دورية أكاديمية

Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods.

التفاصيل البيبلوغرافية
العنوان: Synthetic microbial communities: Novel strategies to enhance the quality of traditional fermented foods.
المؤلفون: Jin R; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Song J; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Liu C; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Lin R; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Liang D; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Aweya JJ; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China., Weng W; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China., Zhu L; Institute of Urban Environment, Chinese Academy of Science, Xiamen, China., Shang J; Key Laboratory of Bionic Engineering, College of Biological and Agricultural Engineering, Jilin University, Changchun, China., Yang S; College of Ocean Food and Biological Engineering, Jimei University, Xiamen, China.; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Jimei University, Xiamen, China.
المصدر: Comprehensive reviews in food science and food safety [Compr Rev Food Sci Food Saf] 2024 Jul; Vol. 23 (4), pp. e13388.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Institute of Food Technologists Country of Publication: United States NLM ID: 101305205 Publication Model: Print Cited Medium: Internet ISSN: 1541-4337 (Electronic) Linking ISSN: 15414337 NLM ISO Abbreviation: Compr Rev Food Sci Food Saf Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chicago, Ill. : Institute of Food Technologists
مواضيع طبية MeSH: Fermented Foods*/microbiology , Fermentation* , Food Microbiology*, Microbiota ; Food Quality ; Bacteria
مستخلص: Consumers are attracted to traditional fermented foods due to their unique flavor and nutritional value. However, the traditional fermentation technique can no longer accommodate the requirements of the food industry. Traditional fermented foods produce hazardous compounds, off-odor, and anti-nutritional factors, reducing product stability. The microbial system complexity of traditional fermented foods resulting from the open fermentation process has made it challenging to regulate these problems by modifying microbial behaviors. Synthetic microbial communities (SynComs) have been shown to simplify complex microbial communities and allow for the targeted design of microbial communities, which has been applied in processing traditional fermented foods. Herein, we describe the theoretical information of SynComs, particularly microbial physiological processes and their interactions. This paper discusses current approaches to creating SynComs, including designing, building, testing, and learning, with typical applications and fundamental techniques. Based on various traditional fermented food innovation demands, the potential and application of SynComs in enhancing the quality of traditional fermented foods are highlighted. SynComs showed superior performance in regulating the quality of traditional fermented foods using the interaction of core microorganisms to reduce the hazardous compounds of traditional fermented foods and improve flavor. Additionally, we presented the current status and future perspectives of SynComs for improving the quality of traditional fermented foods.
(© 2024 Institute of Food Technologists®.)
References: Ai, M., Qiu, X., Huang, J., Wu, C., Jin, Y., & Zhou, R. (2019). Characterizing the microbial diversity and major metabolites of Sichuan bran vinegar augmented by Monascus purpureus. International Journal of Food Microbiology, 292, 83–90.
Allwood, J. G., Wakeling, L. T., Post, L. S., & Bean, D. C. (2023). Food safety considerations in the production of traditional fermented products: Japanese rice koji and miso. Journal of Food Safety, 43(4), e13048.
Anal, A. K., Perpetuini, G., Petchkongkaew, A., Tan, R., Avallone, S., Tofalo, R., Nguyen, H. V., Chu‐Ky, S., Ho, P. H., Phan, T. T., & Waché, Y. (2020). Food safety risks in traditional fermented food from South‐East Asia. Food Control, 109, 106922.
Balagaddé, F. K., Song, H., Ozaki, J., Collins, C. H., Barnet, M., Arnold, F. H., Quake, S. R., & You, L. (2008). A synthetic Escherichia coli predator–prey ecosystem. Molecular Systems Biology, 4, 187.
Bao, R., Liu, S., Ji, C., Liang, H., Yang, S., Yan, X., Zhou, Y., Lin, X., & Zhu, B. (2018). Shortening fermentation period and quality improvement of fermented fish, chouguiyu, by co‐inoculation of Lactococcus lactis M10 and Weissella cibaria M3. Frontiers in Microbiology, 9, 3003.
Bintsis, T., & Papademas, P. (2022). The evolution of fermented milks, from artisanal to industrial products: A critical review. Fermentation, 8(12), 679.
Blasche, S., Kim, Y., Mars, R. A. T., Machado, D., Maansson, M., Kafkia, E., Milanese, A., Zeller, G., Teusink, B., Nielsen, J., Benes, V., Neves, R., Sauer, U., & Patil, K. R. (2021). Metabolic cooperation and spatiotemporal niche partitioning in a kefir microbial community. Nature Microbiology, 6, 196–208.
Bortoletto, A. M., & Alcarde, A. R. (2015). Assessment of chemical quality of Brazilian sugar cane spirits and cachaças. Food Control, 54, 1–6.
Calabrese, F. M., Ameur, H., Nikoloudaki, O., Celano, G., Vacca, M., Junior, W. J., Manzari, C., Vertè, F., Di Cagno, R., Pesole, G., De Angelis, M., & Gobbetti, M. (2022). Metabolic framework of spontaneous and synthetic sourdough metacommunities to reveal microbial players responsible for resilience and performance. Microbiome, 10, 148.
Cameron, D. E., Bashor, C. J., & Collins, J. J. (2014). A brief history of synthetic biology. Nature Reviews Microbiology, 12, 381–390.
Canon, F., Nidelet, T., Guédon, E., Thierry, A., & Gagnaire, V. (2020). Understanding the mechanisms of positive microbial interactions that benefit lactic acid bacteria co‐cultures. Frontiers in Microbiology, 11, 02088.
Chai, L.‐J., Shen, M.‐N., Sun, J., Deng, Y.‐J., Lu, Z.‐M., Zhang, X.‐J., Shi, J.‐S., & Xu, Z.‐H. (2020). Deciphering the d‐/l‐lactate‐producing microbiota and manipulating their accumulation during solid‐state fermentation of cereal vinegar. Food Microbiology, 92, 103559.
Chen, Q., Kong, B., Han, Q., Xia, X., & Xu, L. (2017). The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavour development. LWT, 77, 389–396.
Cosetta, C. M., & Wolfe, B. E. (2020). Deconstructing and reconstructing cheese rind microbiomes for experiments in microbial ecology and evolution. Current Protocols in Microbiology, 56, e95.
Cuvas‐Limon, R., Nobre, C., Cruz, M., Rodriguez‐Jasso, R. M., Ruíz, H. A., Loredo‐Treviño, A., Texeira, J., & Belmares, R. (2021). Spontaneously fermented traditional beverages as a source of bioactive compounds: An overview. Critical Reviews in Food Science and Nutrition, 61, 2984–3006.
D'Souza, G., Shitut, S., Preussger, D., Yousif, G., Waschina, S., & Kost, C. (2018). Ecology and evolution of metabolic cross‐feeding interactions in bacteria. Natural Product Reports, 35, 455–488.
Det‐udom, R., Gilbert, C., Liu, L., Prakitchaiwattana, C., Ellis, T., & Ledesma‐Amaro, R. (2019). Towards semi‐synthetic microbial communities: Enhancing soy sauce fermentation properties in B. subtilis co‐cultures. Microbial Cell Factories, 18, 101.
Douillard, F. P., & De Vos, W. M. (2014). Functional genomics of lactic acid bacteria: From food to health. Microbial Cell Factories, 13, 1–21.
Drew, G. C., Stevens, E. J., & King, K. C. (2021). Microbial evolution and transitions along the parasite–mutualist continuum. Nature Reviews Microbiology, 19, 623–638.
Du, R., Liu, J., Jiang, J., Wang, Y., Ji, X., Yang, N., Wu, Q., & Xu, Y. (2021). Construction of a synthetic microbial community for the biosynthesis of volatile sulfur compound by multi‐module division of labor. Food Chemistry, 347, 129036.
Fagbemigun, O., Cho, G.‐S., Rösch, N., Brinks, E., Schrader, K., Bockelmann, W., Oguntoyinbo, F. A., & Franz, C. M. A. P. (2021). Isolation and characterization of potential starter cultures from the Nigerian fermented milk product nono. Microorganisms, 9(3), 640.
Galimberti, A., Bruno, A., Agostinetto, G., Casiraghi, M., Guzzetti, L., & Labra, M. (2021). Fermented food products in the era of globalization: Tradition meets biotechnology innovations. Current Opinion in Biotechnology, 70, 36–41.
Gao, J., Qin, J., Ye, F., Ding, F., Liu, G., Li, A., Ren, C., & Xu, Y. (2022). Constructing simplified microbial consortia to improve the key flavour compounds during strong aroma‐type Baijiu fermentation. International Journal of Food Microbiology, 369, 109594.
García‐Jiménez, B., Torres‐Bacete, J., & Nogales, J. (2021). Metabolic modelling approaches for describing and engineering microbial communities. Computational and Structural Biotechnology Journal, 19, 226–246.
Ge, J., Sun, Y., Xin, X., Wang, Y., & Ping, W. (2016). Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1‐7 isolated from Chinese sauerkraut juice. Scientific Reports, 6, 19366.
Großkopf, T., & Soyer, O. S. (2014). Synthetic microbial communities. Current Opinion in Microbiology, 18, 72–77.
Ha, C. W. Y., & Devkota, S. (2020). The new microbiology: Cultivating the future of microbiome‐directed medicine. American Journal of Physiology‐Gastrointestinal and Liver Physiology, 319(6), G639–G645.
Hasnan, N. Z. N., & Yusoff, Y. M. (2018). Short review: Application Areas of Industry 4.0 Technologies in Food Processing Sector. In 2018 IEEE Student Conference on Research and Development (SCOReD) (pp. 1–6).
He, G., Dong, Y., Huang, J., Wang, X., Zhang, S., Wu, C., Jin, Y., & Zhou, R. (2019). Alteration of microbial community for improving flavor character of Daqu by inoculation with Bacillus velezensis and Bacillus subtilis. LWT, 111, 1–8.
Ho, C., Lazim, A., Fazry, S., Zaki, U., & Lim, S. (2017). Varieties, production, composition and health benefits of vinegars: A review. Food Chemistry, 221, 1621–1630.
Hoang, N., Ferng, S., Ting, C., Huang, W., Chiou, R., & Hsu, C. (2016). Optimizing the initial moromi fermentation conditions to improve the quality of soy sauce. LWT, 74, 242–250.
Huang, L., Hwang, C.‐A., Liu, Y., Renye, J., & Jia, Z. (2022). Growth competition between lactic acid bacteria and Listeria monocytogenes during simultaneous fermentation and drying of meat sausages—A mathematical modeling. Food Research International, 158, 111553.
Huang, Y., Chen, W., Chung, J., Yin, J., & Yoon, J. (2021). Recent progress in fluorescent probes for bacteria. Chemical Society Reviews, 50, 7725–7744.
Ibrahim, S. A., Ayivi, R. D., Zimmerman, T., Siddiqui, S. A., Altemimi, A. B., Fidan, H., Esatbeyoglu, T., & Bakhshayesh, R. V. (2021). Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods, 10, 3131.
Jabłońska‐Ryś, E., Skrzypczak, K., Sławińska, A., Radzki, W., & Gustaw, W. (2019). Lactic acid fermentation of edible mushrooms: Tradition, technology, current state of research: A review. Comprehensive Reviews in Food Science and Food Safety, 18, 655–669.
Jia, Y., Niu, C.‐T., Lu, Z.‐M., Zhang, X.‐J., Chai, L.‐J., Shi, J.‐S., Xu, Z.‐H., & Li, Q. (2020). A bottom‐up approach to develop a synthetic microbial community model: Application for efficient reduced‐salt broad bean paste fermentation. Applied and Environmental Microbiology, 86, e00306–00320.
Jiang, M.‐Z., Zhu, H.‐Z., Zhou, N., Liu, C., Jiang, C.‐Y., Wang, Y., & Liu, S.‐J. (2022). Droplet microfluidics‐based high‐throughput bacterial cultivation for validation of taxon pairs in microbial co‐occurrence networks. Scientific Reports, 12, 18145.
Ke, J., Wang, B., & Yoshikuni, Y. (2021). Microbiome engineering: Synthetic biology of plant‐associated microbiomes in sustainable agriculture. Trends in Biotechnology, 39, 244–261.
Kehe, J., Kulesa, A., Ortiz, A., Ackerman, C. M., Thakku, S. G., Sellers, D., Kuehn, S., Gore, J., Friedman, J., & Blainey, P. C. (2019). Massively parallel screening of synthetic microbial communities. Proceedings of the National Academy of Sciences, 116, 12804–12809.
Kehe, J., Ortiz, A., Kulesa, A., Gore, J., Blainey, P. C., & Friedman, J. (2021). Positive interactions are common among culturable bacteria. Science Advances, 7, eabi7159.
Keisam, S., Tuikhar, N., Ahmed, G., & Jeyaram, K. (2019). Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. International Journal of Food Microbiology, 296, 21–30.
Kim, D.‐R., Jeon, C.‐W., Cho, G., Thomashow, L. S., Weller, D. M., Paik, M.‐J., Lee, Y. B., & Kwak, Y.‐S. (2021). Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome, 9, 244.
Kim, H. J., Boedicker, J. Q., Choi, J. W., & Ismagilov, R. F. (2008). Defined spatial structure stabilizes a synthetic multispecies bacterial community. Proceedings of the National Academy of Sciences, 105, 18188–18193.
Kim, S.‐H., Kang, K., Kim, S., Lee, S., Lee, S.‐H., Ha, E.‐S., Sung, N.‐J., Kim, J., & Chung, M. (2017). Lactic acid bacteria directly degrade N‐nitrosodimethylamine and increase the nitrite‐scavenging ability in kimchi. Food Control, 71, 101–109.
Klitgord, N., & Segrè, D. (2010). Environments that induce synthetic microbial ecosystems. PLoS Computational Biology, 6, e1001002.
Kong, W., Meldgin, D. R., Collins, J. J., & Lu, T. (2018). Designing microbial consortia with defined social interactions. Nature Chemical Biology, 14, 821–829.
Krebs, H. A. (1972). The Pasteur effect and the relations between respiration and fermentation. Essays in Biochemistry, 8, 1–34.
Kurmann, J. A., Rasic, J. L., & Kroger, M. (1992). Encyclopedia of fermented fresh milk products: An international inventory of fermented milk, cream, buttermilk, whey, and related products: Springer Science & Business Media.
Lawson, C. E., Harcombe, W. R., Hatzenpichler, R., Lindemann, S. R., Löffler, F. E., O'Malley, M. A., García Martín, H., Pfleger, B. F., Raskin, L., Venturelli, O. S., Weissbrodt, D. G., Noguera, D. R., & McMahon, K. D. (2019). Common principles and best practices for engineering microbiomes. Nature Reviews Microbiology, 17, 725–741.
Lee, C.‐H., & Kim, M. L. (2016). History of fermented foods in Northeast Asia. In Tamang, J. P. (Ed.), Ethnic fermented foods and alcoholic beverages of Asia (pp. 1–16). Springer India.
Li, R., Xu, Y., Chen, J., Wang, F., Zou, C., & Yin, J. (2022). Enhancing the proportion of gluconic acid with a microbial community reconstruction method to improve the taste quality of Kombucha. LWT, 155, 112937.
Liao, E., Xu, Y., Jiang, Q., & Xia, W. (2018). Effects of inoculating autochthonous starter cultures on biogenic amines accumulation of Chinese traditional fermented fish. Journal of Food Processing and Preservation, 42, e13694.
Lin, F., Cai, F., Luo, B., Gu, R., Ahmed, S., & Long, C. (2020). Variation of microbiological and biochemical profiles of Laowo dry‐cured ham, an indigenous fermented food, during ripening by GC‐TOF‐MS and UPLC‐QTOF‐MS. Journal of Agricultural and Food Chemistry, 68, 8925–8935.
Lin, X., Tang, Y., Hu, Y., Lu, Y., Sun, Q., Lv, Y., Zhang, Q., Wu, C., Zhu, M., He, Q., & Chi, Y. (2021). Sodium reduction in traditional fermented foods: Challenges, strategies, and perspectives. Journal of Agricultural and Food Chemistry, 69, 8065–8080.
Liu, J.‐M., Solem, C., Lu, T., & Jensen, P. R. (2022). Harnessing lactic acid bacteria in synthetic microbial consortia. Trends in Biotechnology, 40, 8–11.
Liu, L., Chen, X., Hao, L., Zhang, G., Jin, Z., Li, C., Yang, Y., Rao, J., & Chen, B. (2022). Traditional fermented soybean products: Processing, flavor formation, nutritional and biological activities. Critical Reviews in Food Science and Nutrition, 62, 1971–1989.
Liu, W., Tokuyasu, T. A., Fu, X., & Liu, C. (2021). The spatial organization of microbial communities during range expansion. Current Opinion in Microbiology, 63, 109–116.
Liu, Y., & Xu, P. (2022). Quantitative and analytical tools to analyze the spatiotemporal population dynamics of microbial consortia. Current Opinion in Biotechnology, 76, 102754.
Lopatkin, A. J., & Collins, J. J. (2020). Predictive biology: Modelling, understanding and harnessing microbial complexity. Nature Reviews Microbiology, 18, 507–520.
Luo, Y., Li, D., Liao, H., & Xia, X. (2023). Patterns of biogenic amine during broad bean paste fermentation: Microbial diversity and functionality via Bacillus bioaugmentation. Journal of the Science of Food and Agriculture, 103, 1315–1325.
Ly, S., Bajoul Kakahi, F., Mith, H., Phat, C., Fifani, B., Kenne, T., Fauconnier, M.‐L., & Delvigne, F. (2019). Engineering synthetic microbial communities through a selective biofilm cultivation device for the production of fermented beverages. Microorganisms, 7, 206.
Ma, X., Zhang, Y., Li, X., Bi, J., Zhang, G., Hao, H., & Hou, H. (2022). Impacts of salt‐tolerant Staphylococcus nepalensis 5‐5 on bacterial composition and biogenic amines accumulation in fish sauce fermentation. International Journal of Food Microbiology, 361, 109464.
Mariutti, L., & Bragagnolo, N. (2017). Influence of salt on lipid oxidation in meat and seafood products: A review. Food Research International, 94, 90–100.
Malcı, K., Walls, L. E., & Rios‐Solis, L. (2020). Multiplex genome engineering methods for yeast cell factory development. Frontiers in Bioengineering and Biotechnology, 8, 589468.
McCarty, N. S., & Ledesma‐Amaro, R. (2019). Synthetic biology tools to engineer microbial communities for biotechnology. Trends in Biotechnology, 37, 181–197.
Mónica, F., & José, A. P. (2021). Fermented meat sausages and the challenge of their plant‐based alternatives: A comparative review on aroma‐related aspects. Meat Science, 182, 108636.
Moonga, H. B., Schoustra, S. E., Linnemann, A. R., Shindano, J., & Smid, E. J. (2022). Towards valorisation of indigenous traditional fermented milk: Mabisi as a model. Current Opinion in Food Science, 46, 100835.
Nehme, N., Mathieu, F., & Taillandier, P. (2008). Quantitative study of interactions between Saccharomyces cerevisiae and Oenococcus oeni strains. Journal of Industrial Microbiology and Biotechnology, 35(7), 685–693.
Obafemi, Y. D., Oranusi, S. U., Ajanaku, K. O., Akinduti, P. A., Leech, J., & Cotter, P. D. (2022). African fermented foods: Overview, emerging benefits, and novel approaches to microbiome profiling. NPJ Science of Food, 6, 15.
Pérez‐Armendáriz, B., & Cardoso‐Ugarte, G. A. (2020). Traditional fermented beverages in Mexico: Biotechnological, nutritional, and functional approaches. Food Research International, 136, 109307.
Pardo, I., & Ferrer, S. (2019). Chapter 7 ‐ Yeast‐bacteria coinoculation. In Morata, A. (Ed.), Red wine technology (pp. 99–114): Academic Press.
Qian, Y., Lan, F., & Venturelli, O. S. (2021). Towards a deeper understanding of microbial communities: Integrating experimental data with dynamic models. Current Opinion in Microbiology, 62, 84–92.
Rattray, F. P., & O'Connell, M. J. (2022). Kefir. In McSweeney, P. L. H. & McNamara, J. P. (Eds.), Encyclopedia of dairy sciences (3rd ed., pp. 438–445). Academic Press.
Ratzke, C., Barrere, J., & Gore, J. (2020). Strength of species interactions determines biodiversity and stability in microbial communities. Nature Ecology & Evolution, 4, 376–383.
Ray, R. C., & Didier, M. (2014). Microorganisms and fermentation of traditional foods: CRC Press.
Russo, G. L., Langellotti, A. L., Genovese, A., Martello, A., & Sacchi, R. (2020). Volatile compounds, physicochemical and sensory characteristics of Colatura di Alici, a traditional Italian fish sauce. Journal of the Science of Food and Agriculture, 100, 3755–3764.
Shen, B., Zhou, P., Jiao, X., Yao, Z., Ye, L., & Yu, H. (2020). Fermentative production of vitamin E tocotrienols in Saccharomyces cerevisiae under cold‐shock‐triggered temperature control. Nature Communications, 11, 5155.
Shi, H., Grodner, B., & De Vlaminck, I. (2021). Recent advances in tools to map the microbiome. Current Opinion in Biomedical Engineering, 19, 100289.
Shiferaw Terefe, N., & Augustin, M. A. (2020). Fermentation for tailoring the technological and health related functionality of food products. Critical Reviews in Food Science and Nutrition, 60, 2887–2913.
Shou, W., Ram, S., & Vilar, J. M. G. (2007). Synthetic cooperation in engineered yeast populations. Proceedings of the National Academy of Sciences, 104, 1877–1882.
Shukla, S., Kim, D. H., Chung, S. H., & Kim, M. (2017). Chapter 28 ‐ Occurrence of aflatoxins in fermented food products. In Frias, J., Martinez‐Villaluenga, C., & Peñas, E. (Eds.), Fermented foods in health and disease prevention (pp. 653–674). Academic Press.
Somerville, V., Grigaitis, P., Battjes, J., Moro, F., & Teusink, B. (2022). Use and limitations of genome‐scale metabolic models in food microbiology. Current Opinion in Food Science, 43, 225–231.
Song, H., Ding, M. Z., Jia, X. Q., Ma, Q., & Yuan, Y. J. (2014). Synthetic microbial consortia: From systematic analysis to construction and applications. Chemical Society Reviews, 43(20), 6954–6981.
Song, H. S., Whon, T. W., Kim, J., Lee, S. H., Kim, J. Y., Kim, Y. B., Choi, H.‐J., Rhee, J.‐K., & Roh, S. W. (2020). Microbial niches in raw ingredients determine microbial community assembly during kimchi fermentation. Food Chemistry, 318, 126481.
Stadie, J., Gulitz, A., Ehrmann, M. A., & Vogel, R. F. (2013). Metabolic activity and symbiotic interactions of lactic acid bacteria and yeasts isolated from water kefir. Food Microbiology, 35, 92–98.
Tamang, J. P., Cotter, P. D., Endo, A., Han, N. S., Kort, R., Liu, S. Q., Mayo, B., Westerik, N., & Hutkins, R. (2020). Fermented foods in a global age: East meets West. Comprehensive Reviews in Food Science and Food Safety, 19, 184–217.
Teng, T. S., Chin, Y. L., Chai, K. F., & Chen, W. N. (2021). Fermentation for future food systems. EMBO Reports, 22, e52680.
van den Berg, N. I., Machado, D., Santos, S., Rocha, I., Chacón, J., Harcombe, W., Mitri, S., & Patil, K. R. (2022). Ecological modelling approaches for predicting emergent properties in microbial communities. Nature Ecology & Evolution, 6, 855–865.
Venturelli, O. S., Carr, A. V., Fisher, G., Hsu, R. H., Lau, R., Bowen, B. P., Hromada, S., Northen, T., & Arkin, A. P. (2018). Deciphering microbial interactions in synthetic human gut microbiome communities. Molecular Systems Biology, 14, e8157.
Walker, R. S. K., & Pretorius, I. S. (2022). Synthetic biology for the engineering of complex wine yeast communities. Nature Food, 3, 249–254.
Walsh, A. M., Macori, G., Kilcawley, K. N., & Cotter, P. D. (2020). Meta‐analysis of cheese microbiomes highlights contributions to multiple aspects of quality. Nature Food, 1, 500–510.
Wang, B., Wu, Q., Xu, Y., & Sun, B. (2020). Synergistic effect of multiple saccharifying enzymes on alcoholic fermentation for Chinese baijiu production. Applied and Environmental Microbiology, 86, e00013–00020.
Wang, Q., Liu, X., Jiang, L., Cao, Y., Zhan, X., Griffin Christopher, H., & Wu, R. (2019). Interrogation of internal workings in microbial community assembly: Play a game through a behavioral network? Msystems, 4, e00550–00519.
Wang, S., Wu, Q., Nie, Y., Wu, J., & Xu, Y. (2019). Construction of synthetic microbiota for reproducible flavor compound metabolism in Chinese light‐aroma‐type liquor produced by solid‐state fermentation. Applied and Environmental Microbiology, 85, e03090–03018.
Wang, S., Zhang, L., Qi, L., Liang, H., Lin, X., Li, S., Yu, C., & Ji, C. (2020). Effect of synthetic microbial community on nutraceutical and sensory qualities of kombucha. International Journal of Food Science & Technology, 55, 3327–3333.
Wang, X., Du, H., Zhang, Y., & Xu, Y. (2018). Environmental microbiota drives microbial succession and metabolic profiles during Chinese liquor fermentation. Applied and Environmental Microbiology, 84, e02369–02317.
Wang, Y., Li, C., Li, L., Yang, X., Chen, S., Wu, Y., Zhao, Y., Wang, J., Wei, Y., & Yang, D. (2019). Application of UHPLC‐Q/TOF‐MS‐based metabolomics in the evaluation of metabolites and taste quality of Chinese fish sauce (Yu‐lu) during fermentation. Food Chemistry, 296, 132–141.
Wang, Y., Liu, Y., Huang, X., Xiao, Z., Yang, Y., Yu, Q., Chen, S., He, L., Liu, A., Liu, S., Zou, L., & Yang, Y. (2021). A review on mechanistic overview on the formation of toxic substances during the traditional fermented food processing. Food Reviews International, 39(3), 1275–1292.
Wei, G., Chitrakar, B., Regenstein, J. M., Sang, Y., & Zhou, P. (2023). Microbiology, flavor formation, and bioactivity of fermented soybean curd (furu): A review. Food Research International, 163, 112183.
Weiss, A. S., Burrichter, A. G., Durai Raj, A. C., von Strempel, A., Meng, C., Kleigrewe, K., Münch, P. C., Rössler, L., Huber, C., Eisenreich, W., Jochum, L. M., Göing, S., Jung, K., Lincetto, C., Hübner, J., Marinos, G., Zimmermann, J., Kaleta, C., Sanchez, A., & Stecher, B. (2022). In vitro interaction network of a synthetic gut bacterial community. The ISME Journal, 16, 1095–1109.
Wolfe, B. E., & Dutton, R. J. (2015). Fermented foods as experimentally tractable microbial ecosystems. Cell, 161, 49–55.
Wu, D., Li, X., Lu, J., Chen, J., Zhang, L., & Xie, G. (2015). Constitutive expression of the DUR1,2 gene in an industrial yeast strain to minimize ethyl carbamate production during Chinese rice wine fermentation. FEMS Microbiology Letters, 363(1), fnv214.
Wu, L., Lu, Z., Zhang, X., Wang, Z., Yu, Y., Shi, J., & Xu, Z. (2017). Metagenomics reveals flavour metabolic network of cereal vinegar microbiota. Food Microbiology, 62, 23–31.
Wu, L., Zhao, L., Tao, Y., Zhang, D., He, A., Ma, X., Zhang, H., Li, G., Rong, L., & Li, R. (2023). Improving the aroma profile of inoculated fermented sausages by constructing a synthetic core microbial community. Journal of Food Science, 88, 4388–4402. https://doi.org/10.1111/1750‐3841.16764.
Wu, Q., Zhu, Y., Fang, C., Wijffels, R. H., & Xu, Y. (2021). Can we control microbiota in spontaneous food fermentation?—Chinese liquor as a case example. Trends in Food Science & Technology, 110, 321–331.
Xiang, H., Sun‐Waterhouse, D., Waterhouse, G. I. N., Cui, C., & Ruan, Z. (2019). Fermentation‐enabled wellness foods: A fresh perspective. Food Science and Human Wellness, 8, 203–243.
Xu, Y., Li, L., Xia, W., Zang, J., & Gao, P. (2019). The role of microbes in free fatty acids release and oxidation in fermented fish paste. LWT, 101, 323–330.
Yang, S., He, Y., Yan, Y., Xie, N., Song, Y., Yan, X., & Ding, Z. (2017). Textural properties of stinky mandarin fish (Siniperca chuatsi) during fermentation: Effects of the state of moisture. International Journal of Food Properties, 20, 1530–1538.
Yap, M., Ercolini, D., Álvarez‐Ordóñez, A., O'Toole, P. W., O'Sullivan, O., & Cotter, P. D. (2022). Next‐generation food research: Use of meta‐omic approaches for characterizing microbial communities along the food chain. Annual Review of Food Science and Technology, 13, 361–384.
Ye, Z., Jiang, B., Gao, D., Ping, W., & Ge, J. (2021). Bacillus spp. increase the Paracin 1.7 titer of L. paracasei HD1.7 in sauerkraut juice: Emphasis on the influence of inoculation conditions on the symbiotic relationship. LWT, 146, 111443.
Yilmaz, B., Sharma, H., Melekoglu, E., & Ozogul, F. (2022). Recent developments in dairy kefir‐derived lactic acid bacteria and their health benefits. Food Bioscience, 46, 101592.
Yu, H., Liu, S., Qin, H., Zhou, Z., Zhao, H., Zhang, S., & Mao, J. (2022). Artificial intelligence‐based approaches for traditional fermented alcoholic beverages’ development: Review and prospect. Critical Reviews in Food Science and Nutrition, 64, 2879–2889.
Zhang, Q., Zhao, C., Wang, X., Li, X., Zheng, Y., Song, J., Xia, M., Zhang, R., & Wang, M. (2021). Bioaugmentation by Pediococcus acidilactici AAF1‐5 improves the bacterial activity and diversity of cereal vinegar under solid‐state fermentation. Frontiers in Microbiology, 11, 603721.
Zhao, N., Huang, Y., Lai, H., Wang, Y., Mei, Y., Zeng, X., Yang, M., Li, H., Zhao, J., Zhu, Y., Zuo, Y., & Ge, L. (2023). Illumination and reconstruction of keystone microbiota for reproduction of key flavor‐active volatile compounds during paocai (a traditional fermented vegetable) fermentation. Food Bioscience, 56, 103148.
Zhao, N., Yang, B., Lu, W., Liu, X., Zhao, J., Ge, L., Zhu, Y., Lai, H., Paul Ross, R., Chen, W., & Zhang, H. (2020). Divergent role of abiotic factors in shaping microbial community assembly of paocai brine during aging process. Food Research International, 137, 109559.
Zhong, Y., Zou, Y., Zheng, Z., Chen, Q., Xu, W., Wu, Y., Gao, J., Zhong, K., & Gao, H. (2022). Impact of inoculating with indigenous Bacillus marcorestinctum YC‐1 on quality and microbial communities of Yibin Yacai (fermented mustard) during the fermentation process. Foods, 11(22), 3593.
Zhou, M., Zheng, X., Zhu, H., Li, L., Zhang, L., Liu, M., Liu, Z., Peng, M., Wang, C., Li, Q., & Li, D. (2021). Effect of Lactobacillus plantarum enriched with organic/inorganic selenium on the quality and microbial communities of fermented pickles. Food Chemistry, 365, 130495.
معلومات مُعتمدة: 32202045 National Natural Science Foundation of China; 2023J01771 Natural Science Foundation of Fujian Province of China
فهرسة مساهمة: Keywords: design strategies; food quality; microbial interactions; synthetic microbial communities; traditional fermented foods
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240614
رمز التحديث: 20240615
DOI: 10.1111/1541-4337.13388
PMID: 38865218
قاعدة البيانات: MEDLINE
الوصف
تدمد:1541-4337
DOI:10.1111/1541-4337.13388