دورية أكاديمية

Multiomics analysis reveals serine catabolism as a potential therapeutic target for MELAS.

التفاصيل البيبلوغرافية
العنوان: Multiomics analysis reveals serine catabolism as a potential therapeutic target for MELAS.
المؤلفون: Liufu T; Department of Neurology, Peking University First Hospital, Beijing, China., Zhao X; Department of Neurology, Peking University First Hospital, Beijing, China., Yu M; Department of Neurology, Peking University First Hospital, Beijing, China., Xie Z; Department of Neurology, Peking University First Hospital, Beijing, China., Meng L; Department of Neurology, Peking University First Hospital, Beijing, China., Lv H; Department of Neurology, Peking University First Hospital, Beijing, China., Zhang W; Department of Neurology, Peking University First Hospital, Beijing, China., Yuan Y; Department of Neurology, Peking University First Hospital, Beijing, China.; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China., Xing G; Neuroscience Research Institute, Peking University, Beijing, China., Deng J; Department of Neurology, Peking University First Hospital, Beijing, China.; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.; Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, Peking University, Beijing, China., Wang Z; Department of Neurology, Peking University First Hospital, Beijing, China.; Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
المصدر: FASEB journal : official publication of the Federation of American Societies for Experimental Biology [FASEB J] 2024 Jun 30; Vol. 38 (12), pp. e23742.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Federation of American Societies for Experimental Biology Country of Publication: United States NLM ID: 8804484 Publication Model: Print Cited Medium: Internet ISSN: 1530-6860 (Electronic) Linking ISSN: 08926638 NLM ISO Abbreviation: FASEB J Subsets: MEDLINE
أسماء مطبوعة: Publication: 2020- : [Bethesda, Md.] : Hoboken, NJ : Federation of American Societies for Experimental Biology ; Wiley
Original Publication: [Bethesda, Md.] : The Federation, [c1987-
مواضيع طبية MeSH: MELAS Syndrome*/metabolism , MELAS Syndrome*/genetics , MELAS Syndrome*/pathology , Glycine Hydroxymethyltransferase*/metabolism , Glycine Hydroxymethyltransferase*/genetics , Serine*/metabolism, Humans ; Myoblasts/metabolism ; NAD/metabolism ; Male ; Proteomics/methods ; Female ; Transcriptome ; Multiomics
مستخلص: Mitochondrial disease is a devastating genetic disorder, with mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes (MELAS) and m.3243A>G being the most common phenotype and genotype, respectively. The treatment for MELAS patients is still less effective. Here, we performed transcriptomic and proteomic analysis in muscle tissue of MELAS patients, and discovered that the expression of molecules involved in serine catabolism were significantly upregulated, and serine hydroxymethyltransferase 2 (SHMT2) increased significantly in both the mRNA and protein levels. The SHMT2 protein level was also increased in myoblasts with m.3243A>G mutation, which was transdifferentiated from patients derived fibroblasts, accompanying with the decreased nicotinamide adenine dinucleotide (NAD + )/reduced NAD + (NADH) ratio and cell viability. After treating with SHMT2 inhibitor (SHIN1), the NAD + /NADH ratio and cell viability in MELAS myoblasts increased significantly. Taken together, our study indicates that enhanced serine catabolism plays an important role in the pathogenesis of MELAS and that SHIN1 can be a potential small molecule for the treatment of this disease.
(© 2024 Federation of American Societies for Experimental Biology.)
References: Gorman GS, Chinnery PF, DiMauro S, et al. Mitochondrial diseases. Nat Rev Dis Primers. 2016;2:16080.
Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389‐402.
Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45:299‐329.
Goto Y, Horai S, Matsuoka T, et al. Mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke‐like episodes (MELAS): a correlative study of the clinical features and mitochondrial DNA mutation. Neurology. 1992;42(3 Pt 1):545‐550.
Sharma R, Reinstadler B, Engelstad K, et al. Circulating markers of NADH‐reductive stress correlate with mitochondrial disease severity. J Clin Invest. 2021;131(2):e136055.
Liufu T, Yu H, Yu J, et al. Complex I deficiency in m.3243A>G fibroblasts is alleviated by reducing NADH accumulation. Front Physiol. 2023;14:1164287.
Canto C, Menzies KJ, Auwerx J. NAD(+) metabolism and the control of energy homeostasis: a balancing act between mitochondria and the nucleus. Cell Metab. 2015;22(1):31‐53.
Pirinen E, Auranen M, Khan NA, et al. Niacin cures systemic NAD(+) deficiency and improves muscle performance in adult‐onset mitochondrial myopathy. Cell Metab. 2020;32(1):144.
McElroy GS, Reczek CR, Reyfman PA, Mithal DS, Horbinski CM, Chandel NS. NAD+ regeneration rescues lifespan, but not ataxia, in a mouse model of brain mitochondrial complex I dysfunction. Cell Metab. 2020;32(2):301‐308. e306.
Yang L, Garcia Canaveras JC, Chen Z, et al. Serine catabolism feeds NADH when respiration is impaired. Cell Metab. 2020;31(4):809‐821. e806.
Zhang Z, Zhao D, Zhang X, et al. Survival analysis of a cohort of Chinese patients with mitochondrial encephalomyopathy with lactic acidosis and stroke‐like episodes (MELAS) based on clinical features. J Neurol Sci. 2018;385:151‐155.
Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial diseases: hope for the future. Cell. 2020;181(1):168‐188.
Chang X, Yin Z, Zhang W, et al. Data‐independent acquisition‐based quantitative proteomic analysis of m.3243A>G MELAS reveals novel potential pathogenesis and therapeutic targets. Medicine (Baltimore). 2022;101(41):e30938.
Lu Y, Deng J, Zhao Y, et al. Patients with MELAS with negative myopathology for characteristic ragged‐red fibers. J Neurol Sci. 2020;408:116499.
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357‐360.
Chung LM, Ferguson JP, Zheng W, et al. Differential expression analysis for paired RNA‐Seq data. BMC Bioinform. 2013;14:110.
Naini AB, Lu JS, Kaufmann P, et al. Novel mitochondrial DNA mutation in a patient with clinical features of MELAS and MERRF. Arch Neurol‐Chicago. 2005;62(3):473‐476.
Dar GM, Ahmad E, Ali A, Mahajan B, Ashraf GM, Saluja SS. Genetic aberration analysis of mitochondrial respiratory complex I implications in the development of neurological disorders and their clinical significance. Ageing Res Rev. 2023;87:101906.
Bugiani M, Invernizzi F, Alberio S, et al. Clinical and molecular findings in children with complex I deficiency. BBA‐Bioenerg. 2004;1659(2–3):136‐147.
Kuwajima M, Goto M, Kurane K, et al. MELAS syndrome with m.4450 G > a mutation in mitochondrial tRNAMet gene. Brain Dev‐Jpn. 2019;41(5):465‐469.
Lehtonen JM, Forsstrom S, Bottani E, et al. FGF21 is a biomarker for mitochondrial translation and mtDNA maintenance disorders. Neurology. 2016;87(22):2290‐2299.
Sturm G, Karan KR, Monzel AS, et al. OxPhos defects cause hypermetabolism and reduce lifespan in cells and in patients with mitochondrial diseases. Commun Biol. 2023;6(1):22.
Forsstrom S, Jackson CB, Carroll CJ, et al. Fibroblast growth factor 21 drives dynamics of local and systemic stress responses in mitochondrial myopathy with mtDNA deletions. Cell Metab. 2019;30(6):1040‐1054 e1047.
Thompson K, Collier JJ, Glasgow RIC, et al. Recent advances in understanding the molecular genetic basis of mitochondrial disease. J Inherit Metab Dis. 2020;43(1):36‐50.
Chow J, Rahman J, Achermann JC, Dattani MT, Rahman S. Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 2017;13(2):92‐104.
Dienel GA. Brain glucose metabolism: integration of energetics with function. Physiol Rev. 2019;99(1):949‐1045.
Robinson BH. Lactic acidemia and mitochondrial disease. Mol Genet Metab. 2006;89(1–2):3‐13.
Wu Q, Chen X, Li J, Sun S. Serine and metabolism regulation: a novel mechanism in antitumor immunity and senescence. Aging Dis. 2020;11(6):1640‐1653.
Holecek M. Serine metabolism in health and disease and as a conditionally essential amino acid. Nutrients. 2022;14(9):1987.
He L, Ding Y, Zhou X, Li T, Yin Y. Serine signaling governs metabolic homeostasis and health. Trends Endocrinol Metab. 2023;34(6):361‐372.
Locasale JW. Serine, glycine and one‐carbon units: cancer metabolism in full circle. Nat Rev Cancer. 2013;13(8):572‐583.
Ye J, Fan J, Venneti S, et al. Serine catabolism regulates mitochondrial redox control during hypoxia. Cancer Discov. 2014;4(12):1406‐1417.
Reid MA, Allen AE, Liu S, et al. Serine synthesis through PHGDH coordinates nucleotide levels by maintaining central carbon metabolism. Nat Commun. 2018;9(1):5442.
Kurosu H, Choi M, Ogawa Y, et al. Tissue‐specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282(37):26687‐26695.
Bao XR, Ong SE, Goldberger O, et al. Mitochondrial dysfunction remodels one‐carbon metabolism in human cells. elife. 2016;5:e10575.
Kuhl I, Miranda M, Atanassov I, et al. Transcriptomic and proteomic landscape of mitochondrial dysfunction reveals secondary coenzyme Q deficiency in mammals. elife. 2017;6:e30952.
Nikkanen J, Forsstrom S, Euro L, et al. Mitochondrial DNA replication defects disturb cellular dNTP pools and remodel one‐carbon metabolism. Cell Metab. 2016;23(4):635‐648.
Crimi M, Bordoni A, Menozzi G, et al. Skeletal muscle gene expression profiling in mitochondrial disorders. FASEB J. 2005;19(7):866‐868.
معلومات مُعتمدة: 82071409 MOST | National Natural Science Foundation of China (NSFC); 82171846 MOST | National Natural Science Foundation of China (NSFC); U20A20356 MOST | National Natural Science Foundation of China (NSFC); 20220484017 Beijing Nova Program; 20230484403 Beijing Nova Program; 2023HQ03 National High Level Hospital Clinical Research Funding; 2023CX05 National High Level Hospital Clinical Research Funding
فهرسة مساهمة: Keywords: M.3243 A>G; MELAS; NADH; SHIN1; SHMT2; multiomics
المشرفين على المادة: EC 2.1.2.1 (Glycine Hydroxymethyltransferase)
452VLY9402 (Serine)
EC 2.1.2.1 (SHMT protein, human)
0U46U6E8UK (NAD)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240612
رمز التحديث: 20240613
DOI: 10.1096/fj.202302286RRR
PMID: 38865203
قاعدة البيانات: MEDLINE
الوصف
تدمد:1530-6860
DOI:10.1096/fj.202302286RRR