دورية أكاديمية

The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma.

التفاصيل البيبلوغرافية
العنوان: The Implications of Brain-Derived Neurotrophic Factor in the Biological Activities of Platelet-Rich Plasma.
المؤلفون: Malange KF; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., de Souza DM; Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Rua Tessália Vieira de Camargo, 126, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-887, Brazil.; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil., Lemes JBP; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Fagundes CC; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Oliveira ALL; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Pagliusi MO; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Carvalho NS; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Nishijima CM; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., da Silva CRR; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil., Consonni SR; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Monteiro Lobato, 255, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, CEP 13083-862, Brazil., Sartori CR; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Tambeli CH; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil., Parada CA; Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Rua Carl Von Linnaeus, Cidade Universitária Zeferino Vaz, Campinas, São Paulo, 13083-864, Brazil. caparada@unicamp.br.
المصدر: Inflammation [Inflammation] 2024 Jun 21. Date of Electronic Publication: 2024 Jun 21.
Publication Model: Ahead of Print
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Kluwer Academic/Plenum Publishers Country of Publication: United States NLM ID: 7600105 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2576 (Electronic) Linking ISSN: 03603997 NLM ISO Abbreviation: Inflammation Subsets: MEDLINE
أسماء مطبوعة: Publication: 1999- : New York, NY : Kluwer Academic/Plenum Publishers
Original Publication: New York, Plenum Press.
مستخلص: Platelet-rich plasma (PRP) is a biological blood-derived therapeutic obtained from whole blood that contains higher levels of platelets. PRP has been primarily used to mitigate joint degeneration and chronic pain in osteoarthritis (OA). This clinical applicability is based mechanistically on the release of several proteins by platelets that can restore joint homeostasis. Platelets are the primary source of brain-derived neurotrophic factor (BDNF) outside the central nervous system. Interestingly, BDNF and PRP share key biological activities with clinical applicability for OA management, such as anti-inflammatory, anti-apoptotic, and antioxidant. However, the role of BDNF in PRP therapeutic activities is still unknown. Thus, this work aimed to investigate the implications of BDNF in therapeutic outcomes provided by PRP therapy in vitro and in-vivo, using the MIA-OA animal model in male Wistar rats. Initially, the PRP was characterized, obtaining a leukocyte-poor-platelet-rich plasma (LP-PRP). Our assays indicated that platelets activated by Calcium release BDNF, and suppression of M1 macrophage polarization induced by LP-PRP depends on BDNF full-length receptor, Tropomyosin Kinase-B (TrkB). OA animals were given LP-PRP intra-articular and showed functional recovery in gait, joint pain, inflammation, and tissue damage caused by MIA. Immunohistochemistry for activating transcriptional factor-3 (ATF-3) on L4/L5 dorsal root ganglia showed the LP-PRP decreased the nerve injury induced by MIA. All these LP-PRP therapeutic activities were reversed in the presence of TrkB receptor antagonist. Our results suggest that the therapeutic effects of LP-PRP in alleviating OA symptoms in rats depend on BDNF/TrkB activity.
(© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
References: Suri, Pradeep, David C. Morgenroth, and David J. Hunter. 2012. Epidemiology of osteoarthritis and associated comorbidities. PM&R 4: S10–S19. https://doi.org/10.1016/j.pmrj.2012.01.007 . (Elsevier Inc.). (PMID: 10.1016/j.pmrj.2012.01.007)
Wallace, Ian J., Steven Worthington, David T. Felson, Robert D. Jurmain, Kimberly T. Wren, Heli Maijanen, Robert J. Woods, and Daniel E. Lieberman. 2017. Knee osteoarthritis has doubled in prevalence since the mid-20th century. Proceedings of the National Academy of Sciences 114: 201703856. https://doi.org/10.1073/pnas.1703856114 . (PMID: 10.1073/pnas.1703856114)
Hunter, David J., and Sita Bierma-Zeinstra. 2019. Osteoarthritis. The Lancet 393: 1745–1759. https://doi.org/10.1016/S0140-6736(19)30417-9 . (PMID: 10.1016/S0140-6736(19)30417-9)
Thakur, Matthew, Anthony H. Dickenson, and Ralf Baron. 2014. Osteoarthritis pain: Nociceptive or neuropathic? Nature Reviews Rheumatology 10: 374–380. Nature Publishing Group. https://doi.org/10.1038/nrrheum.2014.47 .
Thakur, M., J. M. Dawes, and S. B. McMahon. 2013. Genomics of pain in osteoarthritis. Osteoarthritis and Cartilage 21: 1374–1382. Elsevier. https://doi.org/10.1016/j.joca.2013.06.010 .
Martel-Pelletier, Johanne, Andrew J. Barr, Flavia M. Cicuttini, Philip G. Conaghan, Cyrus Cooper, Mary B. Goldring, Steven R. Goldring, Graeme Jones, Andrew J. Teichtahl, and Jean-Pierre. Pelletier. 2016. Osteoarthritis. Nature Reviews Disease Primers 2: 16072. https://doi.org/10.1038/nrdp.2016.72 . (PMID: 10.1038/nrdp.2016.7227734845)
Andia, Isabel, and Nicola Maffulli. 2013. Platelet-rich plasma for managing pain and inflammation in osteoarthritis. Nature Reviews Rheumatology 9: 721–730. Nature Publishing Group. https://doi.org/10.1038/nrrheum.2013.141 .
Andia, Isabel, and Nicola Maffulli. 2019. Blood-derived products for tissue repair/regeneration. MDPI. https://doi.org/10.3390/books978-3-03921-861-5 . (PMID: 10.3390/books978-3-03921-861-5)
Bansal, Himanshu, Jerry Leon, Jeremy L. Pont, David A. Wilson, Anupama Bansal, Diwaker Agarwal, and Iustin Preoteasa. 2021. Platelet-rich plasma (PRP) in osteoarthritis (OA) knee: Correct dose critical for long term clinical efficacy. Scientific Reports 11: 3971. https://doi.org/10.1038/s41598-021-83025-2 . (PMID: 10.1038/s41598-021-83025-2335975867889864)
Simental-Mendía, Mario, Daniela Ortega-Mata, and Carlos A. Acosta-Olivo. 2023. Platelet-rich plasma for knee osteoarthritis: What does the evidence say? Drugs & Aging 40: 585–603. https://doi.org/10.1007/s40266-023-01040-6 . (PMID: 10.1007/s40266-023-01040-6)
Chacón-Fernández, Pedro, Katharina Säuberli, Maria Colzani, Thomas Moreau, Cedric Ghevaert, and Yves Alain Barde. 2016. Brain-derived neurotrophic factor in megakaryocytes. Journal of Biological Chemistry 291: 9872–9881. https://doi.org/10.1074/jbc.M116.720029 . (PMID: 10.1074/jbc.M116.720029270063954858990)
Yamamoto, Hirotaka, and M.E. Gurney. 1990. Human platelets contain brain-derived neurotrophic factor. The Journal of Neuroscience 10: 3469–3478. https://doi.org/10.1523/JNEUROSCI.10-11-03469.1990 . (PMID: 10.1523/JNEUROSCI.10-11-03469.199022309386570101)
Burnouf, Thierry, Ya.-Po. Kuo, David Blum, Sylvie Burnouf, and Su. Chen-Yao. 2012. Human platelet concentrates: A source of solvent/detergent-treated highly enriched brain-derived neurotrophic factor. Transfusion 52: 1721–1728. https://doi.org/10.1111/j.1537-2995.2011.03494.x . (PMID: 10.1111/j.1537-2995.2011.03494.x22211513)
Kilian, Olaf, Sonja Hartmann, Nicole Dongowski, Srikanth Karnati, Eveline Baumgart-Vogt, Frauke V. Härtel, Thomas Noll, Reinhard Schnettler, and Katrin Susanne Lips. 2014. BDNF and its TrkB receptor in human fracture healing. Annals of Anatomy - Anatomischer Anzeiger 196: 286–295. Elsevier GmbH. https://doi.org/10.1016/j.aanat.2014.06.001 .
Calabrese, Francesca, Andrea C. Rossetti, Giorgio Racagni, Peter Gass, Marco A. Riva, and Raffaella Molteni. 2014. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Frontiers in Cellular Neuroscience 8: 1–7. https://doi.org/10.3389/fncel.2014.00430 . (PMID: 10.3389/fncel.2014.00430)
Sariola, H. 2001. The neurotrophic factors in non-neuronal tissues. Cellular and Molecular Life Sciences 58.
Hong, Jun Hee, Hyoung Min Park, Kyung Hee Byun, Bong Hee Lee, Woong Chol Kang, and Goo Bo Jeong. 2014. BDNF expression of macrophages and angiogenesis after myocardial infarction. International Journal of Cardiology 176: 1405–1408. Elsevier Ireland Ltd. https://doi.org/10.1016/j.ijcard.2014.08.019 .
Simão, Adriano Prado, Vanessa Amaral Mendonça, Tássio Málber De Oliveira. Almeida, Sérgio Antunes. Santos, Wellington Fabiano Gomes, Candido Celso Coimbra, and Ana Cristina Rodrigues. Lacerda. 2014. Involvement of BDNF in knee osteoarthritis: The relationship with inflammation and clinical parameters. Rheumatology International 34: 1153–1157. https://doi.org/10.1007/s00296-013-2943-5 . (PMID: 10.1007/s00296-013-2943-524399456)
Hutchison, Michele R. 2012. BDNF alters ERK/p38 MAPK activity ratios to promote differentiation in growth plate chondrocytes. Molecular Endocrinology 26: 1406–1416. https://doi.org/10.1210/me.2012-1063 . (PMID: 10.1210/me.2012-1063227005863404299)
Papathanassoglou, Elizabeth D.E.., Panagiota Miltiadous, and Maria N. Karanikola. 2015. May BDNF Be implicated in the exercise-mediated regulation of inflammation? Critical review and synthesis of evidence. Biological Research for Nursing 17: 521–539. https://doi.org/10.1177/1099800414555411 . (PMID: 10.1177/109980041455541125358684)
Zhu, Y., M. Yuan, H.Y. Meng, A.Y. Wang, Q.Y. Guo, Y. Wang, and J. Peng. 2013. Basic science and clinical application of platelet-rich plasma for cartilage defects and osteoarthritis: a review. Osteoarthritis and Cartilage 21: 1627–1637. Elsevier Ltd. https://doi.org/10.1016/j.joca.2013.07.017 .
Chiou, Chi-Sheng, Chi-Ming Wu, Navneet Kumar Dubey, Wen-Cheng Lo, Feng-Chou Tsai, Tran Dang Xuan Tung, Wei-Ching Hung, Wei-Che Hsu, Wei-Hong Chen, and Win-Ping Deng. 2018. Mechanistic insight into hyaluronic acid and platelet-rich plasma-mediated anti-inflammatory and anti-apoptotic activities in osteoarthritic mice. Aging 10: 4152–4165. https://doi.org/10.18632/aging.101713 .
Krajewska-Włodarczyk, Magdalena, Agnieszka Owczarczyk-Saczonek, Waldemar Placek, Adam Osowski, and Joanna Wojtkiewicz. 2018. Articular cartilage aging-potential regenerative capacities of cell manipulation and stem cell therapy. International Journal of Molecular Sciences 19: 623. https://doi.org/10.3390/ijms19020623 . (PMID: 10.3390/ijms19020623294704315855845)
Duan, Ran, Hui Xie, and Zheng-Zhao. Liu. 2020. The Role of Autophagy in Osteoarthritis. Frontiers in Cell and Developmental Biology 8: 1–9. https://doi.org/10.3389/fcell.2020.608388 . (PMID: 10.3389/fcell.2020.608388)
Armiento, Angela R., Mauro Alini, and Martin J. Stoddart. 2019. Articular fibrocartilage - Why does hyaline cartilage fail to repair? Advanced Drug Delivery Reviews 146: 289–305. The Authors. https://doi.org/10.1016/j.addr.2018.12.015 .
Eming, Sabine A., Thomas A. Wynn, and Paul Martin. 2017. Inflammation and metabolism in tissue repair and regeneration. Science 356: 1026–1030. https://doi.org/10.1126/science.aam7928 . (PMID: 10.1126/science.aam792828596335)
Andia, Isabel, Eva Rubio-Azpeitia, and Nicola Maffulli. 2015. Platelet-rich plasma modulates the secretion of inflammatory/angiogenic proteins by inflamed tenocytes. Clinical Orthopaedics and Related Research 473: 1624–1634. https://doi.org/10.1007/s11999-015-4179-z . (PMID: 10.1007/s11999-015-4179-z256706574385357)
Heijnen, H., and P. van der Sluijs. 2015. Platelet secretory behaviour: As diverse as the granules … or not? Journal of Thrombosis and Haemostasis 13: 2141–2151. https://doi.org/10.1111/jth.13147 . (PMID: 10.1111/jth.1314726391322)
Jonnalagadda, Deepa, Leighton T. Izu, and Sidney W. Whiteheart. 2012. Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 120: 5209–5216. https://doi.org/10.1182/blood-2012-07-445080 . (PMID: 10.1182/blood-2012-07-445080230867553537312)
Kim, Joong Il, Hyun Cheol Bae, Hee Jung Park, Myung Chul Lee, and Hyuk Soo Han. 2020. Effect of Storage Conditions and Activation on Growth Factor Concentration in Platelet-Rich Plasma. Journal of Orthopaedic Research 38: 777–784. John Wiley & Sons, Ltd. https://doi.org/10.1002/jor.24520 .
Barde, Y.A., D. Edgar, and H. Thoenen. 1982. Purification of a new neurotrophic factor from mammalian brain. The EMBO Journal 1: 549–553. https://doi.org/10.1002/j.1460-2075.1982.tb01207.x . (PMID: 10.1002/j.1460-2075.1982.tb01207.x7188352553086)
Bathina, Siresha, and Undurti N. Das. 2015. Brain-derived neurotrophic factor and its clinical implications. Archives of Medical Science 6: 1164–1178. https://doi.org/10.5114/aoms.2015.56342 . (PMID: 10.5114/aoms.2015.56342)
Lima Giacobbo, Bruno, Janine Doorduin, Hans C. Klein, Rudi A. J. O. Dierckx, Elke Bromberg, and Erik F. J. de Vries. 2019. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Molecular Neurobiology 56: 3295–3312. Molecular Neurobiology. https://doi.org/10.1007/s12035-018-1283-6 .
Kermani, Pouneh, and Barbara Hempstead. 2007. Brain-derived neurotrophic factor: A newly described mediator of angiogenesis. Trends in Cardiovascular Medicine 17: 140–143. https://doi.org/10.1016/j.tcm.2007.03.002 . (PMID: 10.1016/j.tcm.2007.03.002174820972268985)
Chen, Shang-Der., Wu. Chia-Lin, Wei-Chao. Hwang, and Ding-I. Yang. 2017. More insight into BDNF against neurodegeneration: Anti-apoptosis, anti-oxidation, and suppression of autophagy. International Journal of Molecular Sciences 18: 545. https://doi.org/10.3390/ijms18030545 . (PMID: 10.3390/ijms18030545282738325372561)
Ji, Xin Chao, Yuan Yuan Dang, Hong Yan Gao, Zhao Tao Wang, Mou Gao, Yi Yang, Hong Tian Zhang, and Ru Xiang Xu. 2015. Local injection of lenti–BDNF at the lesion site promotes M2 macrophage polarization and inhibits inflammatory response after spinal cord injury in mice. Cellular and Molecular Neurobiology 35, 881–890. Springer US. https://doi.org/10.1007/s10571-015-0182-x .
Zimmermann, Manfred. 1983. Ethical guidelines for investigations of experimental pain in conscious animals. Pain 16: 109–110. https://doi.org/10.1016/0304-3959(83)90201-4 . (PMID: 10.1016/0304-3959(83)90201-46877845)
Lana, Jose Fabio, Santos Duarte, Joseph Purita, Christian Paulus, Stephany Cares Huber, Bruno Lima Rodrigues, Ana Amélia Rodrigues, Maria Helena Santana, et al. 2017. Contributions for classification of platelet rich plasma – proposal of a new classification: MARSPILL. Regenerative Medicine 12: 565–574. https://doi.org/10.2217/rme-2017-0042 . (PMID: 10.2217/rme-2017-004228758836)
Amable, Paola Romina, Rosana Bizon Vieira. Carias, Marcus Vinicius Telles. Teixeira, Ítalo. da Cruz Pacheco, Ronaldo José Farias Corrêa. do Amaral, JoséMauro. Granjeiro, and Radovan Borojevic. 2013. Platelet-rich plasma preparation for regenerative medicine: Optimization and quantification of cytokines and growth factors. Stem Cell Research and Therapy 4: 1–13. https://doi.org/10.1186/scrt218 . (PMID: 10.1186/scrt218)
Varga-Szabo, D., A. Braun, and Bernhard Nieswandt. 2009. Calcium signaling in platelets. Journal of Thrombosis and Haemostasis 7: 1057–1066. https://doi.org/10.1111/j.1538-7836.2009.03455.x . (PMID: 10.1111/j.1538-7836.2009.03455.x19422456)
Perez, Amanda G. M., Ana A. Rodrigues, Angela C. M. Luzo, José F. S. D. Lana, William D. Belangero, and Maria H. A. Santana. 2014. Fibrin network architectures in pure platelet-rich plasma as characterized by fiber radius and correlated with clotting time. Journal of Materials Science: Materials in Medicine 25: 1967–1977. https://doi.org/10.1007/s10856-014-5235-z . (PMID: 10.1007/s10856-014-5235-z24838297)
Toda, Gotaro, Toshimasa Yamauchi, Takashi Kadowaki, and Kohjiro Ueki. 2021. Preparation and culture of bone marrow-derived macrophages from mice for functional analysis. STAR Protocols 2, 100246. Elsevier Inc. https://doi.org/10.1016/j.xpro.2020.100246 .
Schmittgen, Thomas D., and Kenneth J. Livak. 2008. Analyzing real-time PCR data by the comparative CT method. Nature Protocols 3: 1101–1108. https://doi.org/10.1038/nprot.2008.73 . (PMID: 10.1038/nprot.2008.7318546601)
Guerrero, Ana T.G.., Waldiceu A. Verri, Thiago M. Cunha, Tarcilia A. Silva, Francisco A.C.. Rocha, Sérgio. H. Ferreira, Fernando Q. Cunha, and Carlos A. Parada. 2006. Hypernociception elicited by tibio-tarsal joint flexion in mice: A novel experimental arthritis model for pharmacological screening. Pharmacology Biochemistry and Behavior 84: 244–251. https://doi.org/10.1016/j.pbb.2006.05.008 . (PMID: 10.1016/j.pbb.2006.05.00816797062)
Pritzker, Kenneth P.H.., S. Gay, S.A. Jimenez, K. Ostergaard, J.P. Pelletier, K. Revell, D. Salter, and W.B. van den Berg. 2006. Osteoarthritis cartilage histopathology: Grading and staging. Osteoarthritis and Cartilage 14: 13–29. https://doi.org/10.1016/j.joca.2005.07.014 . (PMID: 10.1016/j.joca.2005.07.01416242352)
Pham, B., A. Cranney, M. Boers, A.C. Verhoeven, G. Wells, and P. Tugwell. 1999. Validity of area-under-the-curve analysis to summarize effect in rheumatoid arthritis clinical trials. The Journal of rheumatology 26: 712–716. (PMID: 10090188)
Kahan, Barry D., Maria Welsh, and Lynne P. Rutzky. 1995. Challenges in cyclosporine therapy: The role of therapeutic monitoring by area under the curve monitoring. Therapeutic Drug Monitoring 17: 621–624. https://doi.org/10.1097/00007691-199512000-00013 . (PMID: 10.1097/00007691-199512000-000138588231)
Fujimura, Hironobu, C. Anthony Altar, Ruoyan Chen, Takashi Nakamura, Takeshi Nakahashi, Jun-ichi Ichi. Kambayashi, Bing Sun, and Narendra N. Tandon. 2002. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thrombosis and Haemostasis 87: 728–734. https://doi.org/10.1055/s-0037-1613072 . (PMID: 10.1055/s-0037-161307212008958)
Blanc, Le., Samuel Fleury Jessica, Imane Boukhatem, Jean Christophe Bélanger, Mélanie. Welman, and Marie Lordkipanidzé. 2020. Platelets selectively regulate the release of BDNF, but not that of its precursor protein, proBDNF. Frontiers in Immunology 11: 1–12. https://doi.org/10.3389/fimmu.2020.575607 . (PMID: 10.3389/fimmu.2020.575607)
Martin, John F., and Günter. P. Wagner. 2019. The origin of platelets enabled the evolution of eutherian placentation. Biology Letters 15: 20190374. https://doi.org/10.1098/rsbl.2019.0374 . (PMID: 10.1098/rsbl.2019.0374312886836684973)
Plattner, Helmut, and Alexei Verkhratsky. 2016. Inseparable tandem: Evolution chooses ATP and Ca 2+ to control life, death and cellular signalling. Philosophical Transactions of the Royal Society B: Biological Sciences 371: 20150419. https://doi.org/10.1098/rstb.2015.0419 . (PMID: 10.1098/rstb.2015.0419)
Ren, Qiansheng, Holly Kalani Barber, Garland L. Crawford, Zubair A. Karim, Chunxia Zhao, Wangsun Choi, Cheng-Chun. Wang, Wanjin Hong, and Sidney W. Whiteheart. 2007. Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Edited by Sean Munro. Molecular Biology of the Cell 18: 24–33. https://doi.org/10.1091/mbc.e06-09-0785 . (PMID: 10.1091/mbc.e06-09-0785170655501751319)
Escobar, Gisselle, Alejandro Escobar, Gabriel Ascui, Fabián I. Tempio, María C. Ortiz, Claudio A. Pérez, and Mercedes N. López. 2018. Pure platelet-rich plasma and supernatant of calcium-activated P-PRP induce different phenotypes of human macrophages. Regenerative Medicine 13: 427–441. https://doi.org/10.2217/rme-2017-0122 . (PMID: 10.2217/rme-2017-012229985755)
Lam, Fong W., K. Vinod Vijayan, and Rolando E. Rumbaut. 2015. Platelets and their interactions with other immune cells. Comprehensive Physiology 5: 1265–1280. Wiley. https://doi.org/10.1002/cphy.c140074 .
Chen, Yufei, Haoxuan Zhong, Yikai Zhao, Xinping Luo, and Wen Gao. 2020. Role of platelet biomarkers in inflammatory response. Biomarker Research 8: 28. Biomarker Research. https://doi.org/10.1186/s40364-020-00207-2 .
Geraghty, Terese, Deborah R. Winter, Richard J. Miller, Rachel E. Miller, and Anne-Marie Malfait. 2021. Neuroimmune interactions and osteoarthritis pain: focus on macrophages. PAIN Reports 6: e892. Ovid Technologies (Wolters Kluwer Health). https://doi.org/10.1097/pr9.0000000000000892 .
Sun, Yulong, Zhuo Zuo, and Yuanyuan Kuang. 2020. An emerging target in the battle against osteoarthritis: Macrophage polarization. International Journal of Molecular Sciences 21: 8513. https://doi.org/10.3390/ijms21228513 . (PMID: 10.3390/ijms21228513331981967697192)
Wang, Weiyun, Yaru Chu, Pengyuan Zhang, Zhuo Liang, Zhenlin Fan, Xueqiang Guo, Guangdong Zhou, and Wenjie Ren. 2023. Targeting macrophage polarization as a promising therapeutic strategy for the treatment of osteoarthritis. International Immunopharmacology 116: 109790. https://doi.org/10.1016/j.intimp.2023.109790 . (PMID: 10.1016/j.intimp.2023.10979036736223)
Zhang, Wang, Yuntao Zhang, Yuxian He, Xiying Wang, and Qiang Fang. 2019. Lipopolysaccharide mediates time-dependent macrophage M1/M2 polarization through the Tim-3/Galectin-9 signalling pathway. Experimental Cell Research 376: 124–132. Elsevier Inc.. https://doi.org/10.1016/j.yexcr.2019.02.007 .
Jiang, Guangyao, Sihao Li, Kang Yu, Bin He, Jianqiao Hong, Tengjing Xu, Jiahong Meng, et al. 2021. A 3D-printed PRP-GelMA hydrogel promotes osteochondral regeneration through M2 macrophage polarization in a rabbit model. Acta Biomaterialia 128: 150–162. Acta Materialia Inc. https://doi.org/10.1016/j.actbio.2021.04.010 .
Kargarpour, Zahra, Jila Nasirzade, Layla Panahipour, Richard J. Miron, and Reinhard Gruber. 2021. Liquid PRF reduces the inflammatory response and osteoclastogenesis in murine macrophages. Frontiers in Immunology 12. Frontiers Media S.A. https://doi.org/10.3389/fimmu.2021.636427 .
Nasirzade, Jila, Zahra Kargarpour, Sadegh Hasannia, Franz Josef Strauss, and Reinhard Gruber. 2020. Platelet-rich fibrin elicits an anti-inflammatory response in macrophages in vitro. Journal of Periodontology 91, 244–252. John Wiley and Sons Inc. https://doi.org/10.1002/JPER.19-0216 .
Kowiański, Przemysław, Grażyna Lietzau, Ewelina Czuba, Monika Waśkow, Aleksandra Steliga, and Janusz Moryś. 2018. BDNF: A key factor with multipotent impact on brain signaling and synaptic plasticity. Cellular and Molecular Neurobiology 38: 579–593. https://doi.org/10.1007/s10571-017-0510-4 . (PMID: 10.1007/s10571-017-0510-428623429)
Arranz, Alicia, Christina Doxaki, Eleni Vergadi, Martinez de la Torre, Katerina Vaporidi, Eleni D. Lagoudaki, Eleftheria Ieronymaki, et al. 2012. Akt1 and Akt2 protein kinases differentially contribute to macrophage polarization. Proceedings of the National Academy of Sciences 109: 9517–9522. https://doi.org/10.1073/pnas.1119038109 . (PMID: 10.1073/pnas.1119038109)
Su, Yu-Wen., Xin-Fu. Zhou, Bruce K. Foster, Brian L. Grills, Xu. Jiake, and Cory J. Xian. 2018. Roles of neurotrophins in skeletal tissue formation and healing. Journal of Cellular Physiology 233: 2133–2145. https://doi.org/10.1002/jcp.25936 . (PMID: 10.1002/jcp.2593628370021)
Hutchison, Michele R. 2013. Mice with a conditional deletion of the neurotrophin receptor TrkB are dwarfed, and are similar to mice with a MAPK14 deletion. Edited by Frank Beier. PLoS ONE 8: e66206. https://doi.org/10.1371/journal.pone.0066206 . (PMID: 10.1371/journal.pone.0066206)
Hutchison, Michele R., Mary H. Bassett, and Perrin C. White. 2010. SCF, BDNF, and Gas6 are regulators of growth plate chondrocyte proliferation and differentiation. Molecular Endocrinology 24: 193–203. https://doi.org/10.1210/me.2009-0228 . (PMID: 10.1210/me.2009-022819897599)
Rihl, M., E. Kruithof, C. Barthel, F. De Keyser, E.M. Veys, H. Zeidler, D.T.Y. Yu, J.G. Kuipers, and D. Baeten. 2005. Involvement of neurotrophins and their receptors in spondyloarthritis synovitis: Relation to inflammation and response to treatment. Annals of the Rheumatic Diseases 64: 1542–1549. https://doi.org/10.1136/ard.2004.032599 . (PMID: 10.1136/ard.2004.032599158176571755273)
Iu, ElsieChitYu., and ChiBun Chan. 2022. Is Brain-derived neurotrophic factor a metabolic hormone in peripheral tissues? Biology 11: 1063. https://doi.org/10.3390/biology11071063 . (PMID: 10.3390/biology11071063361014419312804)
Bryk, Marta, Jakub Chwastek, Jakub Mlost, Magdalena Kostrzewa, and Katarzyna Starowicz. 2021. Sodium monoiodoacetate dose-dependent changes in matrix metalloproteinases and inflammatory components as prognostic factors for the progression of osteoarthritis. Frontiers in Pharmacology 12: 1–16. https://doi.org/10.3389/fphar.2021.643605 . (PMID: 10.3389/fphar.2021.643605)
de Sousavalente, João. 2019. The pharmacology of pain associated with the monoiodoacetate model of osteoarthritis. Frontiers in Pharmacology 10: 1–8. https://doi.org/10.3389/fphar.2019.00974 . (PMID: 10.3389/fphar.2019.00974)
Ogbonna, Andrea C., Anna K. Clark, and Marzia Malcangio. 2015. Development of monosodium acetate-induced osteoarthritis and inflammatory pain in ageing mice. Age 37. https://doi.org/10.1007/s11357-015-9792-y .
de Douglas Menezes , Kauê Franco Malange, Catarine Massucato Nishijima, Bruno Henrique de Melo Lima, Vinicius Cooper Capetini, Alexandre L. R. de Oliveira, Gabriel Forato Anhê, Claudia Herrera Tambeli, and Carlos Amilcar Parada. 2024. Intraarticular monomethyl fumarate as a perspective therapy for osteoarthritis by macrophage polarization. Inflammopharmacology.  https://doi.org/10.1007/s10787-024-01443-w .
Moilanen, L.J., M. Hämäläinen, E. Nummenmaa, P. Ilmarinen, K. Vuolteenaho, R.M. Nieminen, L. Lehtimäki, and E. Moilanen. 2015. Monosodium iodoacetate-induced inflammation and joint pain are reduced in TRPA1 deficient mice - potential role of TRPA1 in osteoarthritis. Osteoarthritis and Cartilage 23: 2017–2026. https://doi.org/10.1016/j.joca.2015.09.008 . (PMID: 10.1016/j.joca.2015.09.00826521748)
Korotkyi, O.H., A.A. Vovk, T.I. Galenova, T.B. Vovk, K.O. Dvorschenko, T.M. Falalyeyeva, and L.I. Ostapchenko. 2020. Cytokines profile in knee cartilage of rats during monoiodoacetateinduced osteoarthritis and administration of probiotic. Biopolymers and Cell 36: 23–35. https://doi.org/10.7124/bc.000A1E . (PMID: 10.7124/bc.000A1E)
Kawarai, Yuya, Sumihisa Orita, Junichi Nakamura, Shuichi Miyamoto, Miyako Suzuki, Kazuhide Inage, Shigeo Hagiwara, et al. 2018. Changes in proinflammatory cytokines, neuropeptides, and microglia in an animal model of monosodium iodoacetate-induced hip osteoarthritis. Journal of Orthopaedic Research 36: 2978–2986. https://doi.org/10.1002/jor.24065 . (PMID: 10.1002/jor.2406529888808)
Sakurai, Yusuke, Masahide Fujita, Shiori Kawasaki, Takao Sanaki, Takeshi Yoshioka, Kenichi Higashino, Soichi Tofukuji, et al. 2019. Contribution of synovial macrophages to rat advanced osteoarthritis pain resistant to cyclooxygenase inhibitors. Pain 160: 895–907. https://doi.org/10.1097/j.pain.0000000000001466 . (PMID: 10.1097/j.pain.000000000000146630585984)
Sousa-Valente, J., L. Calvo, V. Vacca, R. Simeoli, J.C. Arévalo, and M. Malcangio. 2018. Role of TrkA signalling and mast cells in the initiation of osteoarthritis pain in the monoiodoacetate model. Osteoarthritis and Cartilage 26: 84–94. https://doi.org/10.1016/j.joca.2017.08.006 . (PMID: 10.1016/j.joca.2017.08.00628844566)
Muley, Milind M., Eugene Krustev, Allison R. Reid, and Jason J. McDougall. 2017. Prophylactic inhibition of neutrophil elastase prevents the development of chronic neuropathic pain in osteoarthritic mice. Journal of Neuroinflammation 14. BioMed Central Ltd. https://doi.org/10.1186/s12974-017-0944-0 .
Guzman, Roberto E., Mark G. Evans, Susan Bove, Brandy Morenko, and Kenneth Kilgore. 2003. Mono-Iodoacetate-Induced Histologic Changes in Subchondral Bone and Articular Cartilage of Rat Femorotibial Joints: AN Animal Model of Osteoarthritis. Toxicologic Pathology 31: 619–624. https://doi.org/10.1080/01926230390241800 . (PMID: 10.1080/0192623039024180014585729)
Gao, Xin, Yaqing Ma, Guijiao Zhang, Fengyan Tang, Jingjing Zhang, Jichao Cao, and Chunhui Liu. 2020. Targeted elimination of intracellular reactive oxygen species using nanoparticle-like chitosan- superoxide dismutase conjugate for treatment of monoiodoacetate-induced osteoarthritis. International Journal of Pharmaceutics 590: 119947. Elsevier B.V.. https://doi.org/10.1016/j.ijpharm.2020.119947 .
Moon, S.J., Y.J. Woo, J.H. Jeong, M.K. Park, H.J. Oh, J.S. Park, E.K. Kim, et al. 2012. Rebamipide attenuates pain severity and cartilage degeneration in a rat model of osteoarthritis by downregulating oxidative damage and catabolic activity in chondrocytes. Osteoarthritis and Cartilage 20: 1426–1438. https://doi.org/10.1016/j.joca.2012.08.002 . (PMID: 10.1016/j.joca.2012.08.00222890185)
Malange, Kaue Franco, Juliana M. Navia-Pelaez, Elayne Vieira Dias, Julia Borges Paes Lemes, Soo-Ho Choi, Gilson Goncalves Dos Santos, Tony L. Yaksh, and Maripat Corr. 2022. Macrophages and glial cells: Innate immune drivers of inflammatory arthritic pain perception from peripheral joints to the central nervous system. Frontiers in Pain Research 3. https://doi.org/10.3389/fpain.2022.1018800 .
Aniss, Nadia Noble-Daoud., Asmaa Magdy Zaazaa, and Mohamed Rabie Abdall. Saleh. 2019. Anti-arthritic Effects of Platelets Rich Plasma and Hyaluronic Acid on Adjuvant-induced Arthritis in Rats. International Journal of Pharmacology 16: 33–46. https://doi.org/10.3923/ijp.2020.33.46 . (PMID: 10.3923/ijp.2020.33.46)
Woodell-May, Jennifer, Andrea Matuska, Megan Oyster, Zachary Welch, Krista O’Shaughnessey, and Jacy Hoeppner. 2011. Autologous protein solution inhibits MMP-13 production by IL-1β and TNFα-stimulated human articular chondrocytes. Journal of Orthopaedic Research 29: 1320–1326. https://doi.org/10.1002/jor.21384 . (PMID: 10.1002/jor.2138421437966)
Pitsillides, Andrew A., and Frank Beier. 2011. Cartilage biology in osteoarthritis—lessons from developmental biology. Nature Reviews Rheumatology 7: 654–663. https://doi.org/10.1038/nrrheum.2011.129 . (PMID: 10.1038/nrrheum.2011.12921947178)
Kita, Keisuke, Tohru Kimura, Norimasa Nakamura, Hideki Yoshikawa, and Toru Nakano. 2008. PI3K/Akt signaling as a key regulatory pathway for chondrocyte terminal differentiation. Genes to Cells 13: 839–850. https://doi.org/10.1111/j.1365-2443.2008.01209.x . (PMID: 10.1111/j.1365-2443.2008.01209.x18782222)
Xue, Fan, Zhenlei Zhao, Yanpei Gu, Jianxin Han, Keqiang Ye, and Ying Zhang. 2021. 7,8-dihydroxyflavone modulates bone formation and resorption and ameliorates ovariectomy-induced osteoporosis. eLife 10. eLife Sciences Publications Ltd. https://doi.org/10.7554/eLife.64872 .
Lotz, Martin K., and Beatriz Caramés. 2011. Autophagy and cartilage homeostasis mechanisms in joint health, aging and OA. Nature Reviews Rheumatology 7: 579–587. https://doi.org/10.1038/nrrheum.2011.109 . (PMID: 10.1038/nrrheum.2011.109218082923192496)
Liao, Jiahe, Xinbo Yu, Jiaqi Chen, Zihua Wu, Qian He, Yan Zhang, Weijiang Song, Jing Luo, and Qingwen Tao. 2023. Knowledge mapping of autophagy in osteoarthritis from 2004 to 2022: A bibliometric analysis. Frontiers in Immunology 14. https://doi.org/10.3389/fimmu.2023.1063018 .
Matsuzaki, Tokio, Oscar Alvarez-Garcia, Sho Mokuda, Keita Nagira, Merissa Olmer, Ramya Gamini, Kohei Miyata, et al. 2018. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Science Translational Medicine 10. https://doi.org/10.1126/scitranslmed.aan0746 .
Wei, ChangWei, Yi Sun, Nan Chen, Song Chen, MeiHong Xiu, and XiangYang Zhang. 2020. Interaction of oxidative stress and BDNF on executive dysfunction in patients with chronic schizophrenia. Psychoneuroendocrinology 111: 104473. Elsevier. https://doi.org/10.1016/j.psyneuen.2019.104473 .
He, Tongrong, and Zvonimir S. Katusic. 2012. Brain-derived neurotrophic factor increases expression of MnSOD in human circulating angiogenic cells. Microvascular Research 83: 366–371. Elsevier Inc. https://doi.org/10.1016/j.mvr.2012.01.001 .
Zhu, Wawa, Gautam N. Bijur, Nathan A. Styles, and Xiaohua Li. 2004. Regulation of FOXO3a by brain-derived neurotrophic factor in differentiated human SH-SY5Y neuroblastoma cells. Molecular Brain Research 126: 45–56. https://doi.org/10.1016/j.molbrainres.2004.03.019 . (PMID: 10.1016/j.molbrainres.2004.03.01915207915)
Xu, Danfeng, Di Lian, Jing Wu, Ying Liu, Mingjie Zhu, Jiaming Sun, Dake He, and Ling Li. 2017. Brain-derived neurotrophic factor reduces inflammation and hippocampal apoptosis in experimental Streptococcus pneumoniae meningitis. Journal of Neuroinflammation 14: 156. Journal of Neuroinflammation. https://doi.org/10.1186/s12974-017-0930-6 .
Schaible, Hans-Georg. 2007. Nociceptors of the joint with particular reference to silent nociceptors. 15:18–27. https://doi.org/10.1159/000101965 .
Grigg, Peter. 2001. Properties of sensory neurons innervating synovial joints. Cells, Tissues, Organs 169: 218–225. https://doi.org/10.1159/000047885 . (PMID: 10.1159/00004788511455117)
McDougall, Jason J. 2006. Arthritis and pain. Neurogenic origin of joint pain. Arthritis Research and Therapy 8: 1–10. https://doi.org/10.1186/ar2069 . (PMID: 10.1186/ar2069)
Schuelert, Niklas, and Jason J. McDougall. 2009. Grading of monosodium iodoacetate-induced osteoarthritis reveals a concentration-dependent sensitization of nociceptors in the knee joint of the rat. Neuroscience Letters 465: 184–188. https://doi.org/10.1016/j.neulet.2009.08.063 . (PMID: 10.1016/j.neulet.2009.08.06319716399)
Vieira, Willians Fernando, Kauê Franco. Malange, Silviane Fernandes, Gilson de Magalhães, Gonçalves dos Santos, Alexandre Leite Rodrigues, Maria de Oliveira, Alice da Cruz-Höfling, and Carlos Amilcar Parada. 2020. Gait analysis correlates mechanical hyperalgesia in a model of streptozotocin-induced diabetic neuropathy: A CatWalk dynamic motor function study. Neuroscience Letters 736: 135253. https://doi.org/10.1016/j.neulet.2020.135253 . (PMID: 10.1016/j.neulet.2020.13525332710918)
Shepherd, Andrew J., and Durga P. Mohapatra. 2018. Pharmacological validation of voluntary gait and mechanical sensitivity assays associated with inflammatory and neuropathic pain in mice. Neuropharmacology 130: 18–29. Elsevier Ltd. https://doi.org/10.1016/j.neuropharm.2017.11.036 .
Ferland, C. E., S. Laverty, F. Beaudry, and P. Vachon. 2011. Gait analysis and pain response of two rodent models of osteoarthritis. Pharmacology Biochemistry and Behavior 97: 603–610. Elsevier Inc. https://doi.org/10.1016/j.pbb.2010.11.003 .
Çağlar, Ceyhun, Halil Kara, Okan Ateş, and Mahmut Uğurlu. 2021. Evaluation of Different Intraarticular Injection Therapies with Gait Analysis in a Rat Osteoarthritis Model. Cartilage 13: 1134S-1143S. SAGE Publications Inc. https://doi.org/10.1177/19476035211046042 .
Ferreira-Gomes, Joana, Sara Adães, and José M. Castro-Lopes. 2008. Assessment of movement-evoked pain in osteoarthritis by the knee-bend and catwalk tests: A clinically relevant study. Journal of Pain 9: 945–954. https://doi.org/10.1016/j.jpain.2008.05.012 . (PMID: 10.1016/j.jpain.2008.05.01218650131)
Ferreira-Gomes, Joana, Sara Adães, Jana Sarkander, and José M. Castro-Lopes. 2010. Phenotypic alterations of neurons that innervate osteoarthritic joints in rats. Arthritis Care and Research 62: 3677–3685. https://doi.org/10.1002/art.27713 . (PMID: 10.1002/art.2771320722015)
Ghilardi, Joseph R., Katie T. Freeman, Juan M. Jimenez-Andrade, Kathleen A. Coughlin, Magdalena J. Kaczmarska, Gabriela Castaneda-Corral, Aaron P. Bloom, Michael A. Kuskowski, and Patrick W. Mantyh. 2012. Neuroplasticity of sensory and sympathetic nerve fibers in a mouse model of a painful arthritic joint. Arthritis & Rheumatism 64: 2223–2232. https://doi.org/10.1002/art.34385 . (PMID: 10.1002/art.34385)
Kral, Julia Barbara, Waltraud Cornelia Schrottmaier, Manuel Salzmann, and Alice Assinger. 2016. Platelet interaction with innate immune cells. Transfusion Medicine and Hemotherapy 43: 78–88. https://doi.org/10.1159/000444807 . (PMID: 10.1159/000444807272267904872052)
Yuan, Zimu, Decheng Jiang, Mengzhu Yang, Jie Tao, Hu. Xin, Xiao Yang, and Yi. Zeng. 2024. Emerging roles of macrophage polarization in osteoarthritis: Mechanisms and therapeutic strategies. Orthopaedic Surgery 16: 532–550. https://doi.org/10.1111/os.13993 . (PMID: 10.1111/os.139933829679810925521)
Tsujino, Hiroaki, Eiji Kondo, Tetsuo Fukuoka, Yi Dai, Atsushi Tokunaga, Kenji Miki, Kazuo Yonenobu, Takahiro Ochi, and Koichi Noguchi. 2000. Activating Transcription Factor 3 (ATF3) Induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. 182: 170–182. https://doi.org/10.1006/mcne.1999.0814 .
Bráz, João. M., and Allan I. Basbaum. 2010. Differential ATF3 expression in dorsal root ganglion neurons reveals the profile of primary afferents engaged by diverse noxious chemical stimuli. Pain 150: 290–301. https://doi.org/10.1016/j.pain.2010.05.005 . (PMID: 10.1016/j.pain.2010.05.005206053312922479)
Sant’Anna, Morena B., Ricardo Kusuda, Tiago A. Bozzo, Gabriel S. Bassi, Jose C. Alves-Filho, Fernando Q. Cunha, Sergio H. Ferreira, Guilherme R. Souza, and Thiago M. Cunha. 2016. Medial plantar nerve ligation as a novel model of neuropathic pain in mice: Pharmacological and molecular characterization. Scientific Reports 6: 1–13. Nature Publishing Group. https://doi.org/10.1038/srep26955 .
Griffith, Oliver W., Arun R. Chavan, Stella Protopapas, Jamie Maziarz, Roberto Romero, and Gunter P. Wagner. 2017. Embryo implantation evolved from an ancestral inflammatory attachment reaction. Proceedings of the National Academy of Sciences 114: E6566–E6575. https://doi.org/10.1073/pnas.1701129114 . (PMID: 10.1073/pnas.1701129114)
Lana, José Fábio., Stephany Cares Huber, Joseph Purita, Claudia H. Tambeli, Gabriel Silva Santos, Christian Paulus, and Joyce M. Annichino-Bizzacchi. 2019. Leukocyte-rich PRP versus leukocyte-poor PRP - The role of monocyte/macrophage function in the healing cascade. Journal of Clinical Orthopaedics and Trauma 10: S7–S12. https://doi.org/10.1016/j.jcot.2019.05.008 . (PMID: 10.1016/j.jcot.2019.05.008317002026823808)
Liang, Jiedong, Gui Deng, and He Huang. 2018. The activation of BDNF reduced inflammation in a spinal cord injury model by TrkB/p38 MAPK signaling. Experimental and Therapeutic Medicine 1688–1696. https://doi.org/10.3892/etm.2018.7109 .
Asami, Toshio, Takuya Ito, Hidefumi Fukumitsu, Hiroshi Nomoto, Yoshiko Furukawa, and Shoei Furukawa. 2006. Autocrine activation of cultured macrophages by brain-derived neurotrophic factor. Biochemical and Biophysical Research Communications 344: 941–947. https://doi.org/10.1016/j.bbrc.2006.03.228 . (PMID: 10.1016/j.bbrc.2006.03.22816631618)
Barouch, Rina, Elena Appel, Gila Kazimirsky, and Chaya Brodie. 2001. Macrophages express neurotrophins and neurotrophin receptors. Journal of Neuroimmunology 112: 72–77. https://doi.org/10.1016/s0165-5728(00)00408-2 . (PMID: 10.1016/s0165-5728(00)00408-211108935)
Vun, James, Neelam Iqbal, Elena Jones, and Payal Ganguly. 2023. Anti-Aging Potential of Platelet Rich Plasma (PRP): Evidence from Osteoarthritis (OA) and applications in senescence and inflammaging. Bioengineering 10: 987. https://doi.org/10.3390/bioengineering10080987 . (PMID: 10.3390/bioengineering100809873762787210451843)
Yuan, Zimu, Decheng Jiang, Mengzhu Yang, Jie Tao, Hu. Xin, Xiao Yang, and Yi. Zeng. 2024. Emerging roles of macrophage polarization in osteoarthritis: Mechanisms and therapeutic strategies. Orthopaedic Surgery 9999: 9999. https://doi.org/10.1111/os.13993 . (PMID: 10.1111/os.13993)
Nishio, Hirofumi, Yoshitomo Saita, Yohei Kobayashi, Tomoiku Takaku, Shin Fukusato, Sayuri Uchino, Takanori Wakayama, Hiroshi Ikeda, and Kazuo Kaneko. 2020. Platelet-rich plasma promotes recruitment of macrophages in the process of tendon healing. Regenerative Therapy 14: 262–270. Elsevier Ltd. https://doi.org/10.1016/j.reth.2020.03.009 .
Swearingen, C.A., M.G. Chambers, C. Lin, J. Marimuthu, C.J. Rito, Q.L. Carter, J. Dotzlaf, et al. 2010. A short-term pharmacodynamic model for monitoring aggrecanase activity: Injection of monosodium iodoacetate (MIA) in rats and assessment of aggrecan neoepitope release in synovial fluid using novel ELISAs. Osteoarthritis and Cartilage 18: 1159–1166. https://doi.org/10.1016/j.joca.2010.02.019 . (PMID: 10.1016/j.joca.2010.02.01920633676)
Mushenkova, Nataliya V., Nikita G. Nikiforov, Nikolay K. Shakhpazyan, Varvara A. Orekhova, Nikolay K. Sadykhov, and Alexander N. Orekhov. 2022. Phenotype diversity of macrophages in osteoarthritis: Implications for development of macrophage modulating therapies. International Journal of Molecular Sciences 23: 8381. https://doi.org/10.3390/ijms23158381 . (PMID: 10.3390/ijms23158381359555149369350)
Sheikh, Ashfaq M., Mazhar Malik, Guang Wen, Abha Chauhan, Ved Chauhan, Cheng-Xin. Gong, Fei Liu, William T. Brown, and Xiaohong Li. 2010. BDNF-Akt-Bcl2 antiapoptotic signaling pathway is compromised in the brain of autistic subjects. Journal of Neuroscience Research 88: 2641–2647. https://doi.org/10.1002/jnr.22416 . (PMID: 10.1002/jnr.2241620648653)
Pérez-Navarro, Esther, Núria. Gavaldà, Elena Gratacòs, and Jordi Alberch. 2005. Brain-derived neurotrophic factor prevents changes in Bcl-2 family members and caspase-3 activation induced by excitotoxicity in the striatum. Journal of Neurochemistry 92: 678–691. https://doi.org/10.1111/j.1471-4159.2004.02904.x . (PMID: 10.1111/j.1471-4159.2004.02904.x15659237)
Ferreira-Gomes, Joana, Sara Adães, Jana Sarkander, and José M. Castro-Lopes. 2010. Phenotypic alterations of neurons that innervate osteoarthritic joints in rats. Arthritis and Rheumatism 62: 3677–3685. https://doi.org/10.1002/art.27713 . (PMID: 10.1002/art.2771320722015)
Ivanavicius, Stefan P., Adrian D. Ball, Chris G. Heapy, F Russell Westwood, Fraser Murray, and Simon J. Read. 2007. Structural pathology in a rodent model of osteoarthritis is associated with neuropathic pain: Increased expression of ATF-3 and pharmacological characterisation. Pain 128: 272–282. https://doi.org/10.1016/j.pain.2006.12.022 . (PMID: 10.1016/j.pain.2006.12.02217276007)
Ferreira-Gomes, Joana, Sara Adães, Raquel M. Sousa, Marcelo Mendonça, and José M. Castro-Lopes. 2012. Dose-dependent expression of neuronal injury markers during experimental osteoarthritis induced by monoiodoacetate in the rat. Molecular Pain 8: 1–12. https://doi.org/10.1186/1744-8069-8-50 . (PMID: 10.1186/1744-8069-8-50)
Tao, Ranyang, Bobin Mi, Hu. Yiqiang, Sien Lin, Yuan Xiong, Lu. Xuan, Adriana C. Panayi, Gang Li, and Guohui Liu. 2023. Hallmarks of peripheral nerve function in bone regeneration. Bone Research 11: 6. https://doi.org/10.1038/s41413-022-00240-x . (PMID: 10.1038/s41413-022-00240-x365998289813170)
Drissi, Ichrak, William Aidan Woods, and Christopher Geoffrey Woods. 2020. Understanding the genetic basis of congenital insensitivity to pain. British Medical Bulletin 133: 65–78. https://doi.org/10.1093/bmb/ldaa003 . (PMID: 10.1093/bmb/ldaa003322194157227775)
Minde, Jan, Olle Svensson, Monica Holmberg, Göran. Solders, and Göran. Toolanen. 2006. Orthopedic aspects of familial insensitivity to pain due to a novel nerve growth factor beta mutation. Acta Orthopaedica 77: 198–202. https://doi.org/10.1080/17453670610045911 . (PMID: 10.1080/1745367061004591116752279)
Malfait, Anne Marie, Rachel E. Miller, and Joel A. Block. 2020. Targeting neurotrophic factors: Novel approaches to musculoskeletal pain. Pharmacology and Therapeutics. Elsevier Inc. https://doi.org/10.1016/j.pharmthera.2020.107553 .
Miller, Rachel E., Joel A. Block, and Anne-Marie. Malfait. 2017. Nerve growth factor blockade for the management of osteoarthritis pain: What can we learn from clinical trials and preclinical models? Current Opinion in Rheumatology 29: 110–118. https://doi.org/10.1097/BOR.0000000000000354 . (PMID: 10.1097/BOR.0000000000000354276727415436144)
Chang, Yi., Ta Liang Chen, Wu. Gong Jhe, George Hsiao, Ming Yi Shen, Kuan Hung Lin, Duen Suey Chou, Chien Huang Lin, and Joen Rong Sheu. 2004. Mechanisms involved in the antiplatelet activity of ketamine in human platelets. Journal of Biomedical Science 11: 764–772. https://doi.org/10.1159/000081823 . (PMID: 10.1159/00008182315591773)
Nakagawa, Takefumi, Hideo Hirakata, Masami Sato, Kumi Nakamura, Yoshio Hatano, Takashi Nakamura, and Kazuhiko Fukuda. 2002. Ketamine Suppresses Platelet Aggregation Possibly by Suppressed Inositol Triphosphate Formation and Subsequent Suppression of Cytosolic Calcium Increase. Anesthesiology 96: 1147–1152.  https://doi.org/10.1097/00000542-200205000-00018 .
معلومات مُعتمدة: 2018/10205-2 Fundação de Amparo à Pesquisa do Estado de São Paulo; 2018/10205-2 Fundação de Amparo à Pesquisa do Estado de São Paulo; 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
فهرسة مساهمة: Keywords: BDNF; PRP; inflammation; joint pain; osteoarthritis; platelets
تواريخ الأحداث: Date Created: 20240621 Latest Revision: 20240621
رمز التحديث: 20240621
DOI: 10.1007/s10753-024-02072-9
PMID: 38904872
قاعدة البيانات: MEDLINE
الوصف
تدمد:1573-2576
DOI:10.1007/s10753-024-02072-9