دورية أكاديمية

Gross morphology and morphometry of native and decellularized heart valves of caprine: A comparative study.

التفاصيل البيبلوغرافية
العنوان: Gross morphology and morphometry of native and decellularized heart valves of caprine: A comparative study.
المؤلفون: Sarma SAVM; Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India., Pathak D; Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India., Singh O; Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India., Uppal V; Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India., Mohindroo J; Department of Veterinary Surgery and Radiology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India., Choudhary RK; College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.
المصدر: Anatomia, histologia, embryologia [Anat Histol Embryol] 2024 Jul; Vol. 53 (4), pp. e13075.
نوع المنشور: Journal Article; Comparative Study
اللغة: English
بيانات الدورية: Publisher: Wiley-Blackwell Country of Publication: Germany NLM ID: 7704218 Publication Model: Print Cited Medium: Internet ISSN: 1439-0264 (Electronic) Linking ISSN: 03402096 NLM ISO Abbreviation: Anat Histol Embryol Subsets: MEDLINE
أسماء مطبوعة: Publication: Berlin : Wiley-Blackwell
Original Publication: Berlin, Parey.
مواضيع طبية MeSH: Goats*/anatomy & histology , Heart Valves*/anatomy & histology, Animals ; Pulmonary Valve/anatomy & histology ; Chordae Tendineae/anatomy & histology ; Aortic Valve/anatomy & histology ; Tricuspid Valve/anatomy & histology ; Ultrasonography/veterinary ; Male
مستخلص: The gross morphological examination of native caprine heart valves revealed distinctive structural characteristics of the caprine's cardiac anatomy. Four primary orifices were identified, each protected by thin, valve-like structures. Atrioventricular orifices featured tricuspid and bicuspid valves, while the aorta and pulmonary arteries were guarded by semilunar valves. Within the atrioventricular apparatus, distinct features were observed including the tricuspid valve's three leaflets and the bicuspid valve's anterior and posterior leaflets. Ultrasonography provided insights into valve thickness and chordae tendineae lengths. Morphometric studies compared leaflets/cusps within individual native valves, showcasing significant variations in dimensions. Comparative analysis between native and decellularized valves highlighted the effects of decellularization on leaflet thickness and chordae tendineae lengths. Decellularized valves exhibited reduced dimensions compared to native valves, indicating successful removal of cellular components. While some dimensions remained unchanged post-decellularization, significant reductions were observed in leaflet thicknesses and chordae tendineae lengths. Notably, semilunar valve cusps displayed varying responses to decellularization, with significant reductions in cusp lengths observed in the aortic valve, while the pulmonary valve exhibited more subtle changes. These findings underscore the importance of understanding structural alterations in heart valves post-decellularization, providing valuable insights for tissue engineering applications and regenerative medicine.
(© 2024 Wiley‐VCH GmbH. Published by John Wiley & Sons Ltd.)
References: Alexis, C. A., & Ishmael, R. G. (1992). The incidence of congenital heart disease in Barbados‐abstract. The West Indian Medical Journal, 41(1), 44.
Anderson, R. H. (2000). Clinical anatomy of the aortic root. Heart, 84(6), 670–673.
Anwar, A. M., Geleijnse, M. L., Soliman, O. I., McGhie, J. S., Frowijn, R., Nemes, A., van den Bosch, A. E., Galema, T. W., & Ten Cate, F. J. (2007). Assessment of normal tricuspid valve anatomy in adults by real‐time three‐dimensional echocardiography. The International Journal of Cardiovascular Imaging, 23, 717–724.
Ateş, S., Karakurum, E., Takci, L., Basak, F., & Kürtül, I. (2017). Morphology of the atrioventricular valves and related intraventricular structures in the wild pig (Sus scrofa). Folia Morphologica, 76(4), 650–659.
Bezerra, A. J., DiDio, L. J., & Prates, J. C. (1994). Variations of the area and shape of the left atrioventricular valve and its cusps and leaflets. Surgical and Radiologic Anatomy, 16(3), 277–280.
Gumpangseth, T., Komutrattananont, P., Palee, P., Prasitwattanaseree, S., & Mahakkanukrauh, P. (2020). Image analysis of morphometric evaluation from the heart valves for age estimation in Thai population. International Journal of Morphology, 38(3), 726–730.
Hinton, R. B., & Yutzey, K. E. (2011). Heart valve structure and function in development and disease. Annual Review of Physiology, 73, 29–46.
Islam, M. N., Khan, M. Z. I., Khan, S. R., & Haque, M. A. (2005). Morphomatrical analysis of aortic valves of bovine heart for bioprosthetic purpose. Pakistan Journal of Biological Sciences, 8(6), 888–891.
Kheradvar, A., Zareian, R., Kawauchi, S., Goodwin, R. L., & Rugonyi, S. (2017). Animal models for heart valve research and development. Drug Discovery Today: Disease Models, 24, 55–62.
Khorramirouz, R., Sabetkish, S., Akbarzadeh, A., Muhammadnejad, A., Heidari, R., & Kajbafzadeh, A. M. (2014). Effect of three decellularisation protocols on the mechanical behaviour and structural properties of sheep aortic valve conduits. Advances in Medical Sciences, 59(2), 299–307.
Lis, M., Krawczyk‐Ożóg, A., Hołda, J., Tyrak, K., Dudkiewicz, D., Yakovliev, A., Strona, M., Bolechała, F., Jakiel, R., Jakiel, M., & Hołda, M. K. (2023). Pulmonary valve morphometry revisited: Clinical implications for valvular and supravalvular interventions. Clinical Anatomy, 36(2), 234–241.
Mishra, P. P., Rao, M. P., Paranjape, V., & Kulkarni, J. P. (2014). Morphometry of mitral valve. Medical Journal of Dr. D.Y. Patil University, 7(5), 625–630.
Moroni, F., & Mirabella, T. (2014). Decellularized matrices for cardiovascular tissue engineering. American Journal of Stem Cells, 3(1), 1–20.
Nayak, L., Senapati, S., Agrawal, D., Mohanty, B. B., Pattnaik, L., & Chinara, P. K. (2014). Morphomeric study of mitral valve of human heart. Research Journal of Pharmaceutical, Biological and Chemical Sciences, 5, 233–238.
Padhy, N., & Panda, M. (2021). Morphometric study of mitral valve in South Odisha ‐ A cadaveric study. Journal of Evolution of Medical and Dental Sciences, 10(18), 1275–1280.
Rohilla, A., Singh, K., Rohilla, J., & Chhabra, S. (2015). Tricuspid valve morphometry: A new learning from cadavers. Anatomy and Physiology, 5(4), 2161‐0940.
Roy, S., & Saha, A. (2016). Mitral valve beyond classical view – A morphometric evaluation. Journal of the Anatomical Society of India, 65(1), 20–23.
Savalgi, G., Jayanthi, V., Shruthi, J., & Kumar, H. M. (2022). Morphometry of mitral valve leaflet for reconstructive surgery in human cadaveric hearts of South Indian population. International Journal of Anatomy Radiology and Surgery, 11, 9–13.
Somers, P., De Somer, F., Cornelissen, M., Thierens, H., & Van Nooten, G. (2012). Decellularization of heart valve matrices: Search for the ideal balance. Artificial Cells, Blood Substitutes, and Biotechnology, 40(1–2), 151–162.
Sukumaran, R., & Santhakumary, M. T. (2019). Morphology of right atrioventricular valve annulus and leaflets in autopsy specimens. Journal of Evolution of Medical and Dental Sciences, 8(32), 2534–2538.
Sung, S. C., Kim, Y. J., Choi, S. Y., Park, J. E., Kim, K. H., & Kim, W. H. (2008). A study on an effective decellularization technique for a xenograft cardiac valve: The effect of osmotic treatment with hypotonic solution. Journal of Chest Surgery, 41(6), 679–686.
Supadevi, S., Vijaykumar, K., Supasakthi, S., & Manimozhian, N. (2023). Comparative morphological and morphometrical analysis of atrio‐ventricular valves of human and porcine. International Journal of Anatomy and Research, 11(1), 8559–8563.
Syed, O., Walters, N. J., Day, R. M., Kim, H. W., & Knowles, J. C. (2014). Evaluation of decellularization protocols for production of tubular small intestine submucosa scaffolds for use in oesophageal tissue engineering. Acta Biomaterialia, 10(12), 5043–5054.
Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme, A. K., Buxton, A. E., Carson, A. P., Commodore‐Mensah, Y., Elkind, M. S. V., Evenson, K. R., Eze‐Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M., … Martin, S. S. (2022). Heart disease and stroke statistics‐2022 update: A report from the American Heart Association. Circulation, 145(8), e153–e639.
van Steenberghe, M., Schubert, T., Gerelli, S., Bouzin, C., Guiot, Y., Xhema, D., Bollen, X., Abdelhamid, K., & Gianello, P. (2018). Porcine pulmonary valve decellularization with NaOH‐based vs detergent process: Preliminary in vitro and in vivo assessments. Journal of Cardiothoracic Surgery, 13(1), 1–12.
Williams, D. F., Bezuidenhout, D., De Villiers, J., Human, P., & Zilla, P. (2021). Long‐term stability and biocompatibility of pericardial bioprosthetic heart valves. Frontiers in Cardiovascular Medicine, 8, 728577.
World Health Organization. (2021). Cardiovascular diseases (CVDs) [Fact sheet]. https://www.who.int/news‐room/fact‐sheets/detail/cardiovascular‐diseases‐(cvds).
فهرسة مساهمة: Keywords: caprine; decellularization; gross morphology; heart valves; morphometry
تواريخ الأحداث: Date Created: 20240617 Date Completed: 20240617 Latest Revision: 20240617
رمز التحديث: 20240617
DOI: 10.1111/ahe.13075
PMID: 38881030
قاعدة البيانات: MEDLINE