دورية أكاديمية

Host-induced RNA interference targeting the neuromotor gene FMRFamide-like peptide-14 (Mi-flp14) perturbs Meloidogyne incognita parasitic success in eggplant.

التفاصيل البيبلوغرافية
العنوان: Host-induced RNA interference targeting the neuromotor gene FMRFamide-like peptide-14 (Mi-flp14) perturbs Meloidogyne incognita parasitic success in eggplant.
المؤلفون: Kamaraju D; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.; School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India., Chatterjee M; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India., Papolu PK; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India., Shivakumara TN; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India., Sreevathsa R; ICAR-National Institute for Plant Biotechnology, New Delhi, 110012, India., Hada A; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. alkeshhada@gmail.com.; Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 7505101, Bet Dagan, Israel. alkeshhada@gmail.com., Rao U; Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India. umanema@gmail.com.; Engrave Biolabs Pvt Ltd. , Shanthipuram, Kukatpally, Hyderabad, 500072, India. umanema@gmail.com.
المصدر: Plant cell reports [Plant Cell Rep] 2024 Jun 22; Vol. 43 (7), pp. 178. Date of Electronic Publication: 2024 Jun 22.
نوع المنشور: Journal Article
اللغة: English
بيانات الدورية: Publisher: Springer Country of Publication: Germany NLM ID: 9880970 Publication Model: Electronic Cited Medium: Internet ISSN: 1432-203X (Electronic) Linking ISSN: 07217714 NLM ISO Abbreviation: Plant Cell Rep Subsets: MEDLINE
أسماء مطبوعة: Original Publication: Berlin ; New York : Springer, 1981-
مواضيع طبية MeSH: Tylenchoidea*/pathogenicity , Tylenchoidea*/physiology , Solanum melongena*/genetics , Solanum melongena*/parasitology , RNA Interference* , Plants, Genetically Modified* , Plant Diseases*/parasitology , Plant Diseases*/genetics , Plant Diseases*/prevention & control, Animals ; Host-Parasite Interactions/genetics
مستخلص: Key Message: The study demonstrates the successful management of Meloidogyne incognita in eggplant using Mi-flp14 RNA interference, showing reduced nematode penetration and reproduction without off-target effects across multiple generations. Root-knot nematode, Meloidogyne incognita, causes huge yield losses worldwide. Neuromotor function in M. incognita governed by 19 neuropeptides is vital for parasitism and parasite biology. The present study establishes the utility of Mi-flp14 for managing M. incognita in eggplant in continuation of our earlier proof of concept in tobacco (US patent US2015/0361445A1). Mi-flp14 hairpin RNA construct was used for generating 19 independent transgenic eggplant events. PCR and Southern hybridization analysis confirmed transgene integration and its orientation, while RT-qPCR and Northern hybridization established the generation of dsRNA and siRNA of Mi-flp14. In vitro and in vivo bio-efficacy analysis of single-copy events against M. incognita showed reduced nematode penetration and development at various intervals that negatively impacted reproduction. Interestingly, M. incognita preferred wild-type plants over the transgenics even when unbiased equal opportunity was provided for the infection. A significant reduction in disease parameters was observed in transgenic plants viz., galls (40-48%), females (40-50%), egg masses (35-40%), eggs/egg mass (50-55%), and derived multiplication factor (60-65%) compared to wild type. A unique demonstration of perturbed expression of Mi-flp14 in partially penetrated juveniles and female nematodes established successful host-mediated RNAi both at the time of penetration even before the nematodes started withdrawing plant nutrients and later stage, respectively. The absence of off-target effects in transgenic plants was supported by the normal growth phenotype of the plants and T-DNA integration loci. Stability in the bio-efficacy against M. incognita across T 1 - to T 4 -generation transgenic plants established the utility of silencing Mi-flp14 for nematode management. This study demonstrates the significance of targeting Mi-flp14 in eggplant for nematode management, particularly to address global agricultural challenges posed by M. incognita.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.)
References: Abad P, Gouzy J, Aury JM, Castagnone-Sereno P, Danchin EG (2008) Genome sequence of the metazoan plant parasitic nematode Meloidogyne incognita. Nat Biotechnol 26:909–915. https://doi.org/10.1038/nbt.1482. (PMID: 10.1038/nbt.148218660804)
Abd-Elgawad MMM, Askary TH (2015) Impact of phytonematodes on agriculture economy. In: Askary TH, Martinelli PRP (eds) Biocontrol agents of phytonematodes. CABI, UK, pp 3–49. (PMID: 10.1079/9781780643755.0003)
Atkinson HJ, Isaac RE, Harris PD, Sharpe CM (1988) FMRFamide like immunoreactivity within the nervous system of the nematodes Panagrellus redivius, Caenorhabditis elegans and Heterodera glycines. J Zool 216:663–671. https://doi.org/10.1111/j.1469-7998.1988.tb02464.x. (PMID: 10.1111/j.1469-7998.1988.tb02464.x)
Atkinson NJ, Lilley CJ, Urwin PE (2013) Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. Plant Physiol 162:2028–2041. https://doi.org/10.1104/pp.113.222372. (PMID: 10.1104/pp.113.222372238009913729780)
Banakar P, Sharma A, Lilley CJ, Gantasala NP, Kumar M, Rao U (2015) Combinatorial in vitro RNAi of two neuropeptide genes and a pharyngeal gland gene on Meloidogyne incognita. Nematology 17(2):155–167. https://doi.org/10.1163/15685411-00002859. (PMID: 10.1163/15685411-00002859)
Banakar P, Hada A, Papolu PK, Rao U (2020) Simultaneous RNAi knockdown of three FMRFamide-Like Peptide Genes, Mi-flp1, Mi-flp12 and Mi-flp18 provides resistance to root-knot nematode. Meloidogyne Incognita Front Microbiol 11:573916. https://doi.org/10.3389/fmicb.2020.573916. (PMID: 10.3389/fmicb.2020.57391633193182)
Banerjee S, Gill SS, Jain PK, Sirohi A (2017) Isolation, cloning, and characterization of a cuticle collagen gene, Mi-col-5 in Meloidogyne incognita. 3 Biotech 7(1):64. https://doi.org/10.1007/s13205-017-0665-1. (PMID: 10.1007/s13205-017-0665-1284520125428120)
Bhardwaj A, Thapliyal S, Dahiya Y, Babu K (2018) FLP-18 functions through the G-protein-coupled receptors NPR-1 and NPR-4 to modulate reversal length in Caenorhabditis elegans. J Neurosci 38(20):4641–4654. https://doi.org/10.1523/JNEUROSCI.1955-17.2018. (PMID: 10.1523/JNEUROSCI.1955-17.2018297127875965667)
Blok VC, Jones JT, Phillips MS, Trudgill DL (2008) Parasitism genes and host range disparities in biotrophic nematodes: the conundrum of polyphagy versus specialization. BioEssays 30(3):249–259. https://doi.org/10.1002/bies.20717. (PMID: 10.1002/bies.2071718293363)
Chaudhary S, Dutta TK, Tyagi N, Shivakumara TN, Papolu PK, Chobhe KA, Rao U (2019) Host-induced silencing of Mi-msp-1 confers resistance to root-knot nematode Meloidogyne incognita in eggplant. Transgenic Res 28(3):327–340. https://doi.org/10.1007/s11248-019-00126-5. (PMID: 10.1007/s11248-019-00126-530955133)
Cruz-Martinez H, Ruiz-Vega J, Matadamas-Ortiz PT, Cortes-Martinez CI, Rosas-Diaz J (2017) Formulation of entomopathogenic nematodes for crop pest control—a review. Plant Prot Sci 53:15–24. https://doi.org/10.17221/35/2016-pps. (PMID: 10.17221/35/2016-pps)
Dalzell JJ, McMaster S, Johnston MJ, Kerr R, Fleming CC, Maule AG (2009) Non-nematode-derived double-stranded RNAs induce profound phenotypic changes in Meloidogyne incognita and Globodera pallida infective juveniles. Int J Parasitol 39:1503–1516. https://doi.org/10.1016/j.ijpara.2009.05.006. (PMID: 10.1016/j.ijpara.2009.05.00619482028)
Dalzell JJ, McMaster S, Fleming CC, Maule AG (2010) Short interfering RNA-mediated gene silencing in Globodera pallida and Meloidogyne incognita infective stage juveniles. Int J Parasitol 40:91–100. https://doi.org/10.1016/j.ijpara.2009.07.003. (PMID: 10.1016/j.ijpara.2009.07.00319651131)
Danchin EGJ, Arguel MJ, Campan-Fournier A, Perfus-Barbeoch L, Magliano M, Rosso M-N et al (2013) Identification of novel target genes for safer and more specific control of root-knot nematodes from a pan-genome mining. PloS Pathogen 9:e1003745. https://doi.org/10.1371/journal.ppat.1003745. (PMID: 10.1371/journal.ppat.1003745)
Dlamini BE, Addison P, Malan AP (2019) A review of the biology and control of Phlyctinus callosus (Schonherr) (Coleoptera: Curculionidae), with special reference to biological control using entomopathogenic nematodes and fungi. Afr Entomol 27:279–288. https://doi.org/10.4001/003.027.0279. (PMID: 10.4001/003.027.0279)
Dong L, Li X, Huang L, Gao Y, Zhong L, Zheng Y et al (2014) Lauric acid in crown daisy root exudate potently regulates root-knot nematode chemotaxis and disrupts Mi-flp-18 expression to block infection. J Exp Bot 65:131–141. https://doi.org/10.1093/jxb/ert356. (PMID: 10.1093/jxb/ert35624170741)
Dutta TK, Khan MR, Phani V (2019) Plant-parasitic nematode management via bio fumigation using brassica and non-brassica plants: current status and prospects. Curr Plant Biol 17:17–32. https://doi.org/10.1016/j.cpb.2019.02.001. (PMID: 10.1016/j.cpb.2019.02.001)
Ehwaeti ME, Elliott MJ, McNicol JM, Phillips MS, Trudgill DL (2000) Modeling nematode population growth and damage. Crop Protect 19:739–745. https://doi.org/10.1016/S0261-2194(00)00098-3. (PMID: 10.1016/S0261-2194(00)00098-3)
Elling AA (2013) Major emerging problems with minor Meloidogyne species. Phytopathology 103:1092–1102. https://doi.org/10.1094/PHYTO-01-13-0019-RVW. (PMID: 10.1094/PHYTO-01-13-0019-RVW23777404)
Fairbarn DJ, Cavallaro AS, Bernerd M, Mahalinga-Iyer J, Graham MW, Botella JR (2007) Host delivered RNAi: an effective strategy to silence genes in plant parasitic nematodes. Planta 226:1525–1533. https://doi.org/10.1007/s00425-007-0588-x. (PMID: 10.1007/s00425-007-0588-x)
Fuller VL, Lilley CJ, Urwin PE (2008) Nematode resistance. New Phytol 180:27–44. https://doi.org/10.1111/j.1469-8137.2008.02508.x. (PMID: 10.1111/j.1469-8137.2008.02508.x18564304)
Hada A, Dutta TK, Singh N, Singh B, Rai V, Singh NK, Rao U (2020a) A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola. PLoS ONE 15(9):e0239085. https://doi.org/10.1371/journal.pone.0239085. (PMID: 10.1371/journal.pone.0239085329609167508375)
Hada A, Kumari C, Phani V, Singh D, Chinnusamy V, Rao U (2020b) Host-induced silencing of FMRFamide-like peptide genes, flp-1 and flp-12, in rice impairs reproductive fitness of the root-knot nematode Meloidogyne graminicola. Front Plant Sci 11:894. https://doi.org/10.3389/fpls.2020.00894. (PMID: 10.3389/fpls.2020.00894327655397379849)
Hada A, Patil BL, Bajpai A, Kesiraju K, Dinesh-Kumar S, Paraselli B et al (2021) Micro RNA-induced gene silencing strategy for the delivery of siRNAs targeting Meloidogyne incognita in a model plant Nicotiana benthamiana. Pest Manag Sci. https://doi.org/10.1002/ps.6384. (PMID: 10.1002/ps.638433786977)
Hada A, Singh D, Papolu PK, Banakar P, Raj A, Rao U (2021b) Host-mediated RNAi for simultaneous silencing of different functional groups of genes in Meloidogyne incognita using fusion cassettes in Nicotiana tabacum. Plant Cell Rep 40:2287–2302. https://doi.org/10.1007/s00299-021-02767-5. (PMID: 10.1007/s00299-021-02767-534387737)
Hada A, Singh D, Satyanarayana KKVV, Chatterjee M, Phani V, Rao U (2021) Effect of fluensulfone on different functional genes of root-knot nematode Meloidogyne incognita. J Nematol 53:e2021-73. https://doi.org/10.21307/jofnem-2021-073. (PMID: 10.21307/jofnem-2021-073344143758371937)
Hada A, Singh D, Banakar P et al (2023) Host-delivered RNAi-mediated silencing using fusion cassettes of different functional groups of genes precludes Meloidogyne incognita multiplication in Nicotiana tabacum. Plant Cell Rep 42:29–43. https://doi.org/10.1007/s00299-022-02934-2. (PMID: 10.1007/s00299-022-02934-236462028)
Hamamouch N, Li C, Hewezi T, Baum TJ, Mitchum MG, Hussey RS, Vodkin LO, Davis EL (2012) The interaction of the novel 30C02 cyst nematode effector protein with a plant beta-1,3 endoglucanase may suppress host defence to promote parasitism. J Exp Bot 63:3683–3695. https://doi.org/10.1093/jxb/ers058. (PMID: 10.1093/jxb/ers058224424143388836)
Hewezi T, Howe P, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2008) Cellulose binding protein from the parasitic nematode Heterodera schachtii interacts with Arabidopsis pectin methylesterase: cooperative cell wall modification during parasitism. Plant Cell 20:3080–3093. https://doi.org/10.1105/tpc.108.063065. (PMID: 10.1105/tpc.108.063065190015642613657)
Hewezi T, Howe PJ, Maier TR, Hussey RS, Mitchum MG, Davis EL, Baum TJ (2010) Arabidopsis spermidine synthase is targeted by an effector protein of the cyst nematode Heterodera schachtii. Plant Physiol 152:968–984. https://doi.org/10.1104/pp.109.150557. (PMID: 10.1104/pp.109.150557199659642815906)
Huang G, Allen R, Davis EL, Baum TJ, Hussey RS (2006) Engineering broad root-knot resistance in transgenic plants by RNAi silencing of a conserved and essential root-knot nematode parasitism gene. Proc Natl Acad Sci USA 103:14302–14306. https://doi.org/10.1073/pnas.0604698103. (PMID: 10.1073/pnas.0604698103169850001570184)
Ibrahim HM, Alkharouf NW, Meyer SL, Aly MA, Gamal El-Din AL et al (2011) Post transcriptional gene silencing of root knot nematodes in transformed soybean roots. Exp Parasitol. https://doi.org/10.1016/j.exppara.2010.06.037. (PMID: 10.1016/j.exppara.2010.06.03721044626)
Jaouannet M, Perfus-Barbeoch L, Deleury E, Magliano M, Engler G, Vieira P, Danchin EGJ, Da Rocha M, Coquillard P, Abad P et al (2012) A root knot nematode secreted protein is injected into giant cells and targeted to the nuclei. New Phytol 194:924–931. https://doi.org/10.1111/j.1469-8137.2012.04164.x. (PMID: 10.1111/j.1469-8137.2012.04164.x22540860)
Johnston MJG, McVeigh P, McMaster S, Fleming CC, Maule AG (2010) FMRFamide-like peptides in root knot nematodes and their potential role in nematode physiology. J Helminthol 84(3):253–265. https://doi.org/10.1017/S0022149X09990630. (PMID: 10.1017/S0022149X0999063019843350)
Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG et al (2013) Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol 14:946–961. https://doi.org/10.1111/mpp.12057. (PMID: 10.1111/mpp.12057238090866638764)
Joshi I, Kumar A, Singh AK, Kohli D, Raman KV, Sirohi A, Chaudhury A, Jain PK (2019) Development of nematode resistance in Arabidopsis by HD-RNAi-mediated silencing of the effector gene Mi-msp2. Sci Rep 9(1):1–11. https://doi.org/10.1038/s41598-019-53485-8. (PMID: 10.1038/s41598-019-53485-8)
Joshi I, Kumar A, Kohli D et al (2020) Conferring root-knot nematode resistance via host-delivered RNAi-mediated silencing of four Mi-msp genes in Arabidopsis. Plant Sci 298:110592. https://doi.org/10.1016/j.plantsci.2020.110592. (PMID: 10.1016/j.plantsci.2020.11059232771150)
Kassam R, Yadav J, Chawla G, Kundu A, Hada A, Jaiswal N et al (2021) Identification, characterization, and evaluation of nematophagous fungal species of Arthrobotrys and Tolypocladium for the management of Meloidogyne incognita. Front Microbiol 12:790223. https://doi.org/10.3389/fmicb.2021.790223. (PMID: 10.3389/fmicb.2021.790223349561568702965)
Kassam R, Yadav J, Jaiswal N, Chatterjee M, Hada A, Chawla G et al (2022) Identification and potential utility of Metarhizium anisopliae (ITCC9014) for the management of root-knot nematode. Meloidogyne Incognita Indian Phytopathol 75(3):875–881. https://doi.org/10.1007/s42360-022-00498-5. (PMID: 10.1007/s42360-022-00498-5)
Kassam R, Jaiswal N, Hada A, Phani V, Yadav J, Budhwar R et al (2023a) Evaluation of Paecilomyces tenuis producing Huperzine A for the management of root-knot nematode Meloidogyne incognita (Nematoda: Meloidogynidae). J Pest Sci 96(2):723–743. https://doi.org/10.1007/s10340-022-01521-4. (PMID: 10.1007/s10340-022-01521-4)
Kassam R, Kranti KV, Yadav J, Chatterjee M, Chawla G, Kundu A, Hada A et al (2023) Exploration of rhizosphere-dwelling nematophagous Trichoderma spp. using novel ‘bait technique’with root-knot nematode Meloidogyne incognita. Biol Control. 186:105327. https://doi.org/10.1016/j.biocontrol.2023.105327. (PMID: 10.1016/j.biocontrol.2023.105327)
Kerschen A, Napoli CA, Jorgensen RA, Muller AE (2004) Effectiveness of RNA interference in transgenic plants. FEBS Lett 566:223–228. https://doi.org/10.1016/j.febslet.2004.04.043. (PMID: 10.1016/j.febslet.2004.04.04315147899)
Khanal C, Land J (2023) Study on two nematode species suggests climate change will inflict greater crop damage. Sci Rep 13:14185. https://doi.org/10.1038/s41598-023-41466-x. (PMID: 10.1038/s41598-023-41466-x3764872010468521)
Kimber MJ, Fleming CC, Bjourson AJ, Halton DW, Maule AG (2001) FMRFamide-related peptides in potato cyst nematodes. Mol Biochem Parasitol 116:199–208. https://doi.org/10.1016/S0166-6851(01)00323-1. (PMID: 10.1016/S0166-6851(01)00323-111522352)
Kimber MJ, Fleming CC, Prior A, Jones JT, Halton DW, Maule AG (2002) Localisation of Globodera pallida FMRFamide-related peptide encoding genes using in situ hybridisation. Int J Parasitol 32:1095–1105. https://doi.org/10.1016/S0020-7519(02)00084-X. (PMID: 10.1016/S0020-7519(02)00084-X12117492)
Kimber MJ, McKinney S, McMaster S, Day TA, Fleming CC, Maule AG (2007) flp gene disruption in a parasitic nematode reveals motor dysfunction and unusual neuronal sensitivity to RNA interference. FASEB J 21:1233–1243. https://doi.org/10.1096/fj.06-7343com. (PMID: 10.1096/fj.06-7343com17200420)
Kumar A, Joshi I, Changwal C et al (2022) Host-delivered RNAi-mediated silencing of the root-knot nematode (Meloidogyne incognita) effector genes, Mi-msp10 and Mi-msp23, confers resistance in Arabidopsis and impairs reproductive ability of the root-knot nematode. Planta 256:74. https://doi.org/10.1007/s00425-022-03977-1. (PMID: 10.1007/s00425-022-03977-136083352)
Kumari C, Dutta TK, Banakar P, Rao U (2016) Comparing the defence-related gene expression changes upon root-knot nematode attack in susceptible versus resistant cultivars of rice. Sci Rep 6:22846. https://doi.org/10.1038/srep22846. (PMID: 10.1038/srep22846269615684785349)
Lahm GP, Desaeger J, Smith BK, Pahutski TF, River MA, Meloro T et al (2017) The discovery of fluazaindolizine: a new product for the control of plant parasitic nematodes. Bioorg Med Chem Lett 27:1572–1575. https://doi.org/10.1016/j.bmcl.2017.02.029. (PMID: 10.1016/j.bmcl.2017.02.02928242274)
Lee C, Chronis D, Kenning C, Peret B, Hewezi T, Davis EL, Baum TJ, Hussey RS, Bennett M, Mitchum MG (2011) The novel cyst nematode effector protein 19C07 interacts with the Arabidopsis auxin influx transporter LAX3 to control feeding site development. Plant Physiol 155:866–880. https://doi.org/10.1104/pp.110.167197. (PMID: 10.1104/pp.110.16719721156858)
Li XQ, Wei JZ, Tan A, Aroian RV (2007) Resistance to rootknot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol J 5:455–464. https://doi.org/10.1111/j.1467-7652.2007.00257.x. (PMID: 10.1111/j.1467-7652.2007.00257.x17451491)
Lilley CJ, Davies LJ, Urwin PE (2012) RNA interference in plant parasitic nematodes: a summary of the current status. Parasitology 139:630–640. https://doi.org/10.1017/S0031182011002071. (PMID: 10.1017/S003118201100207122217302)
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262. (PMID: 10.1006/meth.2001.126211846609)
Magrane M, UniProt Consortium (2011) UniProt knowledgebase: a hub of integrated protein data. Database. https://doi.org/10.1093/database/bar009. (PMID: 10.1093/database/bar009214475973070428)
Majumdar R, Rajasekaran K, Cary JW (2017) RNA Interference (RNAi) as a potential tool for control of mycotoxin contamination in crop plants: concepts and considerations. Front Plant Sci 8:200. https://doi.org/10.3389/fpls.2017.00200. (PMID: 10.3389/fpls.2017.00200282612525306134)
McCarter JP, Bird DM, Mitreva M (2005) Nematode gene sequences: update for December 2005. J Nematol 37:417. (PMID: 192628852620984)
McCulloch KA, Zhou K, Jin Y (2020) Neuronal transcriptome analyses reveal novel neuropeptide modulators of excitation and inhibition imbalance in C. elegans. PLoS ONE 15(6):e0233991. https://doi.org/10.1371/journal.pone.0233991. (PMID: 10.1371/journal.pone.0233991324970607272019)
McVeigh P, Geary TG, Marks NJ, Maule AG (2006) The FLP-side of nematodes. Trends Parasitol 22:385–396. https://doi.org/10.1016/j.pt.2006.06.010. (PMID: 10.1016/j.pt.2006.06.01016824799)
Morris R, Wilson L, Sturrock M, Warnock ND, Carrizo D, Cox D et al (2017) A neuropeptide modulates sensory perception in the entomopathogenic nematode Steinernema carpocapsae. PLoS Pathogen 13:e1006185. https://doi.org/10.1371/journal.ppat.1006185. (PMID: 10.1371/journal.ppat.1006185)
Mutlu AS, Gao SM, Zhang H, Wang MC (2020) Olfactory specifcity regulates lipid metabolism through neuroendocrine signaling in Caenorhabditis elegans. Nat Commun 11(1):1–15. https://doi.org/10.1038/s41467-020-15296-8. (PMID: 10.1038/s41467-020-15296-8)
Niu J, Jian H, Xu J, Chen C, Guo Q, Liu Q et al (2012) RNAi silencing of the Meloidogyne incognita Rpn7 gene reduces nematode parasitic success. Eur J Plant Pathol 134:131–144. https://doi.org/10.1007/s10658-012-9971-y. (PMID: 10.1007/s10658-012-9971-y)
Niu J, Liu P, Liu Q, Chen C, Guo Q, Yin J, Yang G, Jian H (2016) Msp40 effector of root-knot nematode manipulates plant immunity to facilitate parasitism. Sci Rep 6(1):1–3. https://doi.org/10.1038/srep19443. (PMID: 10.1038/srep19443)
Papaioannou S, Marsden D, Franks CJ, Walker RJ, Holden-Dye L (2005) Role of a FMRFamide-like family of neuropeptides in the pharyngeal nervous system of Caenorhabditis elegans. J Neurobiol 65(3):304–319. https://doi.org/10.1002/neu.20201. (PMID: 10.1002/neu.2020116187307)
Papolu PK, Gantasala NP, Kamaraju D, Banakar P, Sreevathsa R, Rao U (2013) Utility of host delivered RNAi of two FMRF amide like peptides, flp-14 and flp-18, for the management of root knot nematode. Meloidogyne Incognita Plos One 8:e80603. https://doi.org/10.1371/journal.pone.0080603. (PMID: 10.1371/journal.pone.008060324223228)
Park J, Choi W, Dar AR, Butcher RA, Kim K (2019) Neuropeptide signaling regulates pheromone-mediated gene expression of a chemoreceptor gene in C. elegans. Mol Cells. 42(1):28. https://doi.org/10.14348/molcells.2018.0380. (PMID: 10.14348/molcells.2018.038030453729)
Peymen K, Watteyne J, Frooninckx L, Schoofs L, Beets I (2014) The FMRFamide-like peptide family in nematodes. Front Endocrinol 5:90. https://doi.org/10.3389/fendo.2014.00090. (PMID: 10.3389/fendo.2014.00090)
Roderick H, Urwin PE, Atkinson HJ (2018) Rational design of biosafe crop resistance to a range of nematodes using RNA interference. Plant Biotechnol J 16:520–529. https://doi.org/10.1111/pbi.12792. (PMID: 10.1111/pbi.1279228703405)
Rogers C, Reale V, Kim K, Chatwin H, Li C, Evans P et al (2003) Inhibition of Caenorhabditis elegans social feeding by FMRFamide-related peptide activation of NPR-1. Nat Neurosci 6:1178–1185. https://doi.org/10.1038/nn1140. (PMID: 10.1038/nn114014555955)
Rosso MN, Dubrana MP, Cimbolini N, Jauber S, Abad P (2005) Application of RNA interference to root-knot nematode genes encoding esophageal gland proteins. Mol Plant Microbe Interact 18:615–620. https://doi.org/10.1094/MPMI-18-0615. (PMID: 10.1094/MPMI-18-061516042006)
Shingles J, Lilley CJ, Atkinson HJ, Urwin PE (2007) Meloidogyne incognita: molecular and biochemical characterisation of a cathepsin L cysteine proteinase and the effect on parasitism following RNAi. Exp Parasitol 115:114–120. https://doi.org/10.1016/j.exppara.2006.07.008. (PMID: 10.1016/j.exppara.2006.07.00816996059)
Shivakumara TN, Papolu PK, Dutta TK, Kamaraju D, Chaudhary S, Rao U (2016) RNAi-induced silencing of an effector confers transcriptional oscillation in another group of effectors in the root-knot nematode, Meloidogyne incognita. Nematology 18:857–870. https://doi.org/10.1163/15685411-00003003. (PMID: 10.1163/15685411-00003003)
Shivakumara TN, Chaudhary S, Kamaraju D, Dutta TK, Papolu PK, Banakar P, Sreevathsa R, Singh B, Manjaiah KM, Rao U (2017) Host-induced silencing of two pharyngeal gland genes conferred transcriptional alteration of cell wall-modifying enzymes of Meloidogyne incognita vis-à-vis perturbed nematode infectivity in eggplant. Front Plant Sci 8:473. https://doi.org/10.3389/fpls.2017.00473. (PMID: 10.3389/fpls.2017.00473284247275371666)
Shivakumara TN, Somvanshi VS, Phani V, Chaudhary S, Hada A, Budhwar R et al (2019) Meloidogyne incognita (Nematoda: Meloidogynidae) sterol binding protein Mi-SBP-1 as a target for its management. Int J Parasitol 49:1061–1073. https://doi.org/10.1016/j.ijpara.2019.09.002. (PMID: 10.1016/j.ijpara.2019.09.00231733196)
Thakur P, Sharma A, Rao SB, Kumar M, Prasad N, Tyagi N, Kamaraju D, Papolu P, Banakar P, Rao U (2012) Cloning and characterization of two neuropeptide genes from cereal cyst nematode Heterodera avanae from India. Bioinformation. 8(13):617–621. https://doi.org/10.6026/97320630008617. (PMID: 10.6026/97320630008617228297423400987)
Urwin PE, Lilley CJ, Atkinson HJ (2002) Ingestion of double stranded RNA by preparasitic juvenile cyst nematode leads to RNA interference. Mol Plant Microbe Interact 15:747–752. https://doi.org/10.1094/MPMI.2002.15.8.747. (PMID: 10.1094/MPMI.2002.15.8.74712182331)
Wang CL, Lower S, Williamson VM (2009) Application of pluronic gel to the study of root-knot nematode behaviour. Nematology 11:453–464. https://doi.org/10.1163/156854109X447024. (PMID: 10.1163/156854109X447024)
Wang Y, Chen Z, Yang Y, Zhang F (2021) Transcriptional reprogramming caused by cold acclimation in Meloidogyne incognita eggs. Genes Genomics 43(5):533–541. https://doi.org/10.1007/s13258-021-01069-0. (PMID: 10.1007/s13258-021-01069-033725279)
Warnock ND, Wilson L, Patten C, Fleming CC, Maule AG, Dalzell JJ (2017) Nematode neuropeptides as transgenic nematicides. PLoS Pathog 13:e1006237. https://doi.org/10.1371/journal.ppat.1006237. (PMID: 10.1371/journal.ppat.1006237282410605344539)
Whitehead AG, Hemming JR (1965) A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann Appl Biol 55:25–38. https://doi.org/10.1111/j.1744-7348.1965.tb07864.x. (PMID: 10.1111/j.1744-7348.1965.tb07864.x)
Xue B, Hamamouch N, Li C, Huang G, Hussey RS, Baum TJ et al (2013) The 8D05 parasitism gene of Meloidogyne incognita is required for successful infection of host roots. Phytopathology 103:175–181. https://doi.org/10.1094/PHYTO-07-12-0173-R. (PMID: 10.1094/PHYTO-07-12-0173-R23294405)
Zhang F, Peng D, Ye X, Yu Z, Hu Z, Ruan L et al (2012) In vitro uptake of 140 kDa Bacillus thuringiensis nematicidal crystal proteins by the second stage juvenile of Meloidogyne hapla. PLoS ONE 7:e38534. https://doi.org/10.1371/journal.pone.0038534. (PMID: 10.1371/journal.pone.0038534227372123380895)
Zhang L, Davies LJ, Elling AA (2015) A Meloidogyne incognita effector is imported into the nucleus and exhibits transcriptional activation activity in planta. Mol Plant Pathol 16:48–60. https://doi.org/10.1111/mpp.12160. (PMID: 10.1111/mpp.1216024863562)
Zhuo K, Chen J, Lin B, Wang J, Sun F, Hu L et al (2017) A novel Meloidogyne enterolobii effector MeTCTP promotes parasitism by suppressing programmed cell death in host plants. Mol Plant Pathol 18:45–54. https://doi.org/10.1111/mpp.12374. (PMID: 10.1111/mpp.1237426808010)
معلومات مُعتمدة: BT/PR5908/AGR/36/727/2012 Department of Biotechnology, Ministry of Science and Technology, India
فهرسة مساهمة: Keywords: Meloidogyne incognita; Mi-flp14; FMRFamide-like peptides; Host-induced gene silencing; Plant-parasitic nematode; RNAi
تواريخ الأحداث: Date Created: 20240622 Date Completed: 20240622 Latest Revision: 20240715
رمز التحديث: 20240715
DOI: 10.1007/s00299-024-03259-y
PMID: 38907748
قاعدة البيانات: MEDLINE