterodimerize with retinoid X receptors. AtRA is generated in tissues from vitamin A (retinol) metabolism to form a paracrine signal and is locally degraded by cytochrome P450 family 26 (CYP26) enzymes. The CYP26 family consists of three subtypes: A1, B1, and C1, which are differentially expressed during development. This study aims to develop and validate a high throughput screening assay to identify CYP26A1 inhibitors in a cell-free system using a luminescent P450-Glo assay technology. The assay performed well with a signal to background ratio of 25.7, a coefficient of variation of 8.9%, and a Z-factor of 0.7. To validate the assay, we tested a subset of 39 compounds that included known CYP26 inhibitors and retinoids, as well as positive and negative control compounds selected from the literature and/or the ToxCast/Tox21 portfolio. Known CYP26A1 inhibitors were confirmed, and predicted CYP26A1 inhibitors, such as chlorothalonil, prochloraz, and SSR126768, were identified, demonstrating the reliability and robustness of the assay. Given the general importance of atRA as a morphogenetic signal and the localized expression of Cyp26a1 in embryonic tissues, a validated CYP26A1 assay has important implications for evaluating the potential developmental toxicity of chemicals.
(Published 2024. This article is a U.S. Government work and is in the public domain in the USA. Biotechnology Journal published by Wiley‐VCH GmbH.)
References: Das, B. C., Thapa, P., Karki, R., Das, S., Mahapatra, S., Liu, T. C., Torregroza, I., Wallace, D. P., Kambhampati, S., Van Veldhuizen, P., Verma, A., Ray, S. K., & Evans, T. (2014). Retinoic acid signaling pathways in development and diseases. Bioorganic & Medicinal Chemistry, 22(2), 673–683.
Bastien, J., & Rochette‐Egly, C. (2004). Nuclear retinoid receptors and the transcription of retinoid‐target genes. Gene, 328, 1–16.
Marill, J., Idres, N., Capron, C. C., Nguyen, E., & Chabot, G. G. (2003). Retinoic acid metabolism and mechanism of action: A review. Current Drug Metabolism, 4(1), 1–10.
Cunningham, T. J., & Duester, G. (2015). Mechanisms of retinoic acid signalling and its roles in organ and limb development. Nature Reviews Molecular Cell Biology, 16(2), 110–123.
McSorley, L. C., & Daly, A. K. (2000). Identification of human cytochrome P450 isoforms that contribute to all‐trans‐retinoic acid 4‐hydroxylation. Biochemical Pharmacology, 60(4), 517–526.
Nadin, L., & Murray, M. (1999). Participation of CYP2C8 in retinoic acid 4‐hydroxylation in human hepatic microsomes. Biochemical Pharmacology, 58(7), 1201–1208.
Ross, A. C., & Zolfaghari, R. (2011). Cytochrome P450s in the regulation of cellular retinoic acid metabolism. Annual Review of Nutrition, 31, 65–87.
Zhong, G., Ortiz, D., Zelter, A., Nath, A., & Isoherranen, N. (2018). CYP26C1 is a hydroxylase of multiple active retinoids and interacts with cellular retinoic acid binding proteins. Molecular Pharmacology, 93(5), 489–503.
Thatcher, J. E., & Isoherranen, N. (2009). The role of CYP26 enzymes in retinoic acid clearance. Expert Opinion on Drug Metabolism & Toxicology, 5(8), 875–886.
Nelson, C. H., Buttrick, B. R., & Isoherranen, N. (2013). Therapeutic potential of the inhibition of the retinoic acid hydroxylases CYP26A1 and CYP26B1 by xenobiotics. Current Topics in Medicinal Chemistry, 13(12), 1402–1428.
Isoherranen, N., & Zhong, G. (2019). Biochemical and physiological importance of the CYP26 retinoic acid hydroxylases. Pharmacology & Therapeutics, 204, 107400.
Thatcher, J. E., Zelter, A., & Isoherranen, N. (2010). The relative importance of CYP26A1 in hepatic clearance of all‐trans retinoic acid. Biochemical Pharmacology, 80(6), 903–912.
Snyder, J. M., Zhong, G., Hogarth, C., Huang, W., Topping, T., LaFrance, J., Palau, L., Czuba, L. C., Griswold, M., Ghiaur, G., & Isoherranen, N. (2020). Knockout of Cyp26a1 and Cyp26b1 during postnatal life causes reduced lifespan, dermatitis, splenomegaly, and systemic inflammation in mice. The FASEB Journal, 34(12), 15788–15804.
Uehara, M., Yashiro, K., Mamiya, S., Nishino, J., Chambon, P., Dolle, P., & Sakai, Y. (2007). CYP26A1 and CYP26C1 cooperatively regulate anterior‐posterior patterning of the developing brain and the production of migratory cranial neural crest cells in the mouse. Developmental Biology, 302(2), 399–411.
Sirbu, I. O., Chis, A. R., & Moise, A. R. (2020). Role of carotenoids and retinoids during heart development. BBA Molecular and Cell Biology of Lipids, 1865(11), 158636.
Stevison, F., Jing, J., Tripathy, S., & Isoherranen, N. (2015). Role of retinoic acid‐metabolizing cytochrome P450s, CYP26, in inflammation and cancer. Advances in Pharmacology, 74, 373–412.
Njar, V. C., Gediya, L., Purushottamachar, P., Chopra, P., Vasaitis, T. S., Khandelwal, A., Mehta, J., Huynh, C., Belosay, A., & Patel, J. (2006). Retinoic acid metabolism blocking agents (RAMBAs) for treatment of cancer and dermatological diseases. Bioorganic & Medicinal Chemistry, 14(13), 4323–4340.
Veith, H., Southall, N., Huang, R., James, T., Fayne, D., Artemenko, N., Shen, M., Inglese, J., Austin, C. P., Lloyd, D. G., & Auld, D. S. (2009). Comprehensive characterization of cytochrome P450 isozyme selectivity across chemical libraries. Nature Biotechnology, 27(11), 1050–1055.
Wienkers, L. C., & Heath, T. G. (2005). Predicting in vivo drug interactions from in vitro drug discovery data. Nature Reviews Drug Discovery, 4(10), 825–833.
Stresser, D. M., Turner, S. D., Blanchard, A. P., Miller, V. P., & Crespi, C. L. (2002). Cytochrome P450 fluorometric substrates: Identification of isoform‐selective probes for rat CYP2D2 and human CYP3A4. Drug Metabolism & Disposition, 30(7), 845–852.
Cali, J. J., Klaubert, D. H., Daily, W. J., Ho, S. K. S., Frackman, S., Hawkins, E. G., & Wood, K. V. (2019). Luminescence‐based methods and probes for measuring cytochrome p450 activity (U.S. Patent 10408819).
Mazur, C. S., Kenneke, J. F., Goldsmith, M. R., & Brown, C. (2009). Contrasting influence of NADPH and a NADPH‐regenerating system on the metabolism of carbonyl‐containing compounds in hepatic microsomes. Drug Metabolism and Disposition, 37(9), 1801–1805.
Cali, J. J., Ma, D., Sobol, M., Simpson, D. J., Frackman, S., Good, T. D., Daily, W. J., & Liu, D. (2006). Luminogenic cytochrome P450 assays. Expert Opinion on Drug Metabolism & Toxicology, 2(4), 629–645.
Chen, Y., Sakamuru, S., Huang, R., Reese, D. H., & Xia, M. (2016). Identification of compounds that modulate retinol signaling using a cell‐based qHTS assay. Toxicology in Vitro, 32, 287–296.
Ugalde, S. O., Ma, D. P., Cali, J. J., & Commandeur, J. N. M. (2019). Evaluation of luminogenic substrates as probe substrates for bacterial cytochrome P450 enzymes: Application to Mycobacterium tuberculosis. SLAS Discovery, 24(7), 745–754.
Cali, J. J., Ma, D., Wood, M. G., Meisenheimer, P. L., & Klaubert, D. H. (2012). Bioluminescent assays for ADME evaluation: Dialing in CYP selectivity with luminogenic substrates. Expert Opinion on Drug Metabolism & Toxicology, 8(9), 1115–1130.
Thatcher, J. E., Buttrick, B., Shaffer, S. A., Shimshoni, J. A., Goodlett, D. R., Nelson, W. L., & Isoherranen, N. (2011). Substrate specificity and ligand interactions of CYP26A1, the human liver retinoic acid hydroxylase. Molecular Pharmacology, 80(2), 228–239.
Baker, N. C., Pierro, J. D., Taylor, L. W., & Knudsen, T. B. (2023). Identifying candidate reference chemicals for in vitro testing of the retinoid pathway for predictive developmental toxicity. Altex, 40(2), 217–236.
Pierro, J. D., Ahir, B. K., Baker, N. C., Kleinstreuer, N. C., Xia, M., & Knudsen, T. B. (2022). Computational model for fetal skeletal defects potentially linked to disruption of retinoic acid signaling. Frontiers in Pharmacology, 13, 971296.
Diaz, P., Huang, W., Keyari, C. M., Buttrick, B., Price, L., Guilloteau, N., Tripathy, S., Sperandio, V. G., Fronczek, F. R., Astruc‐Diaz, F., & Isoherranen, N. (2016). Development and characterization of novel and selective inhibitors of cytochrome P450 CYP26A1, the human liver retinoic acid hydroxylase. Journal of Medicinal Chemistry, 59(6), 2579–2595.
Foti, R. S., Diaz, P., & Douguet, D. (2016). Comparison of the ligand binding site of CYP2C8 with CYP26A1 and CYP26B1: A structural basis for the identification of new inhibitors of the retinoic acid hydroxylases. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(sup2), 148–161.
Stoppie, P., Borgers, M., Borghgraef, P., Dillen, L., Goossens, J., Sanz, G., Szel, H., Van Hove, C., Van Nyen, G., Nobels, G., Vanden Bossche, H., Venet, M., Willemsens, G., & Van Wauwe, J. (2000). R115866 inhibits all‐trans‐retinoic acid metabolism and exerts retinoidal effects in rodents. The Journal of Pharmacology and Experimental Therapeutics, 293(1), 304–312.
Wang, R. W., Newton, D. J., Liu, N., Atkins, W. M., & Lu, A. Y. (2000). Human cytochrome P‐450 3A4: In vitro drug‐drug interaction patterns are substrate‐dependent, Drug Metabolism and Disposition, 28(3), 360–366.
Ekroos, M., & Sjogren, T. (2006). Structural basis for ligand promiscuity in cytochrome P450 3A4. PNAS, 103(37), 13682–13687.
Tice, R. R., Austin, C. P., Kavlock, R. J., & Bucher, J. R. (2013). Improving the human hazard characterization of chemicals: A Tox21 update. Environmental Health Perspectives, 121(7), 756–765.
Lynch, C., Sakamuru, S., Ooka, M., Huang, R., Klumpp‐Thomas, C., Shinn, P., Gerhold, D., Rossoshek, A., Michael, S., Casey, W., Santillo, M. F., Fitzpatrick, S., Thomas, R. S., Simeonov, A., & Xia, M. (2023). High‐throughput screening to advance in vitro toxicology: Accomplishments, challenges, and future directions. Annual Review of Pharmacology and Toxicology, 64, 191–209.
Attene‐Ramos, M. S., Miller, N., Huang, R., Michael, S., Itkin, M., Kavlock, R. J., Austin, C. P., Shinn, P., Simeonov, A., Tice, R. R., & Xia, M. (2013). The Tox21 robotic platform for the assessment of environmental chemicals–from vision to reality. Drug Discovery Today, 18(15‐16), 716–723.
Sakamuru, S., Huang, R., & Xia, M. (2022). Use of Tox21 screening data to evaluate the COVID‐19 drug candidates for their potential toxic effects and related pathways. Frontiers in Pharmacology, 13, 935399.
Knudsen, T. B., Pierro, J. D., & Baker, N. C. (2021). Retinoid signaling in skeletal development: Scoping the system for predictive toxicology. Reproductive Toxicology, 99, 109–130.
Stevison, F., Hogarth, C., Tripathy, S., Kent, T., & Isoherranen, N. (2017). Inhibition of the all‐trans Retinoic Acid (atRA) hydroxylases CYP26A1 and CYP26B1 results in dynamic, tissue‐specific changes in endogenous atRA signaling. Drug Metabolism & Disposition, 45(7), 846–854.
Gomaa, M. S., Armstrong, J. L., Bobillon, B., Veal, G. J., Brancale, A., Redfern, C. P., & Simons, C. (2008). Novel azolyl‐(phenylmethyl)]aryl/heteroarylamines: Potent CYP26 inhibitors and enhancers of all‐trans retinoic acid activity in neuroblastoma cells. Bioorganic & Medicinal Chemistry, 16(17), 8301–8313.
Piskin, S., & Uzunali, E. (2007). A review of the use of adapalene for the treatment of acne vulgaris. Therapeutics and Clinical Risk Management, 3(4), 621–624.
Lemaire, G., Balaguer, P., Michel, S., & Rahmani, R. (2005). Activation of retinoic acid receptor‐dependent transcription by organochlorine pesticides. Toxicology and Applied Pharmacology, 202(1), 38–49.
Schneider, S. M., Offterdinger, M., Huber, H., & Grunt, T. W. (2000). Activation of retinoic acid receptor alpha is sufficient for full induction of retinoid responses in SK‐BR‐3 and T47D human breast cancer cells. Cancer Research, 60(19), 5479–5487.
Zilkah, S., Osband, M. E., & McCaffrey, R. (1981). Effect of inhibitors of plant cell division on mammalian tumor cells in vitro. Cancer Research, 41(5), 1879–1883.
Rigas, J. R., & Dragnev, K. H. (2005). Emerging role of rexinoids in non‐small cell lung cancer: Focus on bexarotene. The Oncologist, 10(1), 22–33.
Chang, X., Yuan, Y., Zhang, T., Wang, D., Du, X., Wu, X., Chen, H., Chen, Y., Jiao, Y., & Teng, H. (2015). The toxicity and detoxifying mechanism of cycloxaprid and buprofezin in controlling Sogatella furcifera (Homoptera: Delphacidae). Journal of Insect Science (Online), 15(1), 98.
Fiani, B., Zhu, L., Musch, B. L., Briceno, S., Andel, R., Sadeq, N., & Ansari, A. Z. (2021). The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus, 13(5), e15032.
Ge, H., Chen, L., Su, Y., Jin, C., & Ge, R. S. (2018). Effects of folpet, captan, and captafol on human aromatase in JEG‐3 cells. Pharmacology, 102(1‐2), 81–87.
Silva, J. N. D., Monteiro, N. R., Antunes, P. A., & Favareto, A. P. A. (2020). Maternal and developmental toxicity after exposure to formulation of chlorothalonil and thiophanate‐methyl during organogenesis in rats. Anais da Academia Brasileira de Ciencias, 92(4), e20191026.
Williamson, S. M., Moffat, C., Gomersall, M. A., Saranzewa, N., Connolly, C. N., & Wright, G. A. (2013). Exposure to acetylcholinesterase inhibitors alters the physiology and motor function of honeybees. Frontiers in Physiology, 4, 13.
Bussian, B. M., Pandelova, M., Lehnik‐Habrink, P., Aichner, B., Henkelmann, B., & Schramm, K. W. (2015). Persistent endosulfan sulfate is found with highest abundance among endosulfan I, II, and sulfate in German forest soils. Environmental Pollution, 206, 661–666.
Ward, A., Brogden, R. N., Heel, R. C., Speight, T. M., & Avery, G. S. (1983). Etretinate. A review of its pharmacological properties and therapeutic efficacy in psoriasis and other skin disorders. Drugs, 26(1), 9–43.
Lee, H. Y., Lee, B. K., Jeung, K. W., Lee, G. S., Jung, Y. H., & Jeong, I. S. (2012). A case of near‐fatal fenpyroximate intoxication: The role of percutaneous cardiopulmonary support and therapeutic hypothermia. Clinical Toxicology (Philadelphia, Pa.), 50(9), 858–861.
Spampinato, C., & Leonardi, D. (2013). Candida infections, causes, targets, and resistance mechanisms: Traditional and alternative antifungal agents. BioMed Research International, 2013, 204237.
Nicastro, R., Raucci, S., Michel, A. H., Stumpe, M., Osuna, G. M. G., Jaquenoud, M., Kornmann, B., & De Virgilio, C. (2021). Indole‐3‐acetic acid is a physiological inhibitor of TORC1 in yeast. Plos Genetics, 17(3), e1009414.
Greenblatt, D. J., Zhao, Y., Venkatakrishnan, K., Duan, S. X., Harmatz, J. S., Parent, S. J., Court, M. H., & von Moltke, L. L. (2011). Mechanism of cytochrome P450‐3A inhibition by ketoconazole. Journal of Pharmacy and Pharmacology, 63(2), 214–221.
Sherwani, S. I. (2015). Modes of action of different classes of herbicides. IntechOpen, sine loco.
Vinggaard, A. M., Hass, U., Dalgaard, M., Andersen, H. R., Bonefeld‐Jorgensen, E., Christiansen, S., Laier, P., & Poulsen, M. E. (2006). Prochloraz: An imidazole fungicide with multiple mechanisms of action. International Journal of Andrology, 29(1), 186–192.
Pridgeon, J. W., Pereira, R. M., Becnel, J. J., Allan, S. A., Clark, G. G., & Linthicum, K. J. (2008). Susceptibility of Aedes aegypti, Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say to 19 pesticides with different modes of action. Journal of Medical Entomology, 45(1), 82–87.
Gizzo, S., Saccardi, C., Patrelli, T. S., Berretta, R., Capobianco, G., Di Gangi, S., Vacilotto, A., Bertocco, A., Noventa, M., Ancona, E., D'Antona, D., & Nardelli, G. B. (2013). Update on raloxifene: Mechanism of action, clinical efficacy, adverse effects, and contraindications. Obstetrical & Gynecological Survey, 68(6), 467–481.
Benoit, G., Altucci, L., Flexor, M., Ruchaud, S., Lillehaug, J., Raffelsberger, W., Gronemeyer, H., & Lanotte, M. (1999). RAR‐independent RXR signaling induces t(15;17) leukemia cell maturation. The EMBO Journal, 18(24), 7011–7018.
Serradeil‐Le Gal, C., Valette, G., Foulon, L., Germain, G., Advenier, C., Naline, E., Bardou, M., Martinolle, J. P., Pouzet, B., Raufaste, D., Garcia, C., Double‐Cazanave, E., Pauly, M., Pascal, M., Barbier, A., Scatton, B., Maffrand, J. P., & Le Fur, G. (2004). SSR126768A (4‐chloro‐3‐[(3R‐+)‐5‐chloro‐1‐(2,4‐dimethoxybenzyl)‐3‐methyl‐2‐oxo‐2,3‐dihydro‐1H‐indol‐3‐yl]‐N‐ethyl‐N‐(3‐pyridylmethyl)‐benzamide, hydrochloride): A new selective and orally active oxytocin receptor antagonist for the prevention of preterm labor. Journal of Pharmacology and Experimental Therapeutics, 309(1), 414–424.
Foti, R. S., Isoherranen, N., Zelter, A., Dickmann, L. J., Buttrick, B. R., Diaz, P., & Douguet, D. (2016). Identification of tazarotenic acid as the first xenobiotic substrate of human retinoic acid hydroxylase CYP26A1 and CYP26B1. The Journal of Pharmacology and Experimental Therapeutics, 357(2), 281–292.
Liu, Q. S., Liu, N., Sun, Z. D., Zhou, Q. F., & Jiang, G. B. (2018). Intranasal administration of tetrabromobisphenol A bis(2‐hydroxyethyl ether) induces neurobehavioral changes in neonatal Sprague Dawley rats. Journal of Environmental Sciences‐China, 63, 76–86.
Thabit, T. M. A., Abdelkareem, E. M., Bouqellah, N. A., & Shokr, S. A. (2021). Triazole fungicide residues and their inhibitory effect on some trichothecenes mycotoxin excretion in wheat grains. Molecules (Basel, Switzerland), 26(6), 1784.
Grun, F., Watanabe, H., Zamanian, Z., Maeda, L., Arima, K., Cubacha, R., Gardiner, D. M., Kanno, J., Iguchi, T., & Blumberg, B. (2006). Endocrine‐disrupting organotin compounds are potent inducers of adipogenesis in vertebrates. Molecular Endocrinology, 20(9), 2141–24455.
Xi, J., Shao, J., Wang, Y., Wang, X., Yang, H., Zhang, X., & Xiong, D. (2019). Acute toxicity of triflumizole to freshwater green algae Chlorella vulgaris. Pesticide Biochemistry and Physiology, 158, 135–142.
فهرسة مساهمة: Keywords: CYP26; all‐trans retinoic acid (atRA); cytochrome P450 (CYP); retinoic acid receptor (RAR)
المشرفين على المادة: EC 1.14.14.1 (Retinoic Acid 4-Hydroxylase)
5688UTC01R (Tretinoin)
0 (Cytochrome P-450 Enzyme Inhibitors)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240614
رمز التحديث: 20240614
DOI: 10.1002/biot.202300659
PMID: 38863121
قاعدة البيانات: MEDLINE