دورية أكاديمية

The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review.

التفاصيل البيبلوغرافية
العنوان: The chemical and microbiological safety of emerging alternative protein sources and derived analogues: A review.
المؤلفون: Milana M; Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands., van Asselt ED; Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands., van der Fels-Klerx HJ; Wageningen Food Safety Research (WFSR), Wageningen University & Research, Wageningen, The Netherlands.
المصدر: Comprehensive reviews in food science and food safety [Compr Rev Food Sci Food Saf] 2024 Jul; Vol. 23 (4), pp. e13377.
نوع المنشور: Journal Article; Review
اللغة: English
بيانات الدورية: Publisher: Institute of Food Technologists Country of Publication: United States NLM ID: 101305205 Publication Model: Print Cited Medium: Internet ISSN: 1541-4337 (Electronic) Linking ISSN: 15414337 NLM ISO Abbreviation: Compr Rev Food Sci Food Saf Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Chicago, Ill. : Institute of Food Technologists
مواضيع طبية MeSH: Food Safety* , Food Contamination*/prevention & control , Food Contamination*/analysis, Food Microbiology ; Plant Proteins/chemistry ; Animals
مستخلص: Climate change and changing consumer demand are the main factors driving the protein transition. This shift toward more sustainable protein sources as alternatives to animal proteins is also reflected in the rapid upscaling of meat and dairy food analogues. Such changes could challenge food safety, as new food sources could result in new and unexpected food safety risks for consumers. This review analyzed the current knowledge on chemical and microbiological contamination of emerging alternative protein sources of plant origin, including soil-based (faba bean, mung bean, lentils, black gram, cowpea, quinoa, hemp, and leaf proteins) and aquatic-based (microalgae and duckweeds) proteins. Moreover, findings on commercial analogues from known alternative protein sources were included. Overall, the main focus of the investigations is on the European context. The review aimed to enable foresight approaches to food safety concerning the protein transition. The results indicated the occurrence of multiple chemical and microbiological hazards either in the raw materials that are the protein sources and eventually in the analogues. Moreover, current European legislation on maximum limits does not address most of the "contaminant-food" pairs identified, and no legislative framework has been developed for analogues. Results of this study provide stakeholders with a more comprehensive understanding of the chemical and microbiological safety of alternative protein sources and derived analogues to enable a holistic and safe approach to the protein transition.
(© 2024 The Author(s). Comprehensive Reviews in Food Science and Food Safety published by Wiley Periodicals LLC on behalf of Institute of Food Technologists.)
References: Adeyeye, E. I., Ibigbami, O. A., Akinsola, A. F., Akinwumi, O. A., Adubiaro, H. O., & Adesina, J. A. (2020). Assessment of pesticides residues in Moringa oleifera seed. Journal of Public Health Research and Development, 11(8), 261.
Affrifah, N. S., Phillips, R. D., & Saalia, F. K. (2021). Cowpeas: Nutritional profile, processing methods and products—A review. Legume Science, 4(3), e131. https://doi.org/10.1002/leg3.131.
Aggarwal, M., Freeman, A. M., Ros, E., Allen, K., Sikand, G., Aspry, K., Kris‐Etherton, P., Devries, S., Reddy, K., Singh, T., Litwin, S. E., O'Keefe, J., Miller, M., Andrus, B., Blankstein, R., Batiste, C., Belardo, D., Wenger, C., Batts, T., … Ostfeld, R. J. (2022). Trending nutrition controversies #3: Top controversies in 2021. American Journal of Medicine, 135(2), 146–156. https://doi.org/10.1016/j.amjmed.2021.07.046.
Ali, R., Saeed, S. M. G., Ali, S. A., Sayed, S. A., Ahmed, R., & Mobin, L. (2018). Effect of black gram flour as egg replacer on microstructure of biscuit dough and its impact on edible qualities. Journal of Food Measurement and Characterization, 12(3), 1641–1647. https://doi.org/10.1007/s11694‐018‐9779‐3.
Aloo, S. O., Ofosu, F. K., Kilonzi, S. M., Shabbir, U., & Oh, D. H. (2021). Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients, 13(8), 2882. https://doi.org/10.3390/nu13082882.
Alvarez‐Gonalez, A., Uggetti, E., Serrano, L., Gorchs, G., Casas, M. E., Matamoros, V., Gonzalez‐Flo, E., & Diez‐Montero, R. (2023). The potential of wastewater grown microalgae for agricultural purposes: Contaminants of emerging concern, heavy metals and pathogens assessment. Environmental Pollution, 324, 121399. https://doi.org/10.1016/j.envpol.2023.121399.
Amiard‐Triquet, C., Berthet, B., Joux, L., & Perrein‐Ettajani, H. (2006). Significance of physicochemical forms of storage in microalgae in predicting copper transfer to filter‐feeding oysters (Crassostrea gigas). Environmental Toxicology, 21(1), 1–7. https://doi.org/10.1002/tox.20149.
Ampofo, J., & Abbey, L. (2022). Microalgae: Bioactive composition, health benefits, safety and prospects as potential high‐value ingredients for the functional food industry. Foods, 11(12), 1744. https://doi.org/10.3390/foods11121744.
Anoop, A. A., Pillai, P. K. S., Nickerson, M., & Ragavan, K. V. (2023). Plant leaf proteins for food applications: Opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety, 22(1), 473–501. https://doi.org/10.1111/1541‐4337.13079.
Anwar, F., Latif, S., Ashraf, M., & Gilani, A. H. (2007). Moringa oleifera: A food plant with multiple medicinal uses. Phytotherapy Research, 21(1), 17–25. https://doi.org/10.1002/ptr.2023.
Baek, G., Saeed, M., & Choi, H.‐K. (2021). Duckweeds: Their utilization, metabolites and cultivation. Applied Biological Chemistry, 64(1), 73. https://doi.org/10.1186/s13765‐021‐00644‐z.
Banach, J. L., van der Berg, J. P., Kleter, G., van Bokhorst‐van de Veen, H., Bastiaan‐Net, S., Pouvreau, L., & van Asselt, E. D. (2023). Alternative proteins for meat and dairy replacers: Food safety and future trends. Critical Reviews in Food Science and Nutrition, 63(32), 11063–11080. https://doi.org/10.1080/10408398.2022.2089625.
Barak, J. D., Whitehand, L. C., & Charkowski, A. O. (2002). Differences in attachment of Salmonella enterica serovars and Escherichia coli O157:H7 to alfalfa sprouts. Applied and Environmental Microbiology, 68(10), 4758–4763. https://doi.org/10.1128/AEM.68.10.4758‐4763.2002.
Bartula, K., Begley, M., Latour, N., & Callanan, M. (2023). Growth of food‐borne pathogens Listeria and Salmonella and spore‐forming Paenibacillus and Bacillus in commercial plant‐based milk alternatives. Food Microbiology, 109, 104143. https://doi.org/10.1016/j.fm.2022.104143.
Baydan, E., Kucukersan, S., Dikmen, B. Y., Aydin, F. G., Sevin, S., Arslanbas, E., & Cetinkaya, M. A. (2016). Comparison of nutritional composition (moisture, ash, crude protein, nitrogen) and safety (aflatoxin, nitrate/nitrite) of organic and conventional rice and lentil samples consumed in Ankara. Ankara Universitesi Veteriner Fakultesi Dergisi, 63(4), 365–370.
Bocker, R., & Silva, E. K. (2022). Innovative technologies for manufacturing plant‐based non‐dairy alternative milk and their impact on nutritional, sensory and safety aspects. Future Foods, 5, 100098. https://doi.org/10.1016/j.fufo.2021.100098.
Boukid, F. (2021). Plant‐based meat analogues: From niche to mainstream. European Food Research and Technology, 247(2), 297–308. https://doi.org/10.1007/s00217‐020‐03630‐9.
Boukid, F. (2024). Sustainable protein sources (plant‐based meat). In Encyclopedia of food safety, second (pp. 246–261). Academic Press. https://doi.org/10.1016/b978‐0‐12‐822521‐9.00140‐4.
Boukid, F., & Castellari, M. (2022). How can processing technologies boost the application of faba bean (Vicia faba L.) proteins in food production? Efood, 3(3), e18. https://doi.org/10.1002/efd2.18.
Brankatschk, K., Kamber, T., Pothier, J. F., Duffy, B., & Smits, T. H. M. (2014). Transcriptional profile of Salmonella enterica subsp enterica serovar Weltevreden during alfalfa sprout colonization. Microbial Biotechnology, 7(6), 528–544. https://doi.org/10.1111/1751‐7915.12104.
Briand, J. F., Jacquet, S., Bernard, C., & Humbert, J. F. (2003). Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems. Veterinary Research, 34(4), 361–377. https://doi.org/10.1051/vetres:2003019.
Bruno, M., Fiori, M., Mattei, D., Melchiorre, S., Messineo, V., Volpi, F., Bogialli, S., & Nazzari, M. (2006). ELISA and LC‐MS/MS methods for determining cyanobacterial toxins in blue‐green algae food supplements. Natural Product Research, 20(9), 827–834. https://doi.org/10.1080/14786410500410859.
Ćaćić, M., Perčin, A., Zgorelec, Ž., & Kisić, I. (2019). Evaluation of heavy metals accumulation potential of hemp (Cannabis sativa L.). Journal of Central European Agriculture, 20(2), 700–711. https://doi.org/10.5513/jcea01/20.2.2201.
Caldwell, J. M., & Mills, C. E. N. (2022). Safety, nutrition and sustainability of plant‐based meat alternatives. In Present knowledge in food safety: A risk‐based approach through the food chain (pp. 1016–1031). Academic Press. https://doi.org/10.1016/B978‐0‐12‐819470‐6.00063‐9.
Campbell, B. M., Beare, D. J., Bennett, E. M., Hall‐Spencer, J. M., Ingram, J. S. I., Jaramillo, F., Ortiz, R., Ramankutty, N., Sayer, J. A., & Shindell, D. (2017). Agriculture production as a major driver of the Earth system exceeding planetary boundaries. Ecology and Society, 22(4), 8. https://doi.org/10.5751/es‐09595‐220408.
Carballo, D., Moltó, J. C., Berrada, H., & Ferrer, E. (2018). Presence of mycotoxins in ready‐to‐eat food and subsequent risk assessment. Food and Chemical Toxicology, 121, 558–565. https://doi.org/10.1016/j.fct.2018.09.054.
Carmichael, W. W. (2001). Health effects of toxin‐producing cyanobacteria: “The CyanoHABs” [Article; Proceedings Paper]. Human and Ecological Risk Assessment, 7(5), 1393–1407. https://doi.org/10.1080/20018091095087.
Casero, M. C., Velazquez, D., Medina‐Cobo, M., Quesada, A., & Cires, S. (2019). Unmasking the identity of toxigenic cyanobacteria driving a multi‐toxin bloom by high‐throughput sequencing of cyanotoxins genes and 16S rRNA metabarcoding. Science of the Total Environment, 665, 367–378. https://doi.org/10.1016/j.scitotenv.2019.02.083.
Charon, J., Kahlke, T., Larsson, M. E., Abbriano, R., Commault, A., Burke, J., Ralph, P., & Holmes, E. C. (2022). Diverse RNA viruses associated with diatom, eustigmatophyte, dinoflagellate, and rhodophyte microalgae cultures. Journal of Virology, 96(20), 18. https://doi.org/10.1128/jvi.00783‐22.
Chegukrishnamurthi, M., Shahabazuddin, M., Sreevathsan, S., Sarada, R., & Mudliar, S. N. (2020). Ozonation as non‐thermal option for bacterial load reduction of Chlorella biomass cultivated in airlift photobioreactor. Journal of Cleaner Production, 276(11), 123029. https://doi.org/10.1016/j.jclepro.2020.123029.
Cheung, M. Y., Liang, S., & Lee, J. (2013). Toxin‐producing cyanobacteria in freshwater: A review of the problems, impact on drinking water safety, and efforts for protecting public health. Journal of Microbiology, 51(1), 1–10. https://doi.org/10.1007/s12275‐013‐2549‐3.
Cheyns, K., Demaegdt, H., Waegeneers, N., & Ruttens, A. (2021). Intake of food supplements based on algae or cyanobacteria may pose a health risk due to elevated concentrations of arsenic species. Food Additives and Contaminants Part A—Chemistry Analysis Control Exposure & Risk Assessment, 38(4), 609–621. https://doi.org/10.1080/19440049.2021.1877834.
Christien Enzing, M. P., Barbosa, M., & Sijtsma, L. (2014). Microalgae‐based products for the food and feed sector: An outlook for Europe. Publications Office of the European Union.
Cires, S., & Ballot, A. (2016). A review of the phylogeny, ecology and toxin production of bloom‐forming Aphanizomenon spp. and related species within the Nostocales (cyanobacteria). Harmful Algae, 54, 21–43. https://doi.org/10.1016/j.hal.2015.09.007.
European Commission. (2006). Commission Regulation (EC) No. 1881/2006 of 19 December 2006 setting maximum levels for certain contaminants in foodstuffs. Official Journal of the European Union, L 364, 5–24.
European Commission. (2023). Commission Regulation (EU) 2023/915 of 25 April 2023 on maximum levels for certain contaminants in food and repealing Regulation (EC) No 1881/2006. Official Journal of the European Union, L 119, 103–157.
European Commission. (2020). Communication from the Commission to the European Parliament, The Council, The European Economic and Social Committee and the Committee of the Regions: A farm to fork strategy for a fair, healthy and environmentally‐friendly food system. European Commission.
Crippa, M., Solazzo, E., Guizzardi, D., Monforti‐Ferrario, F., Tubiello, F. N., & Leip, A. (2021). Food systems are responsible for a third of global anthropogenic GHG emissions. Nature Food, 2(3), 198–209. https://doi.org/10.1038/s43016‐021‐00225‐9.
Dai, Z., Han, L., Li, Z., Gu, M., Xiao, Z., & Lu, F. (2022). Combination of chitosan, tea polyphenols, and nisin on the bacterial inhibition and quality maintenance of plant‐based meat. Foods, 11(10), 1524. https://doi.org/10.3390/foods11101524.
Deering, A. J., Pruitt, R. E., Mauer, L. J., & Reuhs, B. L. (2011). Identification of the cellular location of internalized Escherichia coli O157:H7 in mung bean, Vigna radiata, by immunocytochemical techniques. Journal of Food Protection, 74(8), 1224–1230. https://doi.org/10.4315/0362‐028X.JFP‐11‐015.
Deng, P., Chen, Y., Xie, S., Xue, C., He, Z., Chen, Q., Wang, Z., Qin, F., Chen, J., & Zeng, M. (2022). Accumulation of heterocyclic amines and advanced glycation end products in various processing stages of plant‐based burgers by UHPLC‐MS/MS. Journal of Agricultural and Food Chemistry, 70(46), 14771–14783. https://doi.org/10.1021/acs.jafc.2c06393.
European Food Safety Authority (EFSA). (2009). Opinion on the safety of ‘Alfalfa protein concentrate’ as food. EFSA Journal, 7(4), 997. https://doi.org/10.2903/j.efsa.2009.997.
European Food Safety Authority (EFSA). (2010). Application of systematic review methodology to food and feed safety assessments to support decision making. EFSA Journal, 8(6), 1637. https://doi.org/10.2903/j.efsa.2010.1637.
European Food Safety Authority (EFSA). (2021). Technical Report on the notification of fresh plants of Wolffia arrhiza and Wolffia globosa as a traditional food from a third country pursuant to Article 14 of Regulation (EU) 2015/2283. EFSA Supporting Publications, 18(6), 6658E. https://doi.org/10.2903/sp.efsa.2021.EN‐6658.
Eshel, G., Stainier, P., Shepon, A., & Swaminathan, A. (2019). Environmentally optimal, nutritionally sound, protein and energy conserving plant based alternatives to U.S. meat. Scientific Reports, 9(1), 10345. https://doi.org/10.1038/s41598‐019‐46590‐1.
FACT.MR. (2023). Packaged sprouts market‐forecast, Trade analysis & competition tracking—Global review 2018–2033. FACT.MR.
Food and Agriculture Organization of the United Nations & World Health Organization (FAO & WHO). (2019). Sustainable healthy diets—Guiding principles. FAO & WHO.
Food and Agriculture Organization of the United Nations (FAO). (2016). Soils and pulses: Symbiosis for life. FAO.
Food and Agriculture Organization of the United Nations (FAO). (2021). Looking at edible insects from a food safety perspective. FAO.
Food and Agriculture Organization of the United Nations (FAO). (2022). Thinking about the future of food safety—A foresight report. FAO.
Fernández, B., Campillo, J. A., Chaves‐Pozo, E., Bellas, J., León, V. M., & Albentosa, M. (2022). Comparative role of microplastics and microalgae as vectors for chlorpyrifos bioacumulation and related physiological and immune effects in mussels. Science of the Total Environment, 807, 150983. https://doi.org/10.1016/j.scitotenv.2021.150983.
Ferreira de Oliveira, A. P., & Bragotto, A. P. A. (2022). Microalgae‐based products: Food and public health. Future Foods, 6, 100157. https://doi.org/10.1016/j.fufo.2022.100157.
Fu, S., Ma, Y., Wang, Y., Sun, C., Chen, F., Cheng, K. W., & Liu, B. (2023). Contents and correlations of N(epsilon)‐(carboxymethyl)lysine, N(epsilon)‐(carboxyethyl)lysine, acrylamide and nutrients in plant‐based meat analogs. Foods, 12(10), 1967. https://doi.org/10.3390/foods12101967.
Fu, Y., Chen, T., Chen, S. H. Y., Liu, B., Sun, P., Sun, H., & Chen, F. (2021). The potentials and challenges of using microalgae as an ingredient to produce meat analogues. Trends in Food Science & Technology, 112, 188–200. https://doi.org/10.1016/j.tifs.2021.03.050.
Ge, C. T., Rymut, S., Lee, C., & Lee, J. (2014). Salmonella internalization in mung bean sprouts and pre‐ and postharvest intervention methods in a hydroponic system. Journal of Food Protection, 77(5), 752–757. https://doi.org/10.4315/0362‐028x.Jfp‐13‐370.
Good Food Institute (GFI). (2022). Europe plant‐based food retail market insights. GFI.
Gilroy, D. J., Kauffman, K. W., Hall, R. A., Huang, X., & Chu, F. S. (2000). Assessing potential health risks from microcystin toxins in blue‐green algae dietary supplements. Environmental Health Perspectives, 108(5), 435–439. https://doi.org/10.1289/ehp.00108435.
Global Market Insights. (2020). Global alternative protein market for animal feed protein application, forecasts 2021–2027. GMI.
Gorski, L., Palumbo, J. D., & Nguyen, K. D. (2004). Strain‐specific differences in the attachment of Listeria monocytogenes to alfalfa sprouts. Journal of Food Protection, 67(11), 2488–2495. https://doi.org/10.4315/0362‐028x‐67.11.2488.
Hadi, J., & Brightwell, G. (2021). Safety of alternative proteins: Technological, environmental and regulatory aspects of cultured meat, plant‐based meat, insect protein and single‐cell protein. Foods, 10(6), 1226. https://doi.org/10.3390/foods10061226.
Hadidi, M., Orellana Palacios, J. C., McClements, D. J., Mahfouzi, M., & Moreno, A. (2023). Alfalfa as a sustainable source of plant‐based food proteins. Trends in Food Science & Technology, 135, 202–214. https://doi.org/10.1016/j.tifs.2023.03.023.
Haijing, H. U., Churey, J. J., & Worobo, R. W. (2004). Heat treatments to enhance the safety of mung bean seeds. Journal of Food Protection, 67(6), 1257–1260. https://doi.org/10.4315/0362‐028x‐67.6.1257.
Hassan, R. (2023). Assessment of the health risk posed by toxic metals in commonly consumed legume brands in Erbil, Iraq. Journal of Food Composition and Analysis, 120, 105282. https://doi.org/10.1016/j.jfca.2023.105282.
He, J., Evans, N. M., Liu, H., & Shao, S. (2020). A review of research on plant‐based meat alternatives: Driving forces, history, manufacturing, and consumer attitudes. Comprehensive Reviews in Food Science and Food Safety, 19(5), 2639–2656. https://doi.org/10.1111/1541‐4337.12610.
Hertzler, S. R., Lieblein‐Boff, J. C., Weiler, M., & Allgeier, C. (2020). Plant proteins: Assessing their nutritional quality and effects on health and physical function. Nutrients, 12(12), 3704. https://doi.org/10.3390/nu12123704.
House, J. D., Neufeld, J., & Leson, G. (2010). Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility‐corrected amino acid score method. Journal of Agricultural and Food Chemistry, 58(22), 11801–11807. https://doi.org/10.1021/jf102636b.
Hu, Z., Fang, Y., Yi, Z., Tian, X., Li, J., Jin, Y., He, K., Liu, P., Du, A., Huang, Y., & Zhao, H. (2022). Determining the nutritional value and antioxidant capacity of duckweed (Wolffia arrhiza) under artificial conditions. LWT, 153, 112477. https://doi.org/10.1016/j.lwt.2021.112477.
Hussain, S., Rengel, Z., Qaswar, M., Amir, M., & Zafar‐Ul‐hye, M. (2019). Arsenic and heavy metal (cadmium, lead, mercury and nickel) contamination in plant‐based foods. Plant and human health: Volume 2: Phytochemistry and molecular aspects (pp. 447–490). Springer. https://doi.org/10.1007/978‐3‐030‐03344‐6_20.
Ibelings, B. W., Backer, L. C., Kardinaal, W. E., & Chorus, I. (2015). Current approaches to cyanotoxin risk assessment and risk management around the globe. Harmful Algae, 49, 63–74. https://doi.org/10.1016/j.hal.2014.10.002.
Jood, S., Chauhan, B. M., & Kapoor, A. C. (1989). Protein digestibility (in vitro) of chickpea and blackgram seeds as affected by domestic processing and cooking. Plant Foods for Human Nutrition, 39, 149–154.
Khazaei, H., Subedi, M., Nickerson, M., Martinez‐Villaluenga, C., Frias, J., & Vandenberg, A. (2019). Seed protein of lentils: Current status, progress, and food applications. Foods, 8(9), 391. https://doi.org/10.3390/foods8090391.
Kim, H., Caulfield, L. E., Garcia‐Larsen, V., Steffen, L. M., Coresh, J., & Rebholz, C. M. (2019). Plant‐based diets are associated with a lower risk of incident cardiovascular disease, cardiovascular disease mortality, and all‐cause mortality in a general population of middle‐aged adults. Journal of the American Heart Association, 8(16), e012865. https://doi.org/10.1161/JAHA.119.012865.
Kim, L., Cui, R. X., Il Kwak, J., & An, Y. J. (2022). Trophic transfer of nanoplastics through a microalgae‐crustacean‐small yellow croaker food chain: Inhibition of digestive enzyme activity in fish. Journal of Hazardous Materials, 440(10), 129715. https://doi.org/10.1016/j.jhazmat.2022.129715.
Koyande, A. K., Chew, K. W., Rambabu, K., Tao, Y., Chu, D.‐T., & Show, P.‐L. (2019). Microalgae: A potential alternative to health supplementation for humans. Food Science and Human Wellness, 8(1), 16–24. https://doi.org/10.1016/j.fshw.2019.03.001.
Kyrylenko, A., Eijlander, R. T., Alliney, G., de Bos, E. L., & Wells‐Bennik, M. H. J. (2023). Levels and types of microbial contaminants in different plant‐based ingredients used in dairy alternatives. International Journal of Food Microbiology, 407, 110392. https://doi.org/10.1016/j.ijfoodmicro.2023.110392.
Le, T. S., Southgate, P. C., O'Connor, W., Abramov, T., Shelley, D., Vu, S. V., & Kurtboke, D. I. (2020). Use of bacteriophages to control vibrio contamination of microalgae used as a food source for oyster larvae during hatchery culture. Current Microbiology, 77(8), 1811–1820. https://doi.org/10.1007/s00284‐020‐01981‐w.
Lee, J. H., Birch, G. F., Cresswell, T., Johansen, M. P., Adams, M. S., & Simpson, S. L. (2015). Dietary ingestion of fine sediments and microalgae represent the dominant route of exposure and metal accumulation for Sydney rock oyster (Saccostrea glomerata): A biokinetic model for zinc. Aquatic Toxicology, 167, 46–54. https://doi.org/10.1016/j.aquatox.2015.07.020.
Lima, M., Costa, R., Rodrigues, I., Lameiras, J., & Botelho, G. (2022). A narrative review of alternative protein sources: Highlights on meat, fish, egg and dairy analogues. Foods, 11(14), 2053. https://doi.org/10.3390/foods11142053.
Lin, X., Duan, N., Wu, J., Lv, Z., Wang, Z., & Wu, S. (2023). Potential food safety risk factors in plant‐based foods: Source, occurrence, and detection methods. Trends in Food Science & Technology, 138, 511–522. https://doi.org/10.1016/j.tifs.2023.06.032.
Liu, Z. S., Shaposhnikov, M., Zhuang, S., Tu, T. Y., Wang, H. Y., & Wang, L. X. (2023). Growth and survival of common spoilage and pathogenic bacteria in ground beef and plant‐based meat analogues. Food Research International, 164, 112408. https://doi.org/10.1016/j.foodres.2022.112408.
Loushigam, G., & Shanmugam, A. (2023). Modifications to functional and biological properties of proteins of cowpea pulse crop by ultrasound‐assisted extraction. Ultrasonics Sonochemistry, 97, 106448. https://doi.org/10.1016/j.ultsonch.2023.106448.
Luo, X., & Matthews, K. R. (2023). The conjugative transfer of plasmid‐mediated mobile colistin resistance gene, mcr‐1, to Escherichia coli O157:H7 and Escherichia coli O104:H4 in nutrient broth and in mung bean sprouts. Food Microbiology, 111, 104188. https://doi.org/10.1016/j.fm.2022.104188.
Mankiewicz, J., Tarczynska, M., Walter, Z., & Zalewski, M. (2003). Natural toxins from cyanobacteria. Acta Biologica Cracoviensia Series Botanica, 45(2), 9–20.
Manolidi, K., Triantis, T. M., Kaloudis, T., & Hiskia, A. (2019). Neurotoxin BMAA and its isomeric amino acids in cyanobacteria and cyanobacteria‐based food supplements. Journal of Hazardous Materials, 365, 346–365. https://doi.org/10.1016/j.jhazmat.2018.10.084.
Markou, G., Chentir, I., & Tzovenis, I. (2021). Microalgae and cyanobacteria as food: Legislative and safety aspects. Cultured microalgae for the food industry: Current and potential applications (pp. 249–264). Elsevier. https://doi.org/10.1016/B978‐0‐12‐821080‐2.00003‐4.
Markou, G., Wang, L., Ye, J. F., & Unc, A. (2018). Using agro‐industrial wastes for the cultivation of microalgae and duckweeds: Contamination risks and biomass safety concerns. Biotechnology Advances, 36(4), 1238–1254. https://doi.org/10.1016/j.biotechadv.2018.04.003.
Matos, Â. P. (2019). Microalgae as a potential source of proteins. Proteins: Sustainable source, processing and applications (pp. 63–96). Academic Press. https://doi.org/10.1016/b978‐0‐12‐816695‐6.00003‐9.
Mes, J. J., Esser, D., Oosterink, E., van den Dool, R. T. M., Engel, J., de Jong, G. A. H., Wehrens, R., & van der Meer, I. M. (2022). A controlled human intervention trial to study protein quality by amino acid uptake kinetics with the novel Lemna protein concentrate as case study. International Journal of Food Science and Nutrition, 73(2), 251–262. https://doi.org/10.1080/09637486.2021.1960958.
Meyer, A. M., Meijer, N., Hoek‐van den Hil, E. F., & van der Fels‐Klerx, H. J. (2021). Chemical food safety hazards of insects reared for food and feed. Journal of Insects as Food and Feed, 7(5), 823–831. https://doi.org/10.3920/JIFF2020.0085.
Mielmann, A. (2013). The utilisation of lucerne (Medicago sativa): A review. British Food Journal, 115(4), 590–600. https://doi.org/10.1108/00070701311317865.
Mihalache, O. A., De Boevre, M., Dellafiora, L., De Saeger, S., Moretti, A., Pinson‐Gadais, L., Ponts, N., Richard‐Forget, F., Susca, A., & Dall'Asta, C. (2023). The occurrence of non‐regulated mycotoxins in foods: A systematic review. Toxins (Basel), 15(9), 583. https://doi.org/10.3390/toxins15090583.
Mihalache, O. A., Dellafiora, L., & Dall'Asta, C. (2022). A systematic review of natural toxins occurrence in plant commodities used for plant‐based meat alternatives production. Food Research International, 158, 111490. https://doi.org/10.1016/j.foodres.2022.111490.
Miro‐Abella, E., Herrero, P., Canela, N., Arola, L., Borrull, F., Ras, R., & Fontanals, N. (2017). Determination of mycotoxins in plant‐based beverages using QuEChERS and liquid chromatography‐tandem mass spectrometry. Food Chemistry, 229, 366–372. https://doi.org/10.1016/j.foodchem.2017.02.078.
Moura, M., Martins, B. A., Oliveira, G. P., & Takahashi, J. A. (2022). Alternative protein sources of plant, algal, fungal and insect origins for dietary diversification in search of nutrition and health. Critical Reviews in Food Science and Nutrition, 63(31), 10691–10708. https://doi.org/10.1080/10408398.2022.2085657.
Mutoti, M., Gumbo, J., & Jideani, A. I. O. (2022). Occurrence of cyanobacteria in water used for food production: A review. Physics and Chemistry of the Earth, 125, 103101. https://doi.org/10.1016/j.pce.2021.103101.
Muys, M., Sui, Y. X., Schwaiger, B., Lesueur, C., Vandenheuvel, D., Vermeir, P., & Vlaeminck, S. E. (2019). High variability in nutritional value and safety of commercially available Chlorella and Spirulina biomass indicates the need for smart production strategies. Bioresource Technology, 275, 247–257. https://doi.org/10.1016/j.biortech.2018.12.059.
Nakajima, N., Teramoto, T., Kasai, F., Sano, T., Tamaoki, M., Aono, M., Kubo, A., Kamada, H., Azumi, Y., & Saji, H. (2007). Glycosylation of bisphenol A by freshwater microalgae. Chemosphere, 69(6), 934–941. https://doi.org/10.1016/j.chemosphere.2007.05.088.
Nasir, M., & Sidhu, J. S. (2013). Common pulses: Chickpea, lentil, mungbean, black gram, pigeon pea and Indian vetch. Dry beans and pulses production, processing and nutrition (pp. 283–309). Wiley. https://doi.org/10.1002/9781118448298.ch12.
Nasrollahzadeh, F., Roman, L., Swaraj, V. J. S., Ragavan, K. V., Vidal, N. P., Dutcher, J. R., & Martinez, M. M. (2022). Hemp (Cannabis sativa L.) protein concentrates from wet and dry industrial fractionation: Molecular properties, nutritional composition, and anisotropic structuring. Food Hydrocolloids, 131, 107755. https://doi.org/10.1016/j.foodhyd.2022.107755.
Osswald, J., Rellan, S., Gago, A., & Vasconcelos, V. (2007). Toxicology and detection methods of the alkaloid neurotoxin produced by cyanobacteria, anatoxin‐a. Environment International, 33(8), 1070–1089. https://doi.org/10.1016/j.envint.2007.06.003.
Pastorino, P., & Ginebreda, A. (2021). Contaminants of emerging concern (CECs): Occurrence and fate in aquatic ecosystems. International Journal of Environmental Research and Public Health, 18(24), 13401. https://doi.org/10.3390/ijerph182413401.
Petro, T. M., Agarkova, I. V., Zhou, Y., Yolken, R. H., Van Etten, J. L., & Dunigan, D. D. (2015). Response of mammalian macrophages to challenge with the chlorovirus Acanthocystis turfacea chlorella virus 1. Journal of Virology, 89(23), 12096–12107. https://doi.org/10.1128/jvi.01254‐15.
Poore, J., & Nemecek, T. (2018). Reducing food's environmental impacts through producers and consumers. Science, 360(6392), 987–992.
Smart Protein Project. (2021). What consumers want: A survey on European consumer attitudes towards plant‐based foods with a focus on flexitarians. Smart Protein Project.
Rebellato, A. P., Fioravanti, M. I. A., Milani, R. F., & Morgano, M. A. (2023). Inorganic contaminants in plant‐based yogurts commercialized in Brazil. International Journal of Environmental Research and Public Health, 20(4), 3707. https://doi.org/10.3390/ijerph20043707.
Reinholds, I., Jansons, M., Fedorenko, D., Pugajeva, I., Zute, S., Bartkiene, E., & Bartkevics, V. (2021). Mycotoxins in cereals and pulses harvested in Latvia by nanoLC‐Orbitrap MS. Food Additives & Contaminants: Part B Surveillance, 14(2), 115–123. https://doi.org/10.1080/19393210.2021.1892204.
Rizzo, G., & Baroni, L. (2018). Soy, soy foods and their role in vegetarian diets. Nutrients, 10(1), 43. https://doi.org/10.3390/nu10010043.
Robiansyah, I., Hajar, A. S., Al‐kordy, M. A., & Ramadan, A. (2014). Current status of economically important plant Moringa peregrina (Forrsk.) Fiori in Saudi Arabia: A review. International Journal of Theoretical & Applied Sciences, 6(1), 79–86.
Rockström, J. (2009). A safe operating space for humanity. Nature, 461(7263), 472–475. https://doi.org/10.1038/461472a.
Romulo, A. (2022). Nutritional contents and processing of plant‐based milk: A review. IOP Conference Series: Earth and Environmental Science, 998, 012054.
Rosida, D. F., Elianarni, D., & Sarofa, U. (2022). Optimation 1,2 formulation of meat analog from cowpea (Vigna unguiculata L Walp) protein curds and cocoyams (Xanthosoma sagittifolium) modification starch as filler. Food Science and Technology, 42, e59120. https://doi.org/10.1590/fst.59120.
Roy, A., Moktan, B., & Sarkar, P. K. (2007). Characteristics of Bacillus cereus isolates from legume‐based Indian fermented foods. Food Control, 18(12), 1555–1564. https://doi.org/10.1016/j.foodcont.2006.12.006.
Roy, A., Moktan, B., & Sarkar, P. K. (2009). Diversity and growth control of multiple‐antibiotic resistant Salmonella from legume‐based Indian fermented foods. Journal of Food Science and Technology‐Mysore, 46(1), 31–35.
Ruzik, L., & Jakubowska, M. (2022). Speciation of arsenic(III) and arsenic(V) in plant‐based drinks. Foods, 11(10), 1441. https://doi.org/10.3390/foods11101441.
Rzymski, P., Budzulak, J., Niedzielski, P., Klimaszyk, P., Proch, J., Kozak, L., & Poniedzialek, B. (2019). Essential and toxic elements in commercial microalgal food supplements. Journal of Applied Phycology, 31(6), 3567–3579. https://doi.org/10.1007/s10811‐018‐1681‐1.
Rzymski, P., Niedzielski, P., Kaczmarek, N., Jurczak, T., & Klimaszyk, P. (2015). The multidisciplinary approach to safety and toxicity assessment of microalgae‐based food supplements following clinical cases of poisoning. Harmful Algae, 46, 34–42. https://doi.org/10.1016/j.hal.2015.05.003.
Saa, R. W., Fombang, E. N., Ndjantou, E. B., & Njintang, N. Y. (2019). Treatments and uses of Moringa oleifera seeds in human nutrition: A review. Food Science & Nutrition, 7(6), 1911–1919. https://doi.org/10.1002/fsn3.1057.
Samardzic, K., Steele, J. R., Violi, J. P., Colville, A., Mitrovic, S. M., & Rodgers, K. J. (2021). Toxicity and bioaccumulation of two non‐protein amino acids synthesised by cyanobacteria, β‐N‐methylamino‐L‐alanine (BMAA) and 2,4‐diaminobutyric acid (DAB), on a crop plant. Ecotoxicology and Environmental Safety, 208, 111515. https://doi.org/10.1016/j.ecoenv.2020.111515.
Sanchez‐Parra, E., Boutarfa, S., & Aboal, M. (2020). Are cyanotoxins the only toxic compound potentially present in microalgae supplements? Results from a study of ecological and non‐ecological products. Toxins, 12(9), 552. https://doi.org/10.3390/toxins12090552.
Sandström, V., Valin, H., Krisztin, T., Havlík, P., Herrero, M., & Kastner, T. (2018). The role of trade in the greenhouse gas footprints of EU diets. Global Food Security, 19, 48–55. https://doi.org/10.1016/j.gfs.2018.08.007.
Schiano, M. E., Sodano, F., Cassiano, C., Fiorino, F., Seccia, S., Rimoli, M. G., & Albrizio, S. (2022). Quantitative determination of bisphenol A and its congeners in plant‐based beverages by liquid chromatography coupled to tandem mass spectrometry. Foods, 11(23), 3853. https://doi.org/10.3390/foods11233853.
Shaghaghian, S., McClements, D. J., Khalesi, M., Garcia‐Vaquero, M., & Mirzapour‐Kouhdasht, A. (2022). Digestibility and bioavailability of plant‐based proteins intended for use in meat analogues: A review. Trends in Food Science & Technology, 129, 646–656. https://doi.org/10.1016/j.tifs.2022.11.016.
Singh, M., Trivedi, N., Enamala, M. K., Kuppam, C., Parikh, P., Nikolova, M. P., & Chavali, M. (2021). Plant‐based meat analogue (PBMA) as a sustainable food: A concise review. European Food Research and Technology, 247(10), 2499–2526. https://doi.org/10.1007/s00217‐021‐03810‐1.
Stacy, P., Jenkins, W., Mierlo, B. V., Trindade, L. M., Welch, D., & Zanten, H. V. (2023). Our future proteins: A diversity of perspectives. https://vuuniversitypress.com/product/ourfutureproteins/?lang=en.
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S. E., Fetzer, I., Bennett, E. M., Biggs, R., Carpenter, S. R., de Vries, W., de Wit, C. A., Folke, C., Gerten, D., Heinke, J., Mace, G. M., Persson, L. M., Ramanathan, V., Reyers, B., & Sorlin, S. (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. https://doi.org/10.1126/science.1259855.
Testai, E., Buratti, F. M., Funari, E., Manganelli, M., Vichi, S., Arnich, N., Biré, R., Fessard, V., & Sialehaamoa, A. (2016). Review and analysis of occurrence, exposure and toxicity of cyanobacteria toxins in food. EFSA Supporting Publications, 13(2), 998E. https://doi.org/10.2903/sp.efsa.2016.EN‐998.
Torres‐Tiji, Y., Fields, F. J., & Mayfield, S. P. (2020). Microalgae as a future food source. Biotechnology Advances, 41, 107536. https://doi.org/10.1016/j.biotechadv.2020.107536.
Tóth, A. J., Dunay, A., Battay, M., Illés, C. B., Bittsánszky, A., & Süth, M. (2021). Microbial spoilage of plant‐based meat analogues. Applied Sciences (Switzerland), 11(18), 8309. https://doi.org/10.3390/app11188309.
Trigo, C., Castello, M. L., & Ortola, M. D. (2023). Potentiality of Moringa oleifera as a nutritive ingredient in different food matrices. Plant Foods for Human Nutrition, 78(1), 25–37. https://doi.org/10.1007/s11130‐022‐01023‐9.
Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2021a). Safety of mung bean protein as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(10), 6846. https://doi.org/10.2903/j.efsa.2021.6846.
Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2021b). Safety of water lentil powder from Lemnaceae as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(11), e06845. https://doi.org/10.2903/j.efsa.2021.6845.
Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2021c). Safety of Wolffia globosa powder as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 19(12), e06938. https://doi.org/10.2903/j.efsa.2021.6938.
Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2022). Safety of Lemna minor and Lemna gibba whole plant material as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 20(11), e07598. https://doi.org/10.2903/j.efsa.2022.7598.
Turck, D., Bohn, T., Castenmiller, J., De Henauw, S., Hirsch‐Ernst, K. I., Maciuk, A., Mangelsdorf, I., McArdle, H. J., Naska, A., Pelaez, C., Pentieva, K., Siani, A., Thies, F., Tsabouri, S., Vinceti, M., Cubadda, F., Frenzel, T., Heinonen, M., Maradona, M. P., … Knutsen, H. K. (2023). Safety of water lentil protein concentrate from a mixture of Lemna gibba and Lemna minor as a novel food pursuant to Regulation (EU) 2015/2283. EFSA Journal, 21(4), e07903. https://doi.org/10.2903/j.efsa.2023.7903.
United Nations Department of Economic and Social Affairs, Population Division. (2022). World population prospects 2022: Summary of results. United Nations.
van Apeldoorn, M. E., van Egmond, H. P., Speijers, G. J. A., & Bakker, G. J. I. (2007). Toxins of cyanobacteria. Molecular Nutrition & Food Research, 51(1), 7–60. https://doi.org/10.1002/mnfr.200600185.
van der Fels‐Klerx, H. J., Camenzuli, L., Belluco, S., Meijer, N., & Ricci, A. (2018). Food safety issues related to uses of insects for feeds and foods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1172–1183. https://doi.org/10.1111/1541‐4337.12385.
van der Spiegel, M., Noordam, M. Y., & van der Fels‐Klerx, H. J. (2013). Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production. Comprehensive Reviews in Food Science and Food Safety, 12(6), 662–678. https://doi.org/10.1111/1541‐4337.12032.
Venlet, N. V., Hettinga, K. A., Schebesta, H., & Bernaz, N. (2021). Perspective: A legal and nutritional perspective on the introduction of quinoa‐based infant and follow‐on formula in the EU. Advances in Nutrition, 12(4), 1100–1107. https://doi.org/10.1093/advances/nmab041.
Vichi, S., Lavorini, P., Funari, E., Scardala, S., & Testai, E. (2012). Contamination by Microcystis and microcystins of blue‐green algae food supplements (BGAS) on the Italian market and possible risk for the exposed population. Food and Chemical Toxicology, 50(12), 4493–4499. https://doi.org/10.1016/j.fct.2012.09.029.
Vilcacundo, R., & Hernández‐Ledesma, B. (2017). Nutritional and biological value of quinoa (Chenopodium quinoa Willd.). Current Opinion in Food Science, 14, 1–6.
Vinogradova, T., Danaher, M., Baxter, A., Moloney, M., Victory, D., & Haughey, S. A. (2011). Rapid surface plasmon resonance immunobiosensor assay for microcystin toxins in blue‐green algae food supplements. Talanta, 84(3), 638–643. https://doi.org/10.1016/j.talanta.2011.01.036.
Walia, K., Kapoor, A., & Farber, J. M. (2019). Qualitative microbiological risk assessment of Moringa oleifera leaf powder to be used to treat undernutrition in infants and children in Cambodia and India: A review. Journal of Food Protection, 82(3), 513–521. https://doi.org/10.4315/0362‐028X.JFP‐18‐252.
Willett, W., Rockstrom, J., Loken, B., Springmann, M., Lang, T., Vermeulen, S., Garnett, T., Tilman, D., DeClerck, F., Wood, A., Jonell, M., Clark, M., Gordon, L. J., Fanzo, J., Hawkes, C., Zurayk, R., Rivera, J. A., De Vries, W., Majele Sibanda, L., … Murray, C. J. L. (2019). Food in the anthropocene: The EAT‐Lancet Commission on healthy diets from sustainable food systems. Lancet, 393(10170), 447–492. https://doi.org/10.1016/S0140‐6736(18)31788‐4.
Xu, J., Shen, Y., Zheng, Y., Smith, G., Sun, X. S., Wang, D., Zhao, Y., Zhang, W., & Li, Y. (2021). Duckweed (Lemnaceae) for potentially nutritious human food: A review. Food Reviews International, 39(7), 3620–3634. https://doi.org/10.1080/87559129.2021.2012800.
Yano, H., & Fu, W. (2023). Hemp: A sustainable plant with high industrial value in food processing. Foods, 12(3), 651. https://doi.org/10.3390/foods12030651.
Zahari, I., Ferawati, F., Helstad, A., Ahlstrom, C., Ostbring, K., Rayner, M., & Purhagen, J. K. (2020). Development of high‐moisture meat analogues with hemp and soy protein using extrusion cooking. Foods, 9(6), 772. https://doi.org/10.3390/foods9060772.
Zdziebłowska, S., Zajda, J., & Ruzik, L. (2024). Microalgae enriched in selenium as a good source of micronutrients. Food Bioscience, 59, 103908. https://doi.org/10.1016/j.fbio.2024.103908.
معلومات مُعتمدة: European Commission
فهرسة مساهمة: Keywords: alternative protein sources; chemical hazards; food safety; microalgae; microbiological hazards
المشرفين على المادة: 0 (Plant Proteins)
تواريخ الأحداث: Date Created: 20240612 Date Completed: 20240612 Latest Revision: 20240614
رمز التحديث: 20240615
DOI: 10.1111/1541-4337.13377
PMID: 38865251
قاعدة البيانات: MEDLINE
الوصف
تدمد:1541-4337
DOI:10.1111/1541-4337.13377