دورية أكاديمية

Relationships Between Running Biomechanics and Femoral Articular Cartilage Thickness and Composition in Anterior Cruciate Ligament Reconstruction Patients.

التفاصيل البيبلوغرافية
العنوان: Relationships Between Running Biomechanics and Femoral Articular Cartilage Thickness and Composition in Anterior Cruciate Ligament Reconstruction Patients.
المؤلفون: Lee H; Department of Exercise and Sport Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA., Clinger D; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA., Oh M; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA., Han S; Division of Sport Science, Pusan National University, Pusan, South Korea., Allen SP; Department of Electric and Computer Engineering, Brigham Young University, Provo, Utah, USA., Page GL; Department of Statistics, Brigham Young University, Provo, Utah, USA., Bruening DA; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA., Hyldahl RD; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA., Hopkins JT; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA., Seeley MK; Department of Exercise Sciences, Brigham Young University, Provo, Utah, USA.
المصدر: Scandinavian journal of medicine & science in sports [Scand J Med Sci Sports] 2024 Jun; Vol. 34 (6), pp. e14675.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Munksgaard International Publishers Country of Publication: Denmark NLM ID: 9111504 Publication Model: Print Cited Medium: Internet ISSN: 1600-0838 (Electronic) Linking ISSN: 09057188 NLM ISO Abbreviation: Scand J Med Sci Sports Subsets: MEDLINE
أسماء مطبوعة: Publication: Copenhagen : Munksgaard International Publishers
Original Publication: Copenhagen : Munksgaard, c1991-
مواضيع طبية MeSH: Anterior Cruciate Ligament Reconstruction* , Cartilage, Articular*/diagnostic imaging , Femur*/diagnostic imaging , Running*/physiology , Magnetic Resonance Imaging*, Humans ; Male ; Biomechanical Phenomena ; Female ; Adult ; Young Adult ; Case-Control Studies ; Ultrasonography ; Anterior Cruciate Ligament Injuries/surgery ; Anterior Cruciate Ligament Injuries/physiopathology ; Knee Joint/diagnostic imaging ; Knee Joint/physiology
مستخلص: Background: Although individuals with anterior cruciate ligament reconstruction (ACLR) are at high risk for posttraumatic osteoarthritis, mechanisms underlying the relationship between running and knee cartilage health remain unclear.
Objective: We aimed to investigate how 30 min of running influences femoral cartilage thickness and composition and their relationships with running biomechanics in patients with ACLR and controls.
Methods: Twenty patients with ACLR (time post-ACLR: 14.6 ± 6.1 months) and 20 matched controls participated in the study. A running session required both groups to run for 30 min at a self-selected speed. Before and after running, we measured femoral cartilage thickness via ultrasound imaging. A MRI session consisted of T2 mapping.
Results: The ACLR group showed longer T2 relaxation times in the medial femoral condyle at resting compared with the control group (central: 51.2 ± 16.6 vs. 34.9 ± 13.2 ms, p = 0.006; posterior: 50.2 ± 10.1 vs. 39.8 ± 7.4 ms, p = 0.006). Following the run, the ACLR group showed greater deformation in the medial femoral cartilage than the control group (0.03 ± 0.01 vs. 0.01 ± 0.01 cm, p = 0.001). Additionally, the ACLR group showed significant negative correlations between resting T2 relaxation time in the medial femoral condyle and vertical impulse (standardized regression coefficients = -0.99 and p = 0.004) during running.
Conclusions: Our findings suggest that those who are between 6 and 24 months post-ACLR have degraded cartilage composition and their cartilage deforms more due to running vGRF.
(© 2024 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.)
References: B. Luc, P. A. Gribble, and B. G. Pietrosimone, “Osteoarthritis Prevalence Following Anterior Cruciate Ligament Reconstruction: A Systematic Review and Numbers‐Needed‐to‐Treat Analysis,” Journal of Athletic Training 49, no. 6 (2014): 806–819, https://doi.org/10.4085/1062‐6050‐49.3.35.
T. P. Andriacchi, J. Favre, J. C. Erhart‐Hledik, and C. R. Chu, “A Systems View of Risk Factors for Knee Osteoarthritis Reveals Insights into the Pathogenesis of the Disease,” Annals of Biomedical Engineering 43, no. 2 (2015): 376–387, https://doi.org/10.1007/s10439‐014‐1117‐2.
J. P. Arokoski, J. S. Jurvelin, U. Väätäinen, and H. J. Helminen, “Normal and Pathological Adaptations of Articular Cartilage to Joint Loading,” Scandinavian Journal of Medicine & Science in Sports 10, no. 4 (2000): 186–198, https://doi.org/10.1034/j.1600‐0838.2000.010004186.x.
B. Pietrosimone, R. F. Loeser, J. T. Blackburn, et al., “Biochemical Markers of Cartilage Metabolism Are Associated with Walking Biomechanics 6‐Months Following Anterior Cruciate Ligament Reconstruction,” Journal of Orthopaedic Research 35, no. 10 (2017): 2288–2297, https://doi.org/10.1002/jor.23534.
B. A. Luc‐Harkey, J. R. Franz, A. C. Hackney, J. T. Blackburn, D. A. Padua, and B. Pietrosimone, “Lesser Lower Extremity Mechanical Loading Associates With a Greater Increase in Serum Cartilage Oligomeric Matrix Protein Following Walking in Individuals With Anterior Cruciate Ligament Reconstruction,” Clinical Biomechanics 60 (2018): 13–19, https://doi.org/10.1016/j.clinbiomech.2018.09.024.
S. J. Pfeiffer, J. Spang, D. Nissman, et al., “Gait Mechanics and T1ρ MRI of Tibiofemoral Cartilage 6 Months After ACL Reconstruction,” Medicine and Science in Sports and Exercise 51, no. 4 (2019): 630–639, https://doi.org/10.1249/mss.0000000000001834.
M. S. Harkey, J. T. Blackburn, D. Nissman, et al., “Ultrasonographic Assessment of Femoral Cartilage in Individuals With Anterior Cruciate Ligament Reconstruction: A Case‐Control Study,” Journal of Athletic Training 53, no. 11 (2018): 1082–1088, https://doi.org/10.4085/1062‐6050‐376‐17.
D. N. Pamukoff, M. M. Montgomery, T. J. Moffit, and M. N. Vakula, “Quadriceps Function and Knee Joint Ultrasonography After ACL Reconstruction,” Medicine and Science in Sports and Exercise 50, no. 2 (2018): 211–217, https://doi.org/10.1249/mss.0000000000001437.
S. Akkaya, N. Akkaya, H. R. Güngör, K. Ağladıoğlu, N. Ök, and L. Özçakar, “Sonoelastographic Evaluation of the Distal Femoral Cartilage in Patients With Anterior Cruciate Ligament Reconstruction,” Eklem Hastalıkları ve Cerrahisi 27, no. 1 (2016): 2–8, https://doi.org/10.5606/ehc.2016.02.
F. Eckstein, M. Hudelmaier, and R. Putz, “The Effects of Exercise on Human Articular Cartilage,” Journal of Anatomy 208, no. 4 (2006): 491–512, https://doi.org/10.1111/j.1469‐7580.2006.00546.x.
F. Eckstein, B. Lemberger, C. Gratzke, et al., “In Vivo Cartilage Deformation After Different Types of Activity and its Dependence on Physical Training Status,” Annals of the Rheumatic Diseases 64, no. 2 (2005): 291–295, https://doi.org/10.1136/ard.2004.022400.
K. Subburaj, R. B. Souza, C. Stehling, et al., “Association of MR Relaxation and Cartilage Deformation in Knee Osteoarthritis,” Journal of Orthopaedic Research 30, no. 6 (2012): 919–926, https://doi.org/10.1002/jor.22031.
M. S. Harkey, J. T. Blackburn, H. Davis, L. Sierra‐Arévalo, D. Nissman, and B. Pietrosimone, “Ultrasonographic Assessment of Medial Femoral Cartilage Deformation Acutely Following Walking and Running,” Osteoarthritis and Cartilage 25, no. 6 (2017): 907–913, https://doi.org/10.1016/j.joca.2016.12.026.
T. J. Mosher and B. J. Dardzinski, “Cartilage MRI T2 Relaxation Time Mapping: Overview and Applications,” Seminars in Musculoskeletal Radiology 8, no. 4 (2004): 355–368, https://doi.org/10.1055/s‐2004‐861764.
M. T. Nieminen, J. Rieppo, J. Töyräs, et al., “T2 Relaxation Reveals Spatial Collagen Architecture in Articular Cartilage: A Comparative Quantitative MRI and Polarized Light Microscopic Study,” Magnetic Resonance in Medicine 46, no. 3 (2001): 487–493, https://doi.org/10.1002/mrm.1218.
D. W. Goodwin and J. F. Dunn, “High‐Resolution Magnetic Resonance Imaging of Articular Cartilage: Correlation With Histology and Pathology,” Topics in Magnetic Resonance Imaging 9, no. 6 (1998): 337–347.
R. M. Palmieri‐Smith, E. M. Wojtys, and H. G. Potter, “Early Cartilage Changes After Anterior Cruciate Ligament Injury: Evaluation With Imaging and Serum Biomarkers‐A Pilot Study,” Arthroscopy 32, no. 7 (2016): 1309–1318, https://doi.org/10.1016/j.arthro.2015.12.045.
V. Casula, B. E. Tajik, J. Kvist, et al., “Quantitative Evaluation of the Tibiofemoral Joint Cartilage by T2 Mapping in Patients With Acute Anterior Cruciate Ligament Injury Vs Contralateral Knees: Results From the Subacute Phase Using Data From the NACOX Study Cohort,” Osteoarthritis and Cartilage 30, no. 7 (2022): 987–997, https://doi.org/10.1016/j.joca.2022.02.623.
M. C. Boling, M. Dupell, S. J. Pfeiffer, et al., “In Vivo Compositional Changes in the Articular Cartilage of the Patellofemoral Joint Following Anterior Cruciate Ligament Reconstruction,” Arthritis Care & Research 74, no. 7 (2022): 1172–1178, https://doi.org/10.1002/acr.24561.
J. R. Williams, K. Neal, A. Alfayyadh, et al., “Patellofemoral Contact Forces and Knee Gait Mechanics 3 Months After ACL Reconstruction are Associated With Cartilage Degradation 24 Months after Surgery,” Osteoarthritis and Cartilage 31, no. 1 (2023): 96–105, https://doi.org/10.1016/j.joca.2022.10.007.
C. Kuenze, J. Hertel, A. Weltman, D. R. Diduch, S. Saliba, and J. M. Hart, “Jogging Biomechanics After Exercise in Individuals with ACL‐Reconstructed Knees,” Medicine and Science in Sports and Exercise 46, no. 6 (2014): 1067–1076, https://doi.org/10.1249/mss.0000000000000217.
B. Pietrosimone, M. K. Seeley, C. Johnston, S. J. Pfeiffer, J. T. Spang, and J. T. Blackburn, “Walking Ground Reaction Force Post‐ACL Reconstruction: Analysis of Time and Symptoms,” Medicine and Science in Sports and Exercise 51, no. 2 (2019): 246–254, https://doi.org/10.1249/MSS.0000000000001776.
A. Finucci, V. Iorgoveanu, I. M. Rutigliano, C. Scirocco, and A. Iagnocco, “Utilizing Ultrasound in the Diagnosis and Management of Osteoarthritis,” International Journal of Clinical Rheumatology 10, no. 6 (2015): 433–440.
B. Pietrosimone, D. Nissman, D. A. Padua, et al., “Associations Between Cartilage Proteoglycan Density and Patient Outcomes 12 Months Following Anterior Cruciate Ligament Reconstruction,” The Knee 25, no. 1 (2018): 118–129, https://doi.org/10.1016/j.knee.2017.10.005.
D. A. Winter, Biomechanics and Motor Control of Human Movement (Hoboken, New Jersey: John Wiley & Sons, 2009).
G. Milandri, M. Posthumus, T. J. Small, et al., “Kinematic and Kinetic Gait Deviations in Males Long After Anterior Cruciate Ligament Reconstruction,” Clinical Biomechanics 49 (2017): 78–84, https://doi.org/10.1016/j.clinbiomech.2017.07.012.
P. Sritharan, A. G. Schache, A. G. Culvenor, L. G. Perraton, A. L. Bryant, and K. M. Crossley, “Between‐Limb Differences in Patellofemoral Joint Forces During Running at 12 to 24 Months After Unilateral Anterior Cruciate Ligament Reconstruction,” The American Journal of Sports Medicine 48, no. 7 (2020): 1711–1719, https://doi.org/10.1177/0363546520914628.
D. N. Pamukoff, M. M. Montgomery, K. H. Choe, T. J. Moffit, S. A. Garcia, and M. N. Vakula, “Bilateral Alterations in Running Mechanics and Quadriceps Function Following Unilateral Anterior Cruciate Ligament Reconstruction,” Journal of Orthopaedic & Sports Physical Therapy 48, no. 12 (2018): 960–967.
K. A. Pratt and S. M. Sigward, “Knee Loading Deficits During Dynamic Tasks in Individuals Following Anterior Cruciate Ligament Reconstruction,” The Journal of Orthopaedic and Sports Physical Therapy 47, no. 6 (2017): 411–419, https://doi.org/10.2519/jospt.2017.6912.
J. Cohen, “A Power Primer,” Psychological Bulletin 112, no. 1 (1992): 155–159, https://doi.org/10.1037//0033‐2909.112.1.155.
E. Vignon, M. Arlot, D. Hartmann, B. Moyen, and G. Ville, “Hypertrophic Repair of Articular Cartilage in Experimental Osteoarthrosis,” Annals of the Rheumatic Diseases 42, no. 1 (1983): 82–88, https://doi.org/10.1136/ard.42.1.82.
A. Williams, C. S. Winalski, and C. R. Chu, “Early Articular Cartilage MRI T2 Changes After Anterior Cruciate Ligament Reconstruction Correlate With Later Changes in T2 and Cartilage Thickness,” Journal of Orthopaedic Research 35, no. 3 (2017): 699–706, https://doi.org/10.1002/jor.23358.
X. Li, C. Benjamin Ma, T. M. Link, et al., “In Vivo T(1rho) and T(2) Mapping of Articular Cartilage in Osteoarthritis of the Knee Using 3 T MRI,” Osteoarthritis and Cartilage 15, no. 7 (2007): 789–797, https://doi.org/10.1016/j.joca.2007.01.011.
M. Venn and A. Maroudas, “Chemical Composition and Swelling of Normal and Osteoarthritic Femoral Head Cartilage. I. Chemical Composition,” Annals of the Rheumatic Diseases 36, no. 2 (1977): 121–129, https://doi.org/10.1136/ard.36.2.121.
C. G. Armstrong and V. C. Mow, “Variations in the Intrinsic Mechanical Properties of Human Articular Cartilage With Age, Degeneration, and Water Content,” The Journal of Bone and Joint Surgery. American Volume 64, no. 1 (1982): 88–94.
D. T. Felson and Y. Zhang, “An Update on the Epidemiology of Knee and Hip Osteoarthritis With a View to Prevention,” Arthritis and Rheumatism 41, no. 8 (1998): 1343–1355, https://doi.org/10.1002/1529‐0131(199808)41:8<1343::Aid‐art3>3.0.Co;2‐9.
L. Sharma, C. Lou, S. Cahue, and D. D. Dunlop, “The Mechanism of the Effect of Obesity in Knee Osteoarthritis: The Mediating Role of Malalignment,” Arthritis and Rheumatism 43, no. 3 (2000): 568–575, https://doi.org/10.1002/1529‐0131(200003)43:3<568::Aid‐anr13>3.0.Co;2‐e.
M. S. Harkey, E. Little, M. Thompson, M. Zhang, J. B. Driban, and M. J. Salzler, “Femoral Cartilage Ultrasound Echo Intensity Associates With Arthroscopic Cartilage Damage,” Ultrasound in Medicine & Biology 47, no. 1 (2021): 43–50, https://doi.org/10.1016/j.ultrasmedbio.2020.09.015.
A. Van Ginckel, P. Verdonk, J. Victor, and E. Witvrouw, “Cartilage Status in Relation to Return to Sports After Anterior Cruciate Ligament Reconstruction,” The American Journal of Sports Medicine 41, no. 3 (2013): 550–559, https://doi.org/10.1177/0363546512473568.
K. Song, B. Pietrosimone, J. T. Blackburn, D. A. Padua, J. N. Tennant, and E. A. Wikstrom, “Acute Talar Cartilage Deformation in those With and Without Chronic Ankle Instability,” Medicine and Science in Sports and Exercise 53, no. 6 (2021): 1228–1234.
J. A. Zeni, Jr. and J. S. Higginson, “Dynamic Knee Joint Stiffness in Subjects With a Progressive Increase in Severity of Knee Osteoarthritis,” Clinical Biomechanics 24, no. 4 (2009): 366–371, https://doi.org/10.1016/j.clinbiomech.2009.01.005.
T. P. Andriacchi, S. Koo, and S. F. Scanlan, “Gait Mechanics Influence Healthy Cartilage Morphology and Osteoarthritis of the Knee,” The Journal of Bone and Joint Surgery. American Volume 91, no. Suppl 1 (2009): 95–101, https://doi.org/10.2106/jbjs.H.01408.
A. Evans‐Pickett, H. C. Davis‐Wilson, B. A. Luc‐Harkey, et al., “Biomechanical Effects of Manipulating Peak Vertical Ground Reaction Force Throughout Gait in Individuals 6‐12 Months After Anterior Cruciate Ligament Reconstruction,” Clinical Biomechanics 76 (2020): 105014, https://doi.org/10.1016/j.clinbiomech.2020.105014.
K. E. Webster, J. A. McClelland, S. E. Palazzolo, L. J. Santamaria, and J. A. Feller, “Gender Differences in the Knee Adduction Moment After Anterior Cruciate Ligament Reconstruction Surgery,” British Journal of Sports Medicine 46, no. 5 (2012): 355–359, https://doi.org/10.1136/bjsm.2010.080770.
C. Lisee, J. T. Spang, R. Loeser, et al., “Tibiofemoral Articular Cartilage Composition Differs Based on Serum Biochemical Profiles Following Anterior Cruciate Ligament Reconstruction,” Osteoarthritis and Cartilage 29, no. 12 (2021): 1732–1740, https://doi.org/10.1016/j.joca.2021.09.005.
S. Di Stasi, E. H. Hartigan, and L. Snyder‐Mackler, “Sex‐Specific Gait Adaptations Prior to and up to 6 Months After Anterior Cruciate Ligament Reconstruction,” The Journal of Orthopaedic and Sports Physical Therapy 45, no. 3 (2015): 207–214, https://doi.org/10.2519/jospt.2015.5062.
S. G. Bodkin, B. C. Werner, L. V. Slater, and J. M. Hart, “Post‐Traumatic Osteoarthritis Diagnosed Within 5 Years Following ACL Reconstruction,” Knee Surgery, Sports Traumatology, Arthroscopy 28, no. 3 (2020): 790–796, https://doi.org/10.1007/s00167‐019‐05461‐y.
M. C. M. Khan, J. O'Donovan, J. M. Charlton, J. S. Roy, M. A. Hunt, and J. F. Esculier, “The Influence of Running on Lower Limb Cartilage: A Systematic Review and Meta‐Analysis,” Sports Medicine 52, no. 1 (2022): 55–74, https://doi.org/10.1007/s40279‐021‐01533‐7.
J. Sanchez‐Adams, H. A. Leddy, A. L. McNulty, C. J. O'Conor, and F. Guilak, “The Mechanobiology of Articular Cartilage: Bearing the Burden of Osteoarthritis,” Current Rheumatology Reports 16, no. 10 (2014): 451, https://doi.org/10.1007/s11926‐014‐0451‐6.
J. S. Ruano, M. R. Sitler, and J. B. Driban, “Prevalence of Radiographic Knee Osteoarthritis After Anterior Cruciate Ligament Reconstruction, With or Without Meniscectomy: An Evidence‐Based Practice Article,” Journal of Athletic Training 52, no. 6 (2017): 606–609, https://doi.org/10.4085/1062‐6050‐51.2.14.
J. L. Whittaker, J. Runhaar, S. Bierma‐Zeinstra, and E. M. Roos, “A Lifespan Approach to Osteoarthritis Prevention,” Osteoarthritis and Cartilage 29, no. 12 (2021): 1638–1653, https://doi.org/10.1016/j.joca.2021.06.015.
فهرسة مساهمة: Keywords: cartilage composition; cartilage morphology; femoral cartilage; running biomechanics
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240612
رمز التحديث: 20240612
DOI: 10.1111/sms.14675
PMID: 38864455
قاعدة البيانات: MEDLINE
الوصف
تدمد:1600-0838
DOI:10.1111/sms.14675