دورية أكاديمية

Sorption and mobility assessment of tembotrione in soils of upper, trans and middle Gangetic plain zones of India.

التفاصيل البيبلوغرافية
العنوان: Sorption and mobility assessment of tembotrione in soils of upper, trans and middle Gangetic plain zones of India.
المؤلفون: Ghoshal D; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Dixit M; Sardar Vallabhbhai Patel University of Agriculture and Technology, Meerut, India., Narayanan N; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Saini P; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Kumar A; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Banerjee T; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Singh N; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India., Gupta S; Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, India.
المصدر: Biomedical chromatography : BMC [Biomed Chromatogr] 2024 Aug; Vol. 38 (8), pp. e5939. Date of Electronic Publication: 2024 Jun 17.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Wiley Country of Publication: England NLM ID: 8610241 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1099-0801 (Electronic) Linking ISSN: 02693879 NLM ISO Abbreviation: Biomed Chromatogr Subsets: MEDLINE
أسماء مطبوعة: Publication: 1990- : Chichester : Wiley
Original Publication: London : Heyden & Son, c1986-1990
مواضيع طبية MeSH: Soil Pollutants*/chemistry , Soil Pollutants*/analysis , Cyclohexanones*/chemistry , Cyclohexanones*/analysis, India ; Adsorption ; Soil/chemistry ; Tandem Mass Spectrometry/methods ; Chromatography, Liquid/methods ; Herbicides/chemistry ; Herbicides/analysis ; Linear Models ; Limit of Detection ; Reproducibility of Results ; Sulfones
مستخلص: The presence of undesired agrochemicals residues in soil and water poses risks to both human health and the environment. The behavior of pesticides in soil depends both on the physico-chemical properties of pesticides and soil type. This study examined the adsorption-desorption and leaching behavior of the maize herbicide tembotrione in soils of the upper (UGPZ), trans (TGPZ) and middle Gangetic plain zones of India. Soil samples were extracted using acetone followed by partitioning with dichloromethane, whereas liquid-liquid extraction using dichloromethane was used for aqueous samples. Residues of tembotrione and its metabolite TCMBA, {2-chloro-4-(methylsulfonyl)-3-[(2,2,2-trifluoroethoxy) methyl] benzoic acid}, were quantified using liquid chromatography-tandem mass spectrometry. The data revealed that tembotrione adsorption decreased with increasing pH and dissolved organic matter but increased with salinity. The maximum adsorption occurred at pH 4, 0.01 m sodium citrate and 4 g/L NaCl, with corresponding Freundlich constants of 1.83, 2.28 and 3.32, respectively. The hysteresis index <1 indicated faster adsorption than desorption. Leaching studies under different flow conditions revealed least mobility in UGPZ soil and high mobility in TGPZ soil, consistent with groundwater ubiquity scores of 4.27 and 4.81, respectively. Soil amendments decreased tembotrione mobility in the order: unamended > wheat straw ash > wheat straw > farm yard manure > compost. The transformation of tembotrione to TCMBA and its mobility in soil columns were also assessed.
(© 2024 John Wiley & Sons Ltd.)
References: Barriuso, E., Andrades, M. S., Benoit, P., & Houot, S. (2011). Pesticide desorption from soils facilitated by dissolved organic matter coming from composts: Experimental data and modelling approach. Biogeochemistry, 106, 117–133. https://doi.org/10.1007/s10533-010-9481-y.
Bhuvaneshwari, S., Hettiarachchi, H., & Meegoda, J. N. (2019). Crop residue burning in India: Policy challenges and potential solutions. International Journal of Environmental Research and Public Health, 16(5), 832–850. https://doi.org/10.3390/ijerph16050832.
Bontempo, A. F., Carneiro, G. D., Guimarães, F. A., Dos Reis, M. R., Silva, D. V., Rocha, B. H., Souza, M. F., & Sediyama, T. (2016). Residual tembotrione and atrazine in carrot. Journal of Environmental Science and Health, Part B, 51(7), 465–468. https://doi.org/10.1080/03601234.2016.1159458.
Bryer, P. J. (2021). Surveillance for current‐use pesticides in Maine's freshwater resources along a population gradient. In Results of 2019 environmental sampling project. Maine Board of Pesticides Control. Department of Agriculture, Conservation & Forestry. https://www.maine.gov/dacf/php/pesticides/documents2/bd&#95;mtgs/Nov21/6-Cities%20Report%20Draft.pdf accessed on 4 January 2024)).
Celis, R., Barriuso, E., & Houot, S. (1998). Sorption and desorption of atrazine by sludge‐amended soil: Dissolved organic matter effects. Journal of Environmental Quality, 27(6), 1348–1356. https://doi.org/10.2134/jeq1998.00472425002700060011x.
Conde‐Cid, M., Fernández‐Calviño, D., Nóvoa‐Muñoz, J. C., Núñez‐Delgado, A., Fernández‐Sanjurjo, M. J., Arias‐Estévez, M., & Álvarez‐Rodríguez, E. (2019). Experimental data and model prediction of tetracycline adsorption and desorption in agricultural soils. Environmental Research, 177, 108607. https://doi.org/10.1016/j.envres.2019.108607.
Correia, N. M., Carbonari, C. A., & Velini, E. D. (2020). Detection of herbicides in water bodies of the Samambaia River sub‐basin in the Federal District and eastern Goiás. Journal of Environmental Science and Health, Part b, 55(6), 574–582. https://doi.org/10.1080/03601234.2020.1742000.
Cox, L., Celis, R., Hermosin, M. C., Cornejo, J., Zsolnay, A., & Zeller, K. (2000). Effect of organic amendments on herbicide sorption as related to the nature of the dissolved organic matter. Environmental Science & Technology, 34(21), 4600–4605. https://doi.org/10.1021/es0000293.
Dong, X., Chen, Z., Chu, Y., Tong, Z., Gao, T., Duan, J., & Wang, M. (2023). Degradation, adsorption, and bioaccumulation of novel triketone HPPD herbicide tembotrione. Environmental Science and Pollution Research, 30, 1–9. https://doi.org/10.1007/s11356-023-27501-4.
Dumas, E., Giraudo, M., Goujon, E., Halma, M., Knhili, E., Stauffert, M., Batisson, I., Besse‐Hoggan, P., Bohatier, J., Bouchard, P., & Celle‐Jeanton, H. (2017). Fate and ecotoxicological impact of new generation herbicides from the triketone family: An overview to assess the environmental risks. Journal of Hazardous Materials, 325, 136–156. https://doi.org/10.1016/j.jhazmat.2016.11.059.
ElShafei, G. S., Nasr, I. N., Hassan, A. S., & Mohammad, S. G. M. (2009). Kinetics and thermodynamics of adsorption of cadusafos on soils. Journal of Hazardous Materials, 172(2–3), 1608–1616. https://doi.org/10.1016/j.jhazmat.2009.08.034.
Faria, A. T., Fialho, C. A., Souza, M. F., Freitas, N. M., & Silva, A. A. (2019). Sorption and desorption of tembotrione and its metabolite AE 1417268 in soils with different attributes. Planta Daninha, 37, e019168791. https://doi.org/10.1590/S0100-83582019370100096.
Faria, A. T., Silva, E. M. G., Pereira, G. A. M., Souza, M. F., Silva, A. A., & Reis, M. R. (2018). Selection of indicator species of the tembotrione sorption in soils with different attributes. Planta Daninha, 36, e018175076. https://doi.org/10.1590/S0100-83582018360100128.
Fingler, S., Mendaš, G., Dvoršćak, M., Stipičević, S., Vasilić, Ž., & Drevenkar, V. (2021). Seasonal distribution of multiclass pesticide residues in the surface waters of Northwest Croatia. Archives of Industrial Hygiene and Toxicology, 72(4), 280–288. https://doi.org/10.2478/aiht-2021-72-3598.
Flores, C., Morgante, V., González, M., Navia, R., & Seeger, M. (2009). Adsorption studies of the herbicide simazine in agricultural soils of the Aconcagua valley, Central Chile. Chemosphere, 74(11), 1544–1549. https://doi.org/10.1016/j.chemosphere.2008.10.060.
Flores‐Céspedes, F., González‐Pradas, E., Fernández‐Pérez, M., Villafranca‐Sanchez, M., Socias‐Viciana, M., & Ureña‐Amate, M. D. (2002). Effects of dissolved organic carbon on sorption and mobility of imidacloprid in soil. Journal of Environmental Quality, 31(3), 880–888. https://doi.org/10.2134/jeq2002.8800.
Gustafson, D. I. (1989). Groundwater ubiquity score: A simple method for assessing pesticide leachability. Environmental Toxicology and Chemistry: an International Journal, 8(4), 339–357. https://doi.org/10.1002/etc.5620080411.
Hall, K. E., Ray, C., Ki, S. J., Spokas, K. A., & Koskinen, W. C. (2015). Pesticide sorption and leaching potential on three Hawaiian soils. Journal of Environmental Management, 159, 227–234. https://doi.org/10.1016/j.jenvman.2015.04.046.
Kaur, P., Kaur, P., Singh, K., & Kaur, M. (2016). Adsorption and desorption characteristics of pretilachlor in three soils of Punjab. Water, Air, and Soil Pollution, 227, 376. https://doi.org/10.1007/s11270-016-3074-x.
Kerle, E. A., Jenkins, J. J., & Vogue, P. A. (2007). Understanding pesticide persistence and mobility for groundwater and surface water protection (Vol. 83) (pp. 992–994). Extension Service, Oregon State University.
Kodešová, R., Kočárek, M., Kodeš, V., Drábek, O., Kozák, J., & Hejtmánková, K. (2011). Pesticide adsorption in relation to soil properties and soil type distribution in regional scale. Journal of Hazardous Materials, 186(1), 540–550. https://doi.org/10.1016/j.jhazmat.2010.11.040.
Krishna, K. R., & Philip, L. (2008). Adsorption and desorption characteristics of lindane, carbofuran and methyl parathion on various Indian soils. Journal of Hazardous Material, 160, 559–567. https://doi.org/10.1016/j.jhazmat.2008.03.107.
Kumaraswamy, K. (2022). Precipitation trend analysis of India ‐ a climate change study. Indian Journal of Science and Technology, 15(8), 351–356. https://doi.org/10.17485/IJST/v15i8.2040.
Lee, D. Y., Farmer, W. J., & Aochi, Y. (1990). Sorption of napropamide on clay and soil in the presence of dissolved organic matter. American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, 19, 567–573. https://doi.org/10.2134/jeq1990.00472425001900030035x.
Long, F., Zhu, A., Shi, H., Sheng, J., & Zhao, Z. (2015). Adsorption kinetics of pesticide in soil assessed by optofluidics‐based biosensing platform. Chemosphere, 120, 615–620. https://doi.org/10.1016/j.chemosphere.2014.09.072.
Means, J. C. (1995). Influence of salinity upon sediment‐water partitioning of aromatic hydrocarbons. Marine Chemistry, 51(1), 3–16. https://doi.org/10.1016/0304-4203(95)00043-Q.
Narayanan, N., Gupta, S., Gajbhiye, V. T., & Manjaiah, K. M. (2017). Optimization of isotherm models for pesticide sorption on biopolymer‐nanoclay composite by error analysis. Chemosphere, 173, 502–511. https://doi.org/10.1016/j.chemosphere.2017.01.084.
Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. Methods of soil analysis: Part 3. Chemical Methods, 5, 961–1010.
Oh, S., Shin, W. S., & Kim, H. T. (2016). Effects of pH, dissolved organic matter, and salinity on ibuprofen sorption on sediment. Environmental Science and Pollution Research, 23, 22882–22889. https://doi.org/10.1007/s11356-016-7503-6.
Oh, S., Wang, Q., Shin, W. S., & Song, D. I. (2013). Effect of salting out on the desorption‐resistance of polycyclic aromatic hydrocarbons (PAHs) in coastal sediment. Chemical Engineering Journal, 225, 84–92. https://doi.org/10.1016/j.cej.2013.03.069.
Palma, P., Catarino, A., Silva, E., & Alvarenga, P. (2023). Chemical and ecotoxicological assessment of agricultural drainage water from a maize crop area: A case study in the Tejo Basin (Portugal). Water, 15, 2434. https://doi.org/10.3390/w15132434.
Pinke, G., Toth, K., Kovacs, A. J., Milics, G., Varga, Z., Blazsek, K., Gal, K. E., & Botta‐Dukat, Z. (2014). Use of mesotrione and tembotrione herbicides for post‐emergence weed control in alkaloid poppy (Papaversomniferum). International Journal of Pest Management, 60(3), 187–195. https://doi.org/10.1080/09670874.2014.953622.
Rani, N., Duhan, A., & Tomar, D. (2020). Ultimate fate of herbicide tembotrione and its metabolite TCMBA in soil. Ecotoxicology and Environmental Safety, 203, 111023. https://doi.org/10.1016/j.ecoenv.2020.111023.
Reis, M. R., Aquino, L. Â., Melo, C. A. D., Silva, D. V., & Dias, R. C. (2018). Carryover of tembotrione and atrazine affects yield and quality of potato tubers. Acta Scientiarum. Agronomy, 40, e35355. https://doi.org/10.4025/actasciagron.v40i1.35355.
Singh, A. K., & Cameotra, S. S. (2013). Adsorption and desorption behavior of chlorotriazine herbicides in the agricultural soils. Journal of Petroleum and Environmental Biotechnology, 4(154), 2.
Singh, D., Chhonkar, P. K., & Pandey, R. N. (1999). Soil plant water analysis: A methods manual (pp. 80–82). Indian Agricultural Research Institute.
Tang, Z. W., Zhang, W., & Chen, Y. M. (2009). Adsorption and desorption characteristics of monosulfuron in Chinese soils. Journal of Hazardous Material, 166, 1351–1356. https://doi.org/10.1016/j.jhazmat.2008.12.052.
Turner, A. (2003). Salting out of chemicals in estuaries: Implications for contaminant partitioning and modelling. Science of the Total Environment, 314, 599–612. https://doi.org/10.1016/S0048-9697(03)00076-7.
You, C., Jia, C., & Pan, G. (2010). Effect of salinity and sediment characteristics on the sorption and desorption of perfluorooctane sulfonate at sediment‐water interface. Environmental Pollution, 158(5), 1343–1347. https://doi.org/10.1016/j.envpol.2010.01.009.
معلومات مُعتمدة: ICAR-IARI (JRF/SRF)
فهرسة مساهمة: Keywords: GUS; adsorption–desorption; hysteresis index; leaching; tembotrione
المشرفين على المادة: 0 (Soil Pollutants)
0 (Cyclohexanones)
WA5UZ202KS (tembotrione)
0 (Soil)
0 (Herbicides)
0 (Sulfones)
تواريخ الأحداث: Date Created: 20240617 Date Completed: 20240712 Latest Revision: 20240712
رمز التحديث: 20240712
DOI: 10.1002/bmc.5939
PMID: 38886169
قاعدة البيانات: MEDLINE
الوصف
تدمد:1099-0801
DOI:10.1002/bmc.5939