دورية أكاديمية

Direct and acute effects of advanced glycation end products on proteostasis in isolated mouse skeletal muscle.

التفاصيل البيبلوغرافية
العنوان: Direct and acute effects of advanced glycation end products on proteostasis in isolated mouse skeletal muscle.
المؤلفون: Zhao H; Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.; Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan., Iyama R; Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.; Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan., Kurogi E; Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan., Hayashi T; Laboratory of Sports and Exercise Medicine, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan., Egawa T; Laboratory of Molecular Exercise Adaptation Sciences, Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
المصدر: Physiological reports [Physiol Rep] 2024 Jun; Vol. 12 (12), pp. e16121.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society Country of Publication: United States NLM ID: 101607800 Publication Model: Print Cited Medium: Internet ISSN: 2051-817X (Electronic) Linking ISSN: 2051817X NLM ISO Abbreviation: Physiol Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: [Malden MA] : published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society, 2013-
مواضيع طبية MeSH: Muscle, Skeletal*/metabolism , Muscle, Skeletal*/drug effects , Glycation End Products, Advanced*/metabolism , Proteostasis* , Endoplasmic Reticulum Stress*/drug effects, Animals ; Mice ; Male ; Receptor for Advanced Glycation End Products/metabolism ; Receptor for Advanced Glycation End Products/genetics ; Signal Transduction ; Autophagy ; Mice, Inbred C57BL ; TOR Serine-Threonine Kinases/metabolism
مستخلص: Advanced glycation end products (AGEs) have been implicated in several skeletal muscle dysfunctions. However, whether the adverse effects of AGEs on skeletal muscle are because of their direct action on the skeletal muscle tissue is unclear. Therefore, this study aimed to investigate the direct and acute effects of AGEs on skeletal muscle using an isolated mouse skeletal muscle to eliminate several confounders derived from other organs. The results showed that the incubation of isolated mouse skeletal muscle with AGEs (1 mg/mL) for 2-6 h suppressed protein synthesis and the mechanistic target of rapamycin signaling pathway. Furthermore, AGEs showed potential inhibitory effects on protein degradation pathways, including autophagy and the ubiquitin-proteasome system. Additionally, AGEs stimulated endoplasmic reticulum (ER) stress by modulating the activating transcription factor 6, PKR-like ER kinase, C/EBP homologous protein, and altered inflammatory cytokine expression. AGEs also stimulated receptor for AGEs (RAGE)-associated signaling molecules, including mitogen-activated protein kinases. These findings suggest that AGEs have direct and acute effect on skeletal muscle and disturb proteostasis by modulating intracellular pathways such as RAGE signaling, protein synthesis, proteolysis, ER stress, and inflammatory cytokines.
(© 2024 The Author(s). Physiological Reports published by Wiley Periodicals LLC on behalf of The Physiological Society and the American Physiological Society.)
References: Adamopoulos, C., Farmaki, E., Spilioti, E., Kiaris, H., Piperi, C., & Papavassiliou, A. G. (2014). Advanced glycation end‐products induce endoplasmic reticulum stress in human aortic endothelial cells. Clinical Chemistry and Laboratory Medicine, 52, 151–160.
Akhter, F., Chen, D., Akhter, A., Sosunov, A. A., Chen, A., Mckhann, G. M., Yan, S. F., & Yan, S. S. (2020). High dietary advanced glycation end products impair mitochondrial and cognitive function. Journal of Alzheimer's Disease, 76, 165–178.
Barbieri, E., & Sestili, P. (2012). Reactive oxygen species in skeletal muscle signaling. Journal of Signal Transduction, 2012, 982794.
Carnio, S., Loverso, F., Baraibar, M. A., Longa, E., Khan, M. M., Maffei, M., Reischl, M., Canepari, M., Loefler, S., Kern, H., Blaauw, B., Friguet, B., Bottinelli, R., Rudolf, R., & Sandri, M. (2014). Autophagy impairment in muscle induces neuromuscular junction degeneration and precocious aging. Cell Reports, 8, 1509–1521.
Chiu, C. Y., Yang, R. S., Sheu, M. L., Chan, D. C., Yang, T. H., Tsai, K. S., Chiang, C. K., & Liu, S. H. (2016). Advanced glycation end‐products induce skeletal muscle atrophy and dysfunction in diabetic mice via a RAGE‐mediated, AMPK‐down‐regulated, Akt pathway. The Journal of Pathology, 238, 470–482.
Daussin, F. N., Boulanger, E., & Lancel, S. (2021). From mitochondria to sarcopenia: Role of inflammaging and RAGE‐ligand axis implication. Experimental Gerontology, 146, 111247.
Du, H., Ma, Y., Wang, X., Zhang, Y., Zhu, L., Shi, S., Pan, S., & Liu, Z. (2023). Advanced glycation end products induce skeletal muscle atrophy and insulin resistance via activating ROS‐mediated ER stress PERK/FOXO1 signaling. American Journal of Physiology. Endocrinology and Metabolism, 324, E279–E287.
Egawa, T., Kido, K., Yokokawa, T., Fujibayashi, M., Goto, K., & Hayashi, T. (2020). Involvement of receptor for advanced glycation end products in microgravity‐induced skeletal muscle atrophy in mice. Acta Astronautica, 176, 332–340.
Egawa, T., Ogawa, T., Yokokawa, T., Kido, K., Goto, K., & Hayashi, T. (2022). Methylglyoxal reduces molecular responsiveness to 4 weeks of endurance exercise in mouse plantaris muscle. Journal of Applied Physiology, 132, 477–488.
Egawa, T., Ogawa, T., Yokokawa, T., Kido, K., Iyama, R., Zhao, H., Kurogi, E., Goto, K., & Hayashi, T. (2024). Glycative stress inhibits hypertrophy and impairs cell membrane integrity in overloaded mouse skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 15, 883–896.
Egawa, T., Ohno, Y., Yokoyama, S., Goto, A., Ito, R., Hayashi, T., & Goto, K. (2018). The effect of advanced glycation end products on cellular signaling molecules in skeletal muscle. The Journal of Physical Fitness and Sports Medicine, 7, 229–238.
Egawa, T., Ohno, Y., Yokoyama, S., Yokokawa, T., Tsuda, S., Goto, K., & Hayashi, T. (2019). The protective effect of Brazilian propolis against glycation stress in mouse skeletal muscle. Food, 8, 439.
Egawa, T., Tsuda, S., Goto, A., Ohno, Y., Yokoyama, S., Goto, K., & Hayashi, T. (2017). Potential involvement of dietary advanced glycation end products in impairment of skeletal muscle growth and muscle contractile function in mice. The British Journal of Nutrition, 117, 21–29.
Elvira, R., Cha, S. J., Noh, G. M., Kim, K., & Han, J. (2020). PERK‐mediated eIF2 alpha phosphorylation contributes to the protection of dopaminergic neurons from chronic heat stress in drosophila. International Journal of Molecular Sciences, 21, 845.
Endo, M., Mori, M., Akira, S., & Gotoh, T. (2006). C/EBP homologous protein (CHOP) is crucial for the induction of caspase‐11 and the pathogenesis of lipopolysaccharide‐induced inflammation. Journal of Immunology, 176, 6245–6253.
Fiacco, E., Castagnetti, F., Bianconi, V., Madaro, L., De Bardi, M., Nazio, F., D'amico, A., Bertini, E., Cecconi, F., Puri, P. L., & Latella, L. (2016). Autophagy regulates satellite cell ability to regenerate normal and dystrophic muscles. Cell Death and Differentiation, 23, 1839–1849.
Fujii, N., Hirshman, M. F., Kane, E. M., Ho, R. C., Peter, L. E., Seifert, M. M., & Goodyear, L. J. (2005). AMP‐activated protein kinase alpha2 activity is not essential for contraction‐ and hyperosmolarity‐induced glucose transport in skeletal muscle. The Journal of Biological Chemistry, 280, 39033–39041.
Gallot, Y. S., Bohnert, K. R., Straughn, A. R., Xiong, G. Y., Hindi, S. M., & Kumar, A. (2019). PERK regulates skeletal muscle mass and contractile function in adult mice. FASEB Journal, 33, 1946–1962.
Gingras, A. C., Raught, B., Gygi, S. P., Niedzwiecka, A., Miron, M., Burley, S. K., Polakiewicz, R. D., Wyslouch‐Cieszynska, A., Aebersold, R., & Sonenberg, N. (2001). Hierarchical phosphorylation of the translation inhibitor 4E‐BP1. Genes & Development, 15, 2852–2864.
Glembotski, C. C., Arrieta, A., Blackwood, E. A., & Stauffer, W. T. (2020). ATF6 as a nodal regulator of proteostasis in the heart. Frontiers in Physiology, 11, 527299.
Haddad, F., Zaldivar, F., Cooper, D. M., & Adams, G. R. (2005). IL‐6‐induced skeletal muscle atrophy. Journal of Applied Physiology (1985), 98, 911–917.
Hattori, T., Ohoka, N., Hayashi, H., & Onozaki, K. (2003). C/EBP homologous protein (CHOP) up‐regulates IL‐6 transcription by trapping negative regulating NF‐IL6 isoform. FEBS Letters, 541, 33–39.
He, S., Hu, Q., Xu, X., Niu, Y., Chen, Y., Lu, Y., Su, Q., & Qin, L. (2020). Advanced glycation end products enhance M1 macrophage polarization by activating the MAPK pathway. Biochemical and Biophysical Research Communications, 525, 334–340.
Hetz, C. (2012). The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews. Molecular Cell Biology, 13, 89–102.
Hussain, S. N. A., Sandri, M., & Gouspillou, G. (2021). Editorial: Autophagy and mitophagy in skeletal muscle health and disease. Frontiers in Physiology, 12, 703458.
Khalid, M., Petroianu, G., & Adem, A. (2022). Advanced glycation end products and diabetes mellitus: Mechanisms and perspectives. Biomolecules, 12, 542.
Kim, T. J., Pyun, D. H., Kim, M. J., Jeong, J. H., Abd El‐Aty, A. M., & Jung, T. W. (2022). Ginsenoside compound K ameliorates palmitate‐induced atrophy in C2C12 myotubes via promyogenic effects and AMPK/autophagy‐mediated suppression of endoplasmic reticulum stress. Journal of Ginseng Research, 46, 444–453.
Li, Y. M., Guo, Y. S., Tang, J., Jiang, J. L., & Chen, Z. N. (2014). New insights into the roles of CHOP‐induced apoptosis in ER stress. Acta Biochimica et Biophysica Sinica, 46, 629–640.
Mahali, S. K., Verma, N., & Manna, S. K. (2014). Advanced glycation end products induce lipogenesis: Regulation by natural xanthone through inhibition of ERK and NF‐kappaB. Journal of Cellular Physiology, 229, 1972–1980.
Mascher, H., Ekblom, B., Rooyackers, O., & Blomstrand, E. (2011). Enhanced rates of muscle protein synthesis and elevated mTOR signalling following endurance exercise in human subjects. Acta Physiologica (Oxford, England), 202, 175–184.
Masiero, E., Agatea, L., Mammucari, C., Blaauw, B., Loro, E., Komatsu, M., Metzger, D., Reggiani, C., Schiaffino, S., & Sandri, M. (2009). Autophagy is required to maintain muscle mass. Cell Metabolism, 10, 507–515.
Mitchell, W. K., Williams, J., Atherton, P., Larvin, M., Lund, J., & Narici, M. (2012). Sarcopenia, dynapenia, and the impact of advancing age on human skeletal muscle size and strength; a quantitative review. Frontiers in Physiology, 3, 260.
Momma, H., Niu, K., Kobayashi, Y., Guan, L., Sato, M., Guo, H., Chujo, M., Otomo, A., Yufei, C., Tadaura, H., Saito, T., Mori, T., Miyata, T., & Nagatomi, R. (2011). Skin advanced glycation end product accumulation and muscle strength among adult men. European Journal of Applied Physiology, 111, 1545–1552.
Muthyalaiah, Y. S., Jonnalagadda, B., John, C. M., & Arockiasamy, S. (2021). Impact of advanced glycation end products (AGEs) and its receptor (RAGE) on cancer metabolic signaling pathways and its progression. Glycoconjugate Journal, 38, 717–734.
Nakao, R., Abe, T., Yamamoto, S., & Oishi, K. (2019). Ketogenic diet induces skeletal muscle atrophy via reducing muscle protein synthesis and possibly activating proteolysis in mice. Scientific Reports, 9, 19652.
Nie, C. Z. P., Li, Y., Qian, H. F., Ying, H., & Wang, L. (2022). Advanced glycation end products in food and their effects on intestinal tract. Critical Reviews in Food Science and Nutrition, 62, 3103–3115.
Noh, Y. H., Kim, K. Y., Shim, M. S., Choi, S. H., Choi, S., Ellisman, M. H., Weinreb, R. N., Perkins, G. A., & Ju, W. K. (2013). Inhibition of oxidative stress by coenzyme Q10 increases mitochondrial mass and improves bioenergetic function in optic nerve head astrocytes. Cell Death & Disease, 4, e820.
Olson, L. C., Redden, J. T., Schwartz, Z., Cohen, D. J., & Mcclure, M. J. (2021). Advanced glycation end‐products in skeletal muscle aging. Bioengineering (Basel), 8, 168.
Paez, H. G., Pitzer, C. R., & Alway, S. E. (2023). Age‐related dysfunction in proteostasis and cellular quality control in the development of sarcopenia. Cells, 12, 249.
Pinto, D. C., Silva, K. S., Michalani, M. L., Yonamine, C. Y., Esteves, J. V., Fabre, N. T., Thieme, K., Catanozi, S., Okamoto, M. M., Seraphim, P. M., Correa‐Giannella, M. L., Passarelli, M., & Machado, U. F. (2018). Advanced glycation end products‐induced insulin resistance involves repression of skeletal muscle GLUT4 expression. Scientific Reports, 8, 8109.
Riuzzi, F., Sorci, G., Sagheddu, R., Chiappalupi, S., Salvadori, L., & Donato, R. (2018). RAGE in the pathophysiology of skeletal muscle. Journal of Cachexia, Sarcopenia and Muscle, 9, 1213–1234.
Schmidt, E. K., Clavarino, G., Ceppi, M., & Pierre, P. (2009). SUnset, a nonradioactive method to monitor protein synthesis. Nature Methods, 6, 275–277.
Suzuki, S., Hayashi, T., & Egawa, T. (2023). Advanced glycation end products inhibit proliferation and primary cilia formation of myoblasts through receptor for advanced glycation end products pathway. Biochemical and Biophysical Research Communications, 684, 149141.
Takeuchi, M., & Yamagishi, S. (2008). Possible involvement of advanced glycation end‐products (AGEs) in the pathogenesis of Alzheimer's disease. Current Pharmaceutical Design, 14, 973–978.
Uribarri, J., Cai, W., Peppa, M., Goodman, S., Ferrucci, L., Striker, G., & Vlassara, H. (2007). Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62, 427–433.
Velayoudom‐Cephise, F. L., Cano‐Sanchez, M., Bercion, S., Tessier, F., Yu, Y., Boulanger, E., & Neviere, R. (2020). Receptor for advanced glycation end products modulates oxidative stress and mitochondrial function in the soleus muscle of mice fed a high‐fat diet. Applied Physiology, Nutrition, and Metabolism, 45, 1107–1117.
Vistoli, G., De Maddis, D., Cipak, A., Zarkovic, N., Carini, M., & Aldini, G. (2013). Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radical Research, 47(Suppl 1), 3–27.
Wang, X., Li, W., Williams, M., Terada, N., Alessi, D. R., & Proud, C. G. (2001). Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. The EMBO Journal, 20, 4370–4379.
Wilkinson, D. J., Piasecki, M., & Atherton, P. J. (2018). The age‐related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Research Reviews, 47, 123–132.
Yu, Z. G., Wang, A. M., Adachi, H., Katsuno, M., Sobue, G., Yue, Z. Y., Robins, D. M., & Lieberman, A. P. (2011). Macroautophagy is regulated by the UPR‐mediator CHOP and accentuates the phenotype of SBMA mice. PLoS Genetics, 7, e1002321.
Zheng, Y., Dai, H., Chen, R., Zhong, Y., Zhou, C., Wang, Y., Zhan, C., & Luo, J. (2023). Endoplasmic reticulum stress promotes sepsis‐induced muscle atrophy via activation of STAT3 and Smad3. Journal of Cellular Physiology, 238, 582–596.
معلومات مُعتمدة: 18H03148 Japan Society for the Promotion of Science London (JSPS); 21H03319 Japan Society for the Promotion of Science London (JSPS); 22K18413 Japan Society for the Promotion of Science London (JSPS); 22K19750 Japan Society for the Promotion of Science London (JSPS); 23H03283 Japan Society for the Promotion of Science London (JSPS); Nakatomi Foundation; Research Institute for Production Development; Kyoto University Foundation (KUF); ISHIZUE 2023 of Kyoto University
فهرسة مساهمة: Keywords: AGEs; ER stress; protein synthesis; skeletal muscle
المشرفين على المادة: 0 (Glycation End Products, Advanced)
0 (Receptor for Advanced Glycation End Products)
EC 2.7.11.1 (TOR Serine-Threonine Kinases)
تواريخ الأحداث: Date Created: 20240619 Date Completed: 20240619 Latest Revision: 20240720
رمز التحديث: 20240721
مُعرف محوري في PubMed: PMC11186708
DOI: 10.14814/phy2.16121
PMID: 38898369
قاعدة البيانات: MEDLINE