دورية أكاديمية

Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma.

التفاصيل البيبلوغرافية
العنوان: Effects of mesenchymal stem cells versus curcumin on sonic hedgehog signaling in experimental model of Hepatocellular Carcinoma.
المؤلفون: Abdel-Tawab MS; Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt. Drmarwasayed2016@gmail.com., Fouad H; Medical Biochemistry Department, Faculty of Medicine, Cairo University, POB 12613, Cairo, Egypt.; Faculty of Medicine, Galala University, POB 43711, Attaka, Suez Governorate, Egypt., Sedeak AY; Anatomy and Embryology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt., Doudar NA; Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt., Rateb EE; Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt., Faruk E; Department of Anatomy, Faculty of Medicine, Umm Al-Qura University, Mecca, Saudi Arabia.; Department of Histology and Cytology, Faculty of Medicine, Benha University, Benha, Egypt., Reyad HR; Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt.
المصدر: Molecular biology reports [Mol Biol Rep] 2024 Jun 14; Vol. 51 (1), pp. 740. Date of Electronic Publication: 2024 Jun 14.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Reidel Country of Publication: Netherlands NLM ID: 0403234 Publication Model: Electronic Cited Medium: Internet ISSN: 1573-4978 (Electronic) Linking ISSN: 03014851 NLM ISO Abbreviation: Mol Biol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Dordrecht, Boston, Reidel.
مواضيع طبية MeSH: Hedgehog Proteins*/metabolism , Hedgehog Proteins*/genetics , Curcumin*/pharmacology , Carcinoma, Hepatocellular*/genetics , Carcinoma, Hepatocellular*/metabolism , Carcinoma, Hepatocellular*/pathology , Signal Transduction*/drug effects , Mesenchymal Stem Cells*/metabolism , Mesenchymal Stem Cells*/drug effects , Liver Neoplasms*/genetics , Liver Neoplasms*/metabolism , Liver Neoplasms*/pathology, Animals ; Rats ; Mesenchymal Stem Cell Transplantation/methods ; Male ; Disease Models, Animal ; Patched-1 Receptor/genetics ; Patched-1 Receptor/metabolism ; Zinc Finger Protein GLI1/metabolism ; Zinc Finger Protein GLI1/genetics ; Gene Expression Regulation, Neoplastic/drug effects ; Liver/metabolism ; Liver/pathology ; Liver/drug effects
مستخلص: Background: Sonic Hedgehog (SHH) is a fundamental signaling pathway that controls tissue reconstruction, stem cell biology, and differentiation and has a role in gut tissue homeostasis and development. Dysregulation of SHH leads to the development of HCC.
Methods, and Results: The present study was conducted to compare the effects of mesenchymal stem cells (MSCs) and curcumin on SHH molecular targets in an experimental model of HCC in rats. One hundred rats were divided equally into the following groups: control group, HCC group, HCC group received MSCs, HCC group received curcumin, and HCC group received MSCs and curcumin. Histopathological examinations were performed, and gene expression of SHH signaling target genes (SHH, PTCH1, SMOH, and GLI1) was assessed by real-time PCR in rat liver tissue. Results showed that SHH target genes were significantly upregulated in HCC-untreated rat groups and in MSC-treated groups, with no significant difference between them. Administration of curcumin with or without combined administration of MSCs led to a significant down-regulation of SHH target genes, with no significant differences between both groups. As regards the histopathological examination of liver tissues, both curcumin and MSCs, either through separate use or their combined use, led to a significant restoration of normal liver pathology.
Conclusions: In conclusion, SHH signaling is upregulated in the HCC experimental model. MSCs do not inhibit the upregulated SHH target genes in HCC. Curcumin use with or without MSCs administration led to a significant down-regulation of SHH signaling in HCC and a significant restoration of normal liver pathology.
(© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
References: Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J Clin 71(3):209–249. (PMID: 10.3322/caac.21660)
Abudeif A (2019) Epidemiology and risk factors of hepatocellular carcinoma in Egypt. Sohag Med J 23(3):8–12. (PMID: 10.21608/smj.2019.13376.1019)
Ezzat R, Eltabbakh M, El Kassas M (2021) Unique situation of hepatocellular carcinoma in Egypt: A review of epidemiology and control measures. World Journal of Gastrointestinal Oncology, 13(12), 1919.
Terlapu PV, Gedela SB, Gangu VK, Pemula R (2022) Intelligent diagnosis system of hepatitis C virus: a probabilistic neural network based approach. Int J Imaging Syst Technol 32(6):2107–2136. (PMID: 10.1002/ima.22746)
Huang DQ, El-Serag HB, Loomba R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Reviews Gastroenterol Hepatol 18(4):223–238. (PMID: 10.1038/s41575-020-00381-6)
Koulouris A, Tsagkaris C, Spyrou V, Pappa E, Troullinou A, Nikolaou M (2021) Hepatocellular carcinoma: an overview of the changing landscape of treatment options. J Hepatocellular Carcinoma, 387–401.
Piñero F, Dirchwolf M, Pessôa MG (2020) Biomarkers in hepatocellular carcinoma: diagnosis, prognosis and treatment response assessment. Cells 9(6):1370. (PMID: 32492896734951710.3390/cells9061370)
Ma C, Hu K, Ullah I, Zheng Q-K, Zhang N, Sun Z-G (2022) Molecular mechanisms involving the sonic hedgehog pathway in lung cancer therapy: recent advances. Front Oncol 12:729088. (PMID: 35433472901082210.3389/fonc.2022.729088)
Feng Z, Zhu S, Li W, Yao M, Song H, Wang R-B (2022) Current approaches and strategies to identify hedgehog signaling pathway inhibitors for cancer therapy. Eur J Med Chem 244:114867. (PMID: 3633255010.1016/j.ejmech.2022.114867)
Bariwal J, Kumar V, Dong Y, Mahato RI (2019) Design of hedgehog pathway inhibitors for cancer treatment. Med Res Rev 39(3):1137–1204. (PMID: 3048487210.1002/med.21555)
Bissey PA, Mathot P, Guix C, Jasmin M, Goddard I, Costechareyre C, Gadot N, Delcros JG, Mali SM, Fasan R, Arrigo AP (2020) Blocking SHH/Patched interaction triggers tumor growth inhibition through patched-induced apoptosis. Cancer Res 80(10):1970–1980. (PMID: 32060146723165610.1158/0008-5472.CAN-19-1340)
Chai JY, Sugumar V, Alshawsh MA, Wong WF, Arya A, Chong PP, Looi CY (2021) The role of smoothened-dependent and-independent hedgehog signaling pathway in tumorigenesis. Biomedicines 9(9):1188. (PMID: 34572373846655110.3390/biomedicines9091188)
Huang Y, Jiang C, Chen L, Han J, Liu M, Zhou T, Dong N, Xu K (2023) Gli1 promotes the phenotypic transformation of valve interstitial cells through hedgehog pathway activation exacerbating calcific aortic valve disease. Int J Biol Sci 19(7):2053. (PMID: 371518801015802610.7150/ijbs.74123)
Jeng KS, Jeng CJ, Jeng WJ, Sheen I, Li SY, Leu CM, Tsay YG, Chang CF (2019) Sonic hedgehog signaling pathway as a potential target to inhibit the progression of hepatocellular carcinoma. Oncol Lett 18(5):4377–4384. (PMID: 316119466781692)
Della Corte CM, Viscardi G, Papaccio F, Esposito G, Martini G, Ciardiello D, Martinelli E, Ciardiello F, Morgillo F (2017) Implication of the hedgehog pathway in hepatocellular carcinoma. World J Gastroenterol 23(24):4330. (PMID: 28706416548749710.3748/wjg.v23.i24.4330)
Zhao J, Li R, Li J, Chen Z, Lin Z, Zhang B, Deng L, Chen G, Wang Y (2022) CAFs-derived SCUBE1 promotes malignancy and stemness through the Shh/Gli1 pathway in hepatocellular carcinoma. J Translational Med 20(1):1–16. (PMID: 10.1186/s12967-022-03689-w)
Liu SJ, Zang YW, Huang CJ, Liu YJ (2024) Downregulation of Rab23 inhibits hepatocellular carcinoma by repressing SHH signaling pathway. Cancer Rep 7(1):e1921. (PMID: 10.1002/cnr2.1921)
Giakoustidis A, Giakoustidis D, Mudan S, Sklavos A, Williams R (2015) Molecular signalling in hepatocellular carcinoma: role of and crosstalk among WNT/β-catenin, Sonic hedgehog, notch and Dickkopf-1. Can J Gastroenterol Hepatol 29:209–217. (PMID: 25965442444403110.1155/2015/172356)
Rathore S, Mukim M, Sharma P, Devi S, Nagar JC, Khalid M (2020) Curcumin: a review for health benefits. Int J Res Rev 7(1):273–290.
Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376. (PMID: 31590362683570710.3390/nu11102376)
Yang X, Tian S, Fan L, Niu R, Yan M, Chen S, Zheng M, Zhang S (2022) Integrated regulation of chondrogenic differentiation in mesenchymal stem cells and differentiation of cancer cells. Cancer Cell Int 22(1):1–13. (PMID: 10.1186/s12935-022-02598-8)
Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, Zhang H, Li W, Wang W, Liu J (2018) The SHH/Gli axis regulates CD 90-mediated liver cancer stem cell function by activating the IL 6/JAK 2 pathway. J Cell Mol Med 22(7):3679–3690. (PMID: 29722127601071410.1111/jcmm.13651)
Zhang X, Li N, Zhu Y, Wen W (2022) The role of mesenchymal stem cells in the occurrence, development, and therapy of hepatocellular carcinoma. Cancer Med 11(4):931–943. (PMID: 34981659885590410.1002/cam4.4521)
Maulina T, Hadikrishna I, Hardianto A, Sjamsudin E, Pontjo B, Yusuf HY (2019) The therapeutic activity of curcumin through its anti-cancer potential on oral squamous cell carcinoma: a study on Sprague Dawley rat. SAGE open Med 7:2050312119875982. (PMID: 31523430673461310.1177/2050312119875982)
Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4(1):102–106. (PMID: 1913196210.1038/nprot.2008.221)
Chiang H, Hsieh CH, Lin YH, Lin S, Tsai-Wu JJ, Jiang CC (2011) Differences between chondrocytes and bone marrow-derived chondrogenic cells. Tissue Eng Part A 17(23–24):2919–2929. (PMID: 2189548710.1089/ten.tea.2010.0732)
Sundaresan S, Subramanian P (2008) Prevention of N-nitrosodiethylamine-induced hepatocarcinogenesis by S-allylcysteine. Mol Cell Biochem 310:209–214. (PMID: 1818591410.1007/s11010-007-9682-4)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2–∆∆CT method. Methods 25(4):402–408. (PMID: 1184660910.1006/meth.2001.1262)
Moolgavkar S, Luebeck G (2020) Multistage carcinogenesis: a unified framework for cancer data analysis. Statistical Modeling for Biological Systems: In Memory of Andrei Yakovlev, 117–136.
Sanders EJ (2020) Positional Instability in Early Development and Cancer. Growth Regulation and Carcinogenesis: Volume 2.
Che L, Yuan YH, Jia J, Ren J (2012) Activation of sonic hedgehog signaling pathway is an independent potential prognosis predictor in human hepatocellular carcinoma patients. Chin J Cancer Res 24:323–331. (PMID: 23359030355132610.1007/s11670-012-0271-z)
Li J, Cai H, Li H, Liu Y, Wang Y, Shi Y, Sun Y, Song H, Wang D (2019) Combined inhibition of sonic hedgehog signaling and histone deacetylase is an effective treatment for liver cancer. Oncol Rep 41(3):1991–1997. (PMID: 30747231)
Jing J, Wu Z, Wang J, Luo G, Lin H, Fan Y, Zhou C (2023) Hedgehog signaling in tissue homeostasis, cancers, and targeted therapies. Signal Transduct Target Therapy 8(1):315. (PMID: 10.1038/s41392-023-01559-5)
Zhang J, Tu K, Yang W, Li C, Yao Y, Zheng X, Liu Q (2014) Evaluation of Jagged2 and Gli1 expression and their correlation with prognosis in human hepatocellular carcinoma. Mol Med Rep 10(2):749–754. (PMID: 2485862110.3892/mmr.2014.2246)
Doheny D, Manore SG, Wong GL, Lo HW (2020) Hedgehog signaling and truncated GLI1 in cancer. Cells 9(9):2114. (PMID: 32957513756596310.3390/cells9092114)
Ding J, Li HY, Zhang L, Zhou Y, Wu J (2021) Hedgehog signaling, a critical pathway governing the development and progression of hepatocellular carcinoma. Cells 10(1):123. (PMID: 33440657782670610.3390/cells10010123)
Bhatia M, Bhalerao M, Cruz-Martins N, Kumar D (2021) Curcumin and cancer biology: focusing regulatory effects in different signalling pathways. Phytother Res 35(9):4913–4929. (PMID: 3383757910.1002/ptr.7121)
Wang M, Jiang S, Zhou L, Yu F, Ding H, Li P, Zhou M, Wang K (2019) Potential mechanisms of action of curcumin for cancer prevention: focus on cellular signaling pathways and miRNAs. Int J Biol Sci 15(6):1200. (PMID: 31223280656780710.7150/ijbs.33710)
Wong SC, Kamarudin MN, Naidu R (2021) Anticancer mechanism of curcumin on human glioblastoma. Nutrients 13(3):950. (PMID: 33809462799849610.3390/nu13030950)
Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Moghadam SA, ArefNezhad R, Sahebkar A, Avan A, Mirzaei H (2019) Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathology-Research Pract 215(10):152556. (PMID: 10.1016/j.prp.2019.152556)
Farghadani R, Naidu R (2021) Curcumin: modulator of key molecular signaling pathways in hormone-independent breast cancer. Cancers 13(14):3427. (PMID: 34298639830702210.3390/cancers13143427)
Zhu JY, Yang X, Chen Y, Jiang YE, Wang SJ, Li Y, Wang XQ, Meng Y, Zhu MM, Ma X, Huang C (2017) Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother Res 31(4):680–688. (PMID: 2819806210.1002/ptr.5791)
Wang D, Kong X, Li Y, Qian W, Ma J, Wang D, Yu D, Zhong C (2017) Curcumin inhibits bladder cancer stem cells by suppressing Sonic hedgehog pathway. Biochem Biophys Res Commun 493(1):521–527. (PMID: 2887081410.1016/j.bbrc.2017.08.158)
Ślusarz A, Shenouda NS, Sakla MS, Drenkhahn SK, Narula AS, MacDonald RS, Besch-Williford CL, Lubahn DB (2010) Common botanical compounds inhibit the hedgehog signaling pathway in prostate cancer. Cancer Res 70(8):3382–3390. (PMID: 2039521110.1158/0008-5472.CAN-09-3012)
Akbarsha MA (2012) Chemopreventive and Chemotherapeutic Potential of Plant Products for Major Cancers of the Reproductive System: Curcumin Stakes its Claim. ISSRF Newsletter, PK Mishra (Ed.), December 2012, 38.
Ahn SY (2020) The role of MSCs in the tumor microenvironment and tumor progression. Anticancer Res 40(6):3039–3047. (PMID: 3248759710.21873/anticanres.14284)
García-Bernal D, García-Arranz M, Yáñez RM, Hervás-Salcedo R, Cortés A, Fernández-García M, Hernando-Rodríguez M, Quintana-Bustamante Ó, Bueren JA, García-Olmo D, Moraleda JM (2021) The current status of mesenchymal stromal cells: controversies, unresolved issues and some promising solutions to improve their therapeutic efficacy. Front cell Dev Biology 9:650664. (PMID: 10.3389/fcell.2021.650664)
Qi J, Zhou Y, Jiao Z, Wang X, Zhao Y, Li Y, Chen H, Yang L, Zhu H, Li Y (2017) Exosomes derived from human bone marrow mesenchymal stem cells promote tumor growth through hedgehog signaling pathway. Cell Physiol Biochem 42(6):2242–2254. (PMID: 2881781610.1159/000479998)
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P (2023) The dual role of mesenchymal stem cells in Cancer Pathophysiology: Pro-tumorigenic effects versus therapeutic potential. Int J Mol Sci 24(17):13511. (PMID: 376863151048826210.3390/ijms241713511)
Zhou Y, Zhou W, Chen X, Wang Q, Li C, Chen Q, Zhang Y, Lu Y, Ding X, Jiang C (2020) Bone marrow mesenchymal stem cells-derived exosomes for penetrating and targeted chemotherapy of pancreatic cancer. Acta Pharm Sinica B 10(8):1563–1575. (PMID: 10.1016/j.apsb.2019.11.013)
Yang J, Lv K, Sun J, Guan J (2019) Anti-tumor effects of engineered mesenchymal stem cells in colon cancer model. Cancer Manage Res, 8443–8450.
Melzer C, Ohe Jvd, Hass R (2020) Anti-tumor effects of exosomes derived from drug-incubated permanently growing human MSC. Int J Mol Sci 21(19):7311. (PMID: 33023058758267110.3390/ijms21197311)
Abd-Allah SH, Shalaby SM, Amal S, Abd Elkader E, Hussein S, Emam E, Mazen NF, El Kateb M, Atfy M (2014) Effect of bone marrow–derived mesenchymal stromal cells on hepatoma. Cytotherapy 16(9):1197–1206. (PMID: 2498593910.1016/j.jcyt.2014.05.006)
Ai J, Ketabchi N, Verdi J, Gheibi N, Khadem Haghighian H, Kavianpour M (2019) Mesenchymal stromal cells induce inhibitory effects on hepatocellular carcinoma through various signaling pathways. Cancer Cell Int 19(1):1–13. (PMID: 10.1186/s12935-019-1038-0)
Hajighasemlou S, Nikbakht M, Pakzad S, Muhammadnejad S, Gharibzadeh S, Mirmoghtadaei M, Zafari F, Seyhoun I, Ai J, Verdi J (2020) Sorafenib and mesenchymal stem cell therapy: a promising approach for treatment of HCC. Evidence-Based Complementary and Alternative Medicine, 2020.
Rahmatizadeh F, Aziz SG, Khodadadi K, Ataei ML, Ebrahimie E, Rad JS, Pashaiasl M (2019) Bidirectional and opposite effects of naïve mesenchymal stem cells on tumor growth and progression. Adv Pharm Bull 9(4):539. (PMID: 31857958691218410.15171/apb.2019.063)
Ring A, Kim YM, Kahn M (2014) Wnt/catenin signaling in adult stem cell physiology and disease. Stem Cell Reviews Rep 10:512–525. (PMID: 10.1007/s12015-014-9515-2)
فهرسة مساهمة: Keywords: And GLI1; PTCH1; SHH; SMOH; Curcumin; HCC; MSCs; Sonic hedgehog
المشرفين على المادة: 0 (Hedgehog Proteins)
IT942ZTH98 (Curcumin)
0 (Shh protein, rat)
0 (Patched-1 Receptor)
0 (Zinc Finger Protein GLI1)
0 (Gli1 protein, rat)
تواريخ الأحداث: Date Created: 20240614 Date Completed: 20240614 Latest Revision: 20240627
رمز التحديث: 20240627
DOI: 10.1007/s11033-024-09613-3
PMID: 38874802
قاعدة البيانات: MEDLINE