دورية أكاديمية

Insights into the dynamic interactions of RNase a and osmolytes through computational approaches.

التفاصيل البيبلوغرافية
العنوان: Insights into the dynamic interactions of RNase a and osmolytes through computational approaches.
المؤلفون: Ilyas A; Department of Biotechnology, Invertis University, Bareilly, India., Poddar NK; Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India., Borkotoky S; Department of Biotechnology, Invertis University, Bareilly, India.
المصدر: Journal of biomolecular structure & dynamics [J Biomol Struct Dyn] 2024 Jul; Vol. 42 (11), pp. 5903-5911. Date of Electronic Publication: 2023 Jun 26.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Taylor & Francis Country of Publication: England NLM ID: 8404176 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1538-0254 (Electronic) Linking ISSN: 07391102 NLM ISO Abbreviation: J Biomol Struct Dyn Subsets: MEDLINE
أسماء مطبوعة: Publication: June 2012- : Oxon, UK : Taylor & Francis
Original Publication: Guilderland, NY : Adenine Press, [c1983-
مواضيع طبية MeSH: Molecular Dynamics Simulation* , Ribonuclease, Pancreatic*/chemistry , Ribonuclease, Pancreatic*/metabolism , Molecular Docking Simulation* , Protein Binding*, Thermodynamics ; Binding Sites ; Methylamines/chemistry ; Methylamines/metabolism ; Hydrogen Bonding
مستخلص: Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.
فهرسة مساهمة: Keywords: MD simulation; MM/PBSA; Osmolytes; RNase A; docking
المشرفين على المادة: EC 3.1.27.5 (Ribonuclease, Pancreatic)
0 (Methylamines)
تواريخ الأحداث: Date Created: 20240613 Date Completed: 20240613 Latest Revision: 20240626
رمز التحديث: 20240626
DOI: 10.1080/07391102.2023.2229445
PMID: 38870351
قاعدة البيانات: MEDLINE
الوصف
تدمد:1538-0254
DOI:10.1080/07391102.2023.2229445